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Abstract 
 
Many applications in water resource management require evapotranspiration (ET) information at the daily and field-level scales; 
however, no satellite system currently operating is able to capture all the resources of ET dynamics in an agricultural field. Thus, the 
objective of this study was to apply the SEBAL (Surface Energy Balance Algorithm for Land) and ESTARFM (Enhanced Adaptive 
Reflectance Fusion Model) methodology to estimate the daily ET in an agricultural area in the municipality of Cascavel, Paraná. We 
applied the ESTARFM algorithm to MODIS and Landsat 8 images to produce 8 synthetic images. The performance of the algorithm 
was evaluated by comparing predicted surface reflectance values obtained to real Landsat 8 images. SEBAL was applied to obtain 
daily evapotranspiration values (ET24) for 3 different targets (maize, soybean and stubble crop). The observed results showed that 
the predictions of ET using ESTARFM had a general determination coefficient of 0.80 in all analyzed images and ranged from 
0.4 < R² < 0.81 when compared with real data from the Landsat 8 images, with soybean crop yielding the worst results. Low error 
values were found between the synthetic time series data of ET and the real data, with mean less than 1 mm day

-1
, meaning high 

reliability of synthetic data. ESTARFM tended to overestimate the ET values when compared with the real data, with the 
performance strongly affected by a change in the soil cover between the analyzed dates. Input data with the same soil cover is 
recommended for more accurate results.  
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Introduction 
 
The increase in food production is extremely important in 
view of the population growth trend; thus, increasing 
agricultural production is fundamental for food and energy 
security. Therefore, understanding the factors that affect 
crop yields, such as evapotranspiration (ET), will be 
important to confronting future agricultural fluctuations 
caused by global climate change, water demand, or soil 
limitations (Holzman et al., 2018). 
The use of ET in irrigation is more common; however, it is 
also increasingly used to determine the irregular use of 
water, parameterize hydrological processes, estimate 
biomass and crop production, plan and operate water 
resources, monitor climate and climate change, participate 
in forecasting models, and assist in the management and 
allocation of water in regions with water stress and between 
states and nations (Allen et al., 2011; Anderson et al., 2012; 
Paredes et al., 2015). 
ET is typically modeled using meteorological data and 
algorithms describing surface energy and vegetation 
characteristics (Allen et al., 2011). In this context, ET 
estimates obtained through remote sensing based on 
thermal infrared (TIR) data have become increasingly 
common owing to the variety of available satellites 

(Cammalleri et al., 2014; Campos et al., 2017; Silva et al., 
2018).  
Among the algorithms used, the SEBAL (Surface Energy 
Balance Algorithm for Land) proposed by Bastiaanssen et al. 
(1998) has considerable importance as it can be applied to 
spectral data of any remote satellite sensor that make 
radiance measurements in the visible, near infrared, and 
thermal infrared regions of the spectrum. 
Despite the great technological advances in the areas of 
remote sensing and environmental modeling, there are still 
some deficiencies in the current dataset (e.g., data gaps, 
deviations, inaccurate calibration, low spatial or temporal 
resolution), generating limitations in the applicability of ET 
to high space and time resolution monitoring (Anapalli et al., 
2018; Cammalleri et al., 2014).  
Because no currently operating TIR satellite system is 
capable of capturing all the resources of ET dynamics in an 
agricultural field, the data fusion approach using the 
Enhanced Adaptive Reflectance Fusion Model (ESTARFM) 
has been identified as a valuable means to combining ET 
maps using the SEBAL algorithm applied to high spatial 
resolution Land Remote Sensing Satellite (Landsat 8 
OLI/TIRS) data and high temporal frequency Moderate 
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Resolution Imaging Spectroradiometer (MODIS) data. 
Therefore, synthetic images derived from the temporal 
space fusion have great value in studies related to 
agriculture, climate, and the environment (Cammalleri et al., 
2014; Mukherjee et al. 2014). 
With this in mind, the objective of this study was to apply 
the SEBAL model and ESTARFM methodology to estimate 
daily ET on an agricultural property. The main tasks were: (1) 
Estimate daily ET using synthetic images from Landsat 8 
OLI/TIRS and MODIS images and evaluate ESTARFM 
performance, comparing ET data with real Landsat 8 
OLI/TIRS images; (2) analyze ET temporally and spatially 
from synthetic images on the farm and evaluate its 
applicability. 

 
Results and discussion 
 
ESTARFM performance 
 
To evaluate the performance of ET estimated using synthetic 
images (ETs) from the ESTARFM algorithm, these values were 
compared with those of ET estimated with real data from 
Landsat 8 images (ETL8). Three statistical indexes (root-
mean-square error, RMSE; mean absolute difference, MAD, 
and relative error, RE) were used to evaluate the ET results. 
The ETs and ETL8 estimated with a spatial resolution of 30 m 
were compared for different targets (soybean, maize, and 
stubble crop), which were observed on the property 
evaluated between October 2014 and October 2015. The 
RMSE values for soybean, maize, and stubble crop were 0.42 
mm day

-1
, 0.39 mm day

-1
, and 2.46 mm day

-1
, the MAD 

values were 0.22 mm day
-1

, 0.16 mm day
-1

, 0.10 mm day
-1

, 
and the RE values were 13%, 8%, and 48%, respectively 
(Table 1). The values of the errors were lower than those 
found by Cammalleri et al. (2014), except for corn, with their 
RMSE values ranging from 1.11 mm day

-1 
to 1.81 mm day

-1
 

and RE values ranging from 20.8% to 26.6% for irrigated 
areas. 
With regression analysis, the dispersion points were 
observed to be generally concentrated near the line x = y 
(Figure 1). For the coefficient of determination (R²), 
comparing the estimates between ETS and ETR yielded 
values of 0.81 for soybean, 0.79 for maize, and 0.40 for 
stubble crop, and when analyzed for all crops, the general 
coefficient was 0.80, showing good concordance between 
the data analyzed, except for the results found for corn. Bai 
et al. (2017), using ESTARFM for ET determination in 
agricultural crops, obtained a similar result for soybean with 
an R² of 0.79 and a superior result for maize with an R² 
coefficient of 0.85. 
The worst results were observed to be strongly influenced 
by the dates of the images used as input data for ESTARFM, 
with a change in the soil cover characterizing the difference 
between the two dates of corn and those of soybean. This 
highly dynamic use of soil impairs the performance of the 
algorithm due to the different spectral responses of the 
targets (Yin et al., 2018; Zhu et al., 2017). In addition, 
accuracy is reduced when the field size is smaller than a 
MODIS pixel; in some pixels, there was spectral mixing 
between the agricultural area and adjacent areas. 
 
 
 

ET images 
 
The daily ET values estimated with ESTARFM (ETs) in the 
eight images analyzed ranged from 0 to 10.2 mm day

-1
 

(Figure 2), with a mean of 6 mm day
-1

. The ET distribution 
reflected the developed stage of the agricultural crops in the 
study area between Oct 2014 and Oct 2015. It is observed 
that on Jan 22, 2015 and Oct 05, 2015, the lowest values of 
ET were concentrated, because at the time of these images, 
the soybean crop was found in senescence, and in the 
second image, the soil was with stubble crop. Meanwhile, 
the largest data were recorded in the image of Apr 12, 2015 
in which the maize was at its vegetative peak. 
It was observed in the comparative time series between 
ETL8, ETS, and ET0 (Figure 3) that the mean values ranged 
from 4–8 mm day

-1
, and the results obtained by the 

synthetic images exhibited good precision when compared 
with the real images from Landsat 8, with a difference 
between the means of always less than 1 mm day

-1
. 

Cammalleri et al. (2013), using data fusion in Landsat and 
MODIS images obtained errors of the order of 0.6 mm day

-1
.  

In general, ESTARFM tended to overestimate the data except 
for Feb 07, 2015. A similar pattern was found by Ma et al. 
(2018), evaluating ESTARFM in agricultural areas in 
northwest China. According to Semmens et al. (2016), there 
may be several explanations for this overestimation, such as 
spectral mixing and times chosen for data entry. Wang et al. 
(2018), testing the fusion of data to produce ET maps using 
data from area photos to ASTER images (spatial resolution 
varying from 3 m to 90 m), observed that the obtained ET 
became slightly overestimated as the sensor resolution 
decreased. 
 
Mean of ET during soybean and maize cycles 
 
To analyze the potential of the synthetic images in the 
monitoring of ET at high temporal resolution, similar to that 
of the MODIS and the spatial sensor of Landsat, synthetic 
images with ET data were analyzed during the crop cycle of 
soybean and maize (Figure 4). The dates chosen 
corresponded to the stages of vegetative development 
considered critical for water stress, reflecting in a decrease 
in ET and loss of production. 
It was observed that during the analyzed period, mainly in 
October 2014, the total precipitation recorded by the 
ECMWF data was well below that expected for the 
municipality of Cascavel (Caviglione et al., 2000), which may 
have been reflected in the lower than expected ET values for 
soybeans. 
The critical time related to soybean water stress 
corresponds to the flowering stage, stages R1 to R6, where 
the expected ET is between 6–8 mm per day (Farias et al., 
2007). The reproductive stages began 54 days after sowing 
according to Meschede et al. (2004), corresponding to 
approximately half of the cycle, represented by the crop 
image of Dec. 05, 2014, which presented ET lower than 
expected, a value of 5.6 mm day

-1
. 

The ET expected for maize in its time most sensitive to water 
stress is between 8–9 mm day

-1
 in its R1 stage (Albuquerque; 

Resende, 2002), corresponding to the image of Apr. 12, 
2015, which presented the highest of the averages among 
the analyzed images, with a value of 8 mm day

-1
.  
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            Table 1. Accuracy Analysis of the ESTARFM algorithm for daily Evapotranspiration (ET). 
Crop RMSE (mm day-1) MAD (mm day-1) RE(%) R2 

Soybean 0.42 0.22 13 0.81 
Maize 0.39 0.16 8 0.79 
Stubble crop 2.46 0.1 48 0.4 
General 1.81 1.21 30 0.79 

 
 

  

 
 

Fig 1. Comparison between ETs (calculated using synthetic ESTARFM images) and ETL8 (calculated using actual Landsat 8 image 
data): (a) Soybean, (b) Stubble crop, (c) Maize, (d) General. 

 

   

   

   

Fig 2. Spatial distribution of Evapotranspiration (ET) with synthetic images for images between October 2014 and October 2015. 
The colors in the image correspond to the ET values (mm.day

-1
) obtained from the synthetic images by the SEBAL algorithm, 

ranging from red (1 mm.day
-1

) to blue (10 mm.day
-1

). 
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Fig 3. Time Series of ETL8, ETS and ET0 for images analyzed between October 2014 and October 2015. 

 

 
Fig 4. ET means obtained for the synthetic images and the ET value expected for each stage of development analyzed from the 
soybean (a) and maize (b) and monthly total precipitate in the period of analyzed images (c). 
 

 
Fig 5. Location of the study area. The Landsat-8 image (false-color RGB image using bands 5, 6 and 4) was acquired on December 5, 
2014. It is possible to observe the predominance of agricultural targets, native vegetation and reforestation. 
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The largest volume of rainfall was recorded in the period, 
which may have contributed to the observed result. 
 
Materials and methods  
 
Study area 
 
The study area is an agricultural property in the municipality 
of Cascavel, Paraná (Figure 5), with latitude 24º 49' 35'' S 
and longitude 53º 26' 12'' W with the predominant soil 
Dystroferric Red Latosol (EMBRAPA, 2011). The climate of 
the studied region is characterized as temperate 
mesothermic and superhumid, climate type Cfa (Aparecido 
et al., 2016), with moderate temperatures, well-distributed 
rains, and hot summers. In the winter months, the average 
temperature is below 16 °C, and in the summer months, the 
maximum temperatures exceed 30 °C, with an average 
annual temperature of 21 °C. 
The first crop that occupied the area during the period of 
interest was the soybean, sown on the dates between 
October 6 and 7, 2014, and a harvest was held on February 
3–6 2015. A successive crop was maize, sowed between 
February 10 and 12, 2015 with a harvest between June 5–9, 
2015. After that date until the beginning of October, the soil 
was covered with maize stubble. 
 
Satellite Data 
 
Eight images were acquired between October 2014 and 
October 2015 from the Landsat 8 OLI/TIRS satellite 
orbit/point 223/77 (with cloud percentage less than 10%), 
and the MOD09GQ and MYD09GQ products of the MODIS 
sensor Terra and Aqua platforms from the h12v11 scene. All 
MODIS images were reprojected to Universal Transverse 
Mercator (UTM) projection using the MODIS Reprojection 
Tool (Kalvelage; Willems 2005), re-sampled for a spatial 
resolution of 30 m, using the nearest neighbor approach and 
cropped to the same extent as Landsat images. Images from 
both satellites were provided free of charge by the USGS 
(https://earthexplorer.usgs.gov/).  
 
SEBAL algorithm 
 
The SEBAL model was developed using existing modules and 
created in GRASS Open Source GIS (Alexandridis et al., 
2009). SEBAL uses spectral images from the visible, near 
infrared, and thermal infrared regions to calculate the pixel-
to-pixel energy balance. In SEBAL, Rn is calculated from the 
satellite broadband reflectance and the surface 
temperature, while G is estimated from Rn, surface 
temperature, and vegetation indices. The sensible heat flux 
H is proportional to the ratio of the surface air temperature 
difference (dT) to the aerodynamic resistance (rah). SEBAL 
uses the partitioning of λET described in Bastiaanssen et al. 
(1998), in which the evaporative fraction (Λ) is calculated 
according to Eq. (1). 

G  -nR

ET

HET

ET 







  (1) 

Meteorological studies indicate that the instantaneous 
evaporative fraction is almost constant in time (Ayenew, 
2003). Thus, at daily time scales, ET24 (mm d

-1
) can be 

calculated as shown in Eq. (2) 

2424

86400
nRET 


 (2) 

where Rn24 (W m
-2

) is the average net radiation over 24 h, 
and λ (J kg

-1
) is the latent heat of vaporization. 

In addition to the satellite images, the SEBAL model requires 
ET0 values, and these meteorological data were obtained 
from the European Center for Medium-Range Weather 
Forecasts (ECMWF) provided on its website, with a 
resolution of 0.125° × 0.125° 
(http://apps.ecmwf.int/datasets/data/interim‐full‐
daily/levtype=sfc).  
 
ESTARFM algorithm 
 
The ESTARFM algorithm is intended to use correlation to 
merge different data sources, thereby minimizing system 
distortions. For convenience, low spatial resolution images 
are called "coarse resolution" and high-resolution images 
are referred to as "fine resolution". In the first step of the 
processing, the algorithm requires two pairs of fine 
resolution images and coarse resolution as input—the first 
pair is called t1 and the second pair is t2, both captured on 
the same date. The estimated date of production is called tp, 
which falls between dates t1 and t2 and requires a coarse-
resolution image, in this case, a MODIS image. Thus, 
ESTARFM is able to produce a synthetic image at prediction 
date tp with the same spatial resolution as that of the fine 
resolution images (Zhu et al., 2010). 
The use of ESTARFM contains four main steps: (1) two fine-
resolution images are used to search for pixels similar to the 
central pixel in a moving window, (2) the spectral and spatial 
distance between each pixel similar to the pixel to be 
predicted are used to calculate the weights (W) of each 
similar pixel, (3) a linear regression of the coarse-resolution 
values is used in the two observed pairs (t1 and t2) to 
compare with the fine-resolution values; this permits the 
determination of the conversion coefficient vi, which is used 
to convert the change found in the coarse-resolution images 
to that of the fine resolution images, and finally (4) the fine-
resolution image obtained from the coarse-resolution image 
at the forecast date is given by Eq. (3) 

 
Where, F and C are the fine-resolution and coarse-resolution 
images, respectively, (x, y) is the location of the predicted 
pixel value, xi and yi are the locations of the i-th similar pixel, 
and t0 is the date of the first pair of images, t1 or t2. N is the 
total number of similar pixels, including the central pixel of 
the prediction inside the moving window (Zhu et al., 2010). 
The methodology presented by Gao et al. (2006) uses a 
moving window method to obtain more information 
regarding neighboring pixels. The moving window is used to 
search for similar pixels within this window, and such 
information is integrated into the calculation of the fine-
resolution reflectance, as described in Eq. (1), where W is 
the size of the moving window, and the central pixel of the 
fine-resolution reflectance (xw/2, yw/2) at date tp can be 
calculated by Eq. (4). 

 

Where, N is the number of similar pixels, including the 
central pixel of the "prediction", (xi, yi) is the location of the 
i-th similar pixel, and wi is the weight of the i-th similar pixel. 
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The similar pixels are those neighboring pixels that have the 
same type of coverage as the central pixel.  

 
Conclusions  
 
ESTARFM can be applied to estimate ET with high spatial and 
temporal resolution through the fusion of Landsat 8 and 
MODIS images, estimating water consumption by 
agricultural crops. The best results were found for soybean 
with an R² of 0.81, while the worst results involved stubble 
crop with an R² of 0.41. The algorithm tended to 
overestimate the values when compared with real Landsat 8 
images. 
The synthetic images allowed the systematic monitoring of 
the crop, facilitating the determination of dates sensitive to 
the water stress of the plant, which would not be possible 
with sensors alone.  
The choice of dates for the input data plays a large role in 
performance, considering that the worst results were 
obtained when the data used corresponded to a change in 
the soil cover between the dates analyzed for the study 
area. 
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