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Abstract  
 
The present study aims to evaluate the APSIM-Maize model performance to use it as a decision-making tool to help improve 
production rates, reduce production costs and assess the potential impacts of climate change on crop yields in the Northeast of 
Brazil. The crop, soil and weather data used in the simulations were obtained from field experiments carried out in maize crops in 
2008 and 2011 in two different edaphoclimatic regions in Alagoas State, Northeast Brazil. The approach we used explored the 
ability of APSIM to simulate growth variables and soil water dynamics of a maize variety (AL Bandeirante). During parametrization, 
we made some adjustments regarding the variety and soil organic matter to attain a better representation of the growth and soil 
water dynamics, respectively. The APSIM-Maize model predicted the leaf area index with a RMSE (Root Mean Square Error) ranging 
between 0.14 and 1.06 cm

2
 cm

-2
 and the biomass production with an RMSE between 2.30 and 3.34 Mg ha

-1
. The volumetric soil 

water content was satisfactorily predicted with RMSE ranging between 0.02 and 0.08 mm mm
-1

. Results showed that this model is a 
useful tool for decision-making, which can be potentially used as a support in climate risk management and policies, aiming to 
improve regional production, provided it has been previously validated with independent datasets. 
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Abbreviations: ADD_Accumulated Degree-Day; APSIM_The Agricultural Production System Simulator; DAS_Days After Sowing; 
DOY_Day Of Year; DUL_Soil Water Content at Drained Upper Limit; k_Canopy Light Extinction Coefficient; LAI_Leaf Area Index; 
LL_Soil Water Content at Drained Lower Limit; PAR_Photosynthetically Active Radiation; RUE_Radiation Use Efficiency; SW_Soil 
Water Content; TDR_Time-Domain Reflectometry;  
 
Introduction  
 
Maize has a high socioeconomic value worldwide because its 
cereal is used to produce food for human and animal 
consumption. In addition, the grains are also widely used as 
a renewable energy source (Koizumi, 2015). The global 
average productivity in 2016 was 5.6 Mg ha

-1
 according to 

the Food and Agriculture Organization of the United Nations 
(FAO). At present, the USA is the largest maize producer in 
the world and in 2016 it produced 10.6 Mg ha

-1
 of grain and 

has an historical average of 7.1 Mg ha
-1

. Brazil is the third 
largest maize producer as it produced 5.5 Mg ha

-1
 of grain in 

2016 (FAO, 2018). However, climate and edaphic restrictions 
(e.g., soil with low fertility or low water retention capacity 
and salinity), as well as low technological levels and 
inadequate management practices are factors that 
contribute to Brazil having a historical average yield of only 
2.8 Mg ha

-1
 (CONAB, 2018).  

A huge demand for food due to the increasing global 
population has jeopardized the sustainability of agriculture 
and requires higher production levels without increasing  

 
planted areas. This requires using crop modelling to estimate 
the potential productivity of large regions with relatively low 
levels of productivity. Roxburgh and Rodriguez (2016) 
reported that the spatial variability of productivity is mainly 
associated with soil fertility and soil handling techniques 
(crop density, population and planting season) and a general 
lack of technical knowledge. In addition, the seasonal 
variability of productivity can be explained by the variability 
in rain producing weather systems. It is estimated that 
putting these factors aside, maize yield could increase by up 
to 120%. In Northeast Brazil, most of the maize crops are 
grown in rainfed conditions and are for self-sustaining, 
showing a historical average productivity of around 0.9 Mg 
ha

-1
 (last harvest of 2016-2017 = 2.5 Mg ha

-1
). Productivity in 

Alagoas is still smaller with a historical average of only 0.5 
Mg ha

-1
 between 1976 and 2017, which is 82.1 and 44.5% 

lower than the national and regional yield, respectively 
(CONAB, 2018). However, Ferreira Junior et al. (2014) and 
Lyra et al. (2010) showed that in this region, the yield can be 
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increased to about 6.0 to 8.7 Mg ha
-1

 under experimental 
conditions based on good management practices. 
Process-based mathematical models of plant growth are 
essential for identifying environmental restrictions, thus 
allowing higher levels of crop production.  Agricultural 
modelling began in the 1960s aiming at simulating 
photosynthetic rates of crops (de Wit, 1965). Since then, the 
search for better methods to improve the performance of 
agricultural systems through process-based crop models has 
been a very active area of research in agriculture (Keating et 
al., 2003; Carberry et al., 1993; Muchow et al., 1990). The 
main application of crop modelling is crop management and 
environmental risk decision making. Nowadays, crop models 
are also widely used to evaluate the potential consequences 
of climate change on crop yields (Roberts et al., 2017; Bassu 
et al., 2014).  
The APSIM (Agricultural Production System Simulator) is a 
modular modelling framework that simulates various 
interactions among plants, animals, soil, climate and 
agricultural management (Keating et al., 2003). Studies have 
shown that APSIM is suitable for many applications in 
agricultural production systems (Ojeda et al., 2016; Singh et 
al., 2014; Zeleke et al., 2014; Monhanty et al., 2012). 
Archontoulis et al. (2014) evaluated the overall performance 
of APSIM-Maize in the Midwestern United States. They 
concluded that the model can be used as a research and 
decision-making tool to provide agricultural support in the 
Midwest. Song et al. (2010) used APSIM-Maize to evaluate 
the effects of water stress on maize growth and yield under 
dryland conditions in southeast Queensland. Results showed 
that APSIM performed accurately, and therefore the model 
can be used as a tool to assess maize production with new 
cultivars in drier and less predictable environmental 
situations, provided the parametrization of cultivars and soil 
characteristics are accurate. 
The main objective of this paper is to provide an overall 
assessment of the APSIM model performance in Northeast 
Brazil, aiming to use it as a tool to help improve regional 
production. More specifically, our goal is to assess the 
performance of the APSIM model to simulate growth, 
biomass, grain yield and soil water dynamics for a maize 
variety in two regions of Alagoas State, Northeast Brazil. 
 
Results  
 
Growth variable analyses 
 
Leaf area index (LAI) measurements (Fig 2) showed the 
largest amplitudes for Rio Largo (Fig 2e-h) with a maximum 
value of 5.41 cm

2
 cm

-2
 (Fig 2f) at 57 days after sowing (DAS). 

The smallest variation of LAI was found in Arapiraca during 
the fourth sowing date (Fig 2d), with a maximum value of 
3.64 cm

2
 cm

-2
 at 65 DAS. The LAI simulations for Arapiraca 

showed a percentage relative error of 21% (Fig 2) ranging 
between 12% (Fig 2a) and 29% (Fig 2b). For Rio Largo (Fig 2e-
h), the model showed an averaged error of 29%.  Moreover, 
the best performance was observed on the fourth sowing 
date (Fig 2f) with an error of approximately 14.2%. 
The model performed very well in estimating LAI for 
Arapiraca with RMSE of 0.305 cm

2
 cm

-2
 (Fig 2a-d), and d of 

98.7%. In particular, the fourth sowing date (Fig 2d) showed 
the best agreement (d = 99.7%) and precision (RMSE = 0.14 
cm

2
 cm

-2
 and R

2
 = 0.96), thus indicating a very good 

performance of the simulation. For this specific case, the 

highest performance was achieved after increasing the 
effective depth of the root system from 60 cm to 75 cm, 
which corresponded to a 25% drop in the simulation error. 
As the experiment was conducted under rainfed conditions, 
we considered this modification necessary due to the low 
water availability in the soil from the end of the vegetative 
stage in mid-September (DOY ~ 250, Fig 4d), until the 
harvest at the end of October (DOY ~ 297).  The LAI 
predictions for Rio Largo showed a good agreement (d) of 
95.0% and a reasonable precision (R

2
 = 0.63). In addition, we 

observed a larger RMSE of 0.68 cm
2
 cm

-2
 when comparing 

them with the results for Arapiraca. In general, all the LAI 
simulations were considered very efficient (i.e., 0 < EF < 1) as 
the EF for Arapiraca and Rio Largo were 0.95 and 0.87, 
respectively. A low EF of -0.15 (i.e., EF < 0) was observed 
only in one case (second sowing date in Rio Largo), 
indicating poor efficiency. The low EF, for this specific case, 
did not invalidate the simulation, however it means that the 
model predictions were worse than simply using the 
observed mean to replace the simulated value (Yang et al., 
2014a).  
The total biomass production obtained from the field 
experiment was larger in Rio Largo (Fig 3e-f) ranging from 
15.2 Mg ha

-1
 (sowing 4 – Fig 3h) to 17.4 Mg ha

-1
 (sowing 2 – 

Fig 3f). Smaller values were obtained in Arapiraca which 
ranged from 10.3 Mg ha

-1
 (sowing 4 – Fig 3d) to 12.26 Mg ha

-

1
 (sowing 2 and 3 – Fig 3b,c). The grain yield obtained from 

the field experiment in Arapiraca showed large variations 
among the sowing dates, i.e. 1.96 Mg ha

-1 
(sowing 4) and 

4.11 Mg ha
-1

 (sowing 2), which in turn was the largest grain 
yield considering all sowing dates studied (Fig 3b). For Rio 
Largo, the grain yield obtained in the field experiment 
showed smaller values and less variations among the sowing 
dates, which ranged from 2.20 Mg ha

-1
 (sowing 4, Fig 3h) to 

3.70 Mg ha
-1

 (sowing 2, Fig 3f). The experimental data shown 
above revealed that the largest values of total biomass and 
grain yield were associated with earlier sowing dates. As 
mentioned previously, both experiments were conducted 
under rainfed conditions and, therefore, the latest sowing 
season suffered from the low water availability in the soil 
between the vegetative period and the harvest due to the 
annual rainfall pattern in these regions  (see Fig. 4). Hence, 
for the latest sowing date the reduction in rainfall was 
responsible for the smaller values of biomass and grain yield, 
mainly for Arapiraca (Fig 3d and Fig 4d).  
The model estimated the biomass production for Arapiraca 
with a RMSE of 3.11 Mg ha

-1 
and underestimated the 

observations (above 20%) for all cases (Fig 3a-d). Despite 
these high underestimates, a good precision (R

2
 = 0.86) was 

observed, as well as an agreement index (d) of 83.7%. This 
highest precision and smaller accuracy indicate that the total 
error may have contributed to a larger systematic 
component (Willmott, 1981). The results for the grain yield 
were also quite satisfactory as the error ranged between 
12.9% (sowing 1) and 15.5% (sowing 3), within the accepted 
error threshold (± 20%) for the first three sowing dates (Fig 
3a-c). The biomass predictions for Rio Largo were more 
accurate than those for Arapiraca (d = 92.6%), showing 
slightly less precision (RMSE ~ 2.31 to 2.63 Mg ha

-1
 and R² = 

0.82). However, the grain yield was overestimated by the 
model around 42% for the first three sowing dates (Fig 3e-g).  
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Table 1. Sowing and harvest dates regarding the field experiments of Arapiraca (2008) and Rio Largo (2011) in Alagoas, Northeast 
Brazil.   

Sowing date Arapiraca  Rio Largo 

 Sowing Harvest  Sowing Harvest 

Sowing 1 14/06 01/09  06/05 12/10 
Sowing 2 22/06 16/09  19/05 16/10 
Sowing 3 28/06 06/10  10/06 31/10 
Sowing 4 05/07 24/10  30/06 04/11 

 
 

 
Fig 1. Map of the State of Alagoas in Northeast Brazil, showing the experimental site (red stars) locations. 

 
Table 2. Soil hydrophysical properties: Bulk density (BD), 15Bar lower limit of soil water content (LL15), drained upper limit (DUL) 
and water content at saturation (SAT) used in APSIM-Maize module for the Arapiraca and Rio Largo simulations. 

 Depth BD LL15 DUL SAT 

 
cm g cm

-3
 

 
mm mm

-1
 

 

A
ra

p
ir

ac
a 0-30 1.33 0.063 0.102 0.40 

30-60 1.38 0.076 0.113 0.39 

R
io

 L
ar

go
 0-10 1.36 0.12 0.20 0.40 

10-20 1.44 0.13 0.22 0.43 
20-30 1.52 0.14 0.24 0.43 

 
 

 
Fig 2. Measured and simulated leaf area index (LAI) as a function of days after sowing (DAS) for four sowing dates in Arapiraca (Fig 
2a-d) and Rio Largo (Fig 2e-h). 

RMSE = 1.06 cm
2
 cm

-2

EF = -0.15

r
2
= 0.25

d = 0.41

0

2

4

6

8

Leaf area index observedLeaf area index simulated

sowing 1 sowing 2 sowing 3 sowing 4

a) b) d)c)

RMSE = 0.29 cm
2
 cm

-2

d = 99.2 %

RMSE = 0.46 
d = 97.7 %

RMSE = 0.35 
d = 98.2 %

RMSE = 0.14 
d = 99.7 %

0 20 40 60 80

0

2

4

6

8

0 20 40 60 80

Days after sowing

0 20 40 60 80 0 20 40 60 80

sowing 1 sowing 2 sowing 3 sowing 4

e) f) h)g)

RMSE = 0.51 
d = 92.5 %

RMSE = 0.71 
d = 97.0 %

RMSE = 0.46 
d = 98.6 %

L
e
a
f 

a
re

a
 i
n
d
e
x
 (

c
m

2
 c

m
-2

)

RMSE = 1.06 
d = 91.5 %



900 
 

 
Table 3. Soil chemical properties: water pH-value (pH), starting mineral N pools (NH4 and NO3), organic carbon (OC), biomass 
fraction (FBIOM) and inert OC fraction (FINERT), used for the Arapiraca and Rio Largo simulations. 

 
Prof. NH4 NO3 OC FBIOM FINERT pH 

 
cm mg kg-1 mg kg-1 % (0-1) (0-1) (water) 

A
ra

p
i

ra
ca

 0-30 3.30 6.45 2.66 0.023 0.46 5.23 
30-60 0.78 0.99 0.99 0.010 0.62 4.30 

R
io

 

La
rg

o
 0-10 1.30 1.75 1.03 0.035 0.39 5.52 

10-20 1.00 2.58 0.86 0.020 0.47 5.10 
20-30 1.00 2.12 0.77 0.015 0.52 5.00 

 

 
Fig 3. Measured and simulated aboveground biomass and grain yield (Mg ha

-1
) for four sowing dates in Arapiraca, AL (Fig 3a-d) and 

Rio Largo, AL (Fig 3e-h). The statistical indices indicated in the panels refer to biomass. 
 
 
             Table 4. Parameters used to adjust the leaf area index (LAI) for the Arapiraca and Rio Largo simulations. 

Parameter Value APSIM Value used Description 

x_lai 0.1 – 4.0 0.1 – 6.0 LAI range 
leaf_no_dead_slope 0.00035 0.0002 Slope LAI – associated with leaf age senescence 
lai_sen_light 4.0 6.0 Occurrence of induced senescence by light 

  
 

 
Fig 4. Measured and simulated volumetric soil water content (mm mm

-1
) at the layer 0-60 cm and daily precipitation for four 

sowing dates in Arapiraca, AL (Fig 4a-d) and Rio Largo, AL (Fig 4e-h). 
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Table 5. Phenological parameters used in the parametrization of maize variety (AL Bandeirante) for the Arapiraca and Rio Largo 
simulations. 

Parameter Value Description 

tt_emerg_to_endjuv1 196.08 ADD between the emergency and the end of the juvenile stage. 
tt_flower_to_maturity2 488.1 ADD between the flowering and maturity. 
tt_flag_to_flower3 10 ADD the flag leaf appearance and flowering. 
tt_flower_to_start_grain4 68.5 ADD flowering to grain filling 
tt_maturity_to_ripe5 1 ADD between maturity and harvest. 

1ADD between emergence to 4th fully expanded leaf (V4); 2ADD between flowering (R1) to maturity (R6); 3ADD between two days after tasseling (VT) to flowering (R1); 4ADD between flowering (R1) 
to start of the grain filling (R2); 5ADD between maturity (R6) to harvest.  

 
Soil water dynamics analyses 
 
The soil moisture observations using a TDR (Time Domain 
Reflectometer) indicated that for Arapiraca the maximum 
values of the volumetric soil water content (SW, mm mm

-1
) 

ranged between 0.15 mm mm
-1 

(Fig 4d) and 0.24 mm mm
-1

 
(Fig 4a) during the growing season considering all sowing 
dates. These values for Rio Largo were around 0.26 mm mm

-

1
 (Fig 4e-h). Overall, the model estimated the soil water 

dynamics with a small error (less than ± 20%). The Arapiraca 
simulation for the first and last sowing dates (Fig 4a,d) 
showed smaller estimation errors, ranging from 14.5% 
(sowing 4) to 19.9% (sowing 1). For Rio Largo, the SW 
estimates showed an error of the order of 22.1% (Fig 4e-h). 
The model simulated the soil water dynamics for Arapiraca 
(Fig 4a-d) and Rio Largo (Fig 4e-h) with an RMSE of 0.04 mm 
mm

-1
 and 0.06 mm mm

-1
, respectively. The first sowing date 

for Arapiraca (Fig. 4a) showed that the model satisfactorily 
reproduced the pattern of measured soil water content 
(RMSE = 0.08 mm mm

-1
 and d = 84.0%), which showed 

successful soil water parametrization. This parameterization 
also performed well on the other sowing dates, in which the 
observations and simulations showed similar trends despite 
their different magnitudes in some cases. Thus, evidence 
was shown that the model succeeded in simulating the real 
process of the soil water dynamics. However, this result is 
not surprising because the APSIM’s soil water module 
requires soil water content data at the drained upper limit 
(DUL) and lower limit (LL), both determined from 
experimental conditions (Archontoulis et al., 2014). 
 
Discussion 
 
The reasonable performance of LAI estimates in Rio Largo 
did not affect the accuracy of the estimates of biomass 
production although LAI is an important variable when 
calculating the intercepted light and photosynthesis in the 
model. Asseng et al. (1998) points out that it is surprising 
that LAI estimates do not seriously affect the biomass 
predictions. This apparent lack of sensitivity of the estimated 
LAI on the biomass, in some cases, could be explained by the 
fact that accurate LAI simulations are more important in 
early growth stages and during the grain filling period. 
However, less relevance is observed when the ground is fully 
covered (maximum LAI), where at that point an increase in 
LAI has a marginal effect on light interception. This may 
explain why the biomass production estimates were not 
adversely affected by relatively poor LAI estimates, although 
the biomass production was sensitive to modifications made 
in the LAI parametrization, such as those discussed below.   
A reliable prediction of LAI is important to obtain good 
estimates of biomass production. The fitted parameters in 
calculating LAI were important for a better representation of  
 
 

 
the growth conditions, resulting in more reliable estimates 
of biomass production and grain yield. Following the 
procedure adopted by Archontoulis et al. (2014), the 
parameter associated with the leaf age senescence 
(leaf_no_dead_slope) was reduced from 0.00035 to 0.0002 
to attain a better representation of the decay of the LAI 
curve due to leaf senescence. In addition, to better fit the 
LAI range (x_lai) parameter to the field observations, we 
expanded the LAI upper limit from 4.0 to 6.0. Note that the 
maximum LAI in Rio Largo was 5.6 (Fig 2e). In other words, 
the former upper limit considered in the model was not 
large enough to meet the LAI variations obtained in the field 
observations. Overall, the LAI estimates in this study were 
very satisfactory for Arapiraca, but not as much for Rio 
Largo, as previously mentioned. A study conducted by 
Archontoulis et al. (2014) in the Midwestern United States 
considered that APSIM-Maize predicted LAI satisfactorily 
with a precision of 21%. However, research carried out in 
Australia (Asseng et al., 1998; Meinke et al., 1997), using the 
APSIM-Wheat module, reported quite a poor performance in 
LAI predictions.  
The biomass production (Fig 3) is highly dependent on the 
canopy light extinction coefficient (k), which in turn was 
maintained as the APSIM’s default value. Ferreira Junior et 
al. (2014) found k = 0.62 for the AL Bandeirante variety, 
considering photosynthetically active radiation (PAR). This 
value corresponds practically to the same value considered 
in the model (k = 0.53), taking into account the 
proportionality to solar global irradiation (Hg). For the 
radiation use efficiency (RUE), we used APSIM’s default 
values for maize in which RUE is considered as constant (1.6 
g MJ

-1
) until the beginning of the grain filling, then it is 

reduced to 1.4 g MJ
-1

 (Muchow et al., 1990) due to the 
reduction in the photosynthetic rate stemming from the 
senescence of the leaves. Recent studies carried out in the 
USA have reported that RUE for maize is about 1.67 g MJ

-1
 

Hg, matching with the value used in our simulations 
(Archontoulis et al., 2014; Singer et al., 2009).  
The model did not satisfactorily reproduce the soil water 
pattern for Rio Largo (Fig 4e-h), even using hydro-physical 
parameters determined experimentally. This was largely due 
to the soil type of the region, which has a compacted layer 
situated around 30 cm deep and did not properly reproduce 
by the drainage parameter of the model. It was noticed that 
the model overestimated the SW immediately after days or 
periods with large accumulated rainfall. On the other hand, 
it showed a better performance regarding the SW estimates 
for low rainfall periods. In other words, the model was able 
to recognize the compact layer, which reduces the drainage 
of the soil water, thus underestimating the drainage rates. 
For this very reason, the soil water conductivity parameter 
(SWCON, d

-1
) was increased from 0.2 (Probert et al., 1998) to 

0.6, using an iterative method to achieve a better agreement 
of SW. The SWCON parameter represents the water above 
DUL which is drained daily.  
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Using the APSIM-Maize in central western USA, Archontoulis 
et al. (2014) reported RMSE of 0.03 mm mm

-1
 for the soil 

water dynamics simulations. We obtained a similar precision 
in our results for Arapiraca (Fig 4a-d). A reasonable 
performance of APSIM in predicting SW was noticed when 
simulating the cotton crop in northern China (Yang et al., 
2014b) with R

2
 ranging from 0.33 and 0.56. Good precision 

was found for wheat in western Australia (Aseng et al., 1998) 
and canola in southern Australia (Zeleke et al., 2014), which 
reported R

2
 of 0.92 and 0.94, respectively. Finally, the SW 

predictions in this study indicate a good efficiency of the 
APSIM model in calculating soil water dynamics under well 
drained soils (e.g., soil in Arapiraca) in close agreement with 
other studies (Aseng et al., 1998; Mohanty et al., 2012). 
 
Materials and Methods  
 
Experimental data  
 
This study uses experimental data in rainfed conditions from 
two edaphoclimatic different regions in Alagoas State, 
located on the eastern coast of Northeast Brazil (Fig 1): 1) 
Arapiraca (9°48’55.1" S; 36°36’22.8" W; 260 a.s.l.) in 2008 

and 2) Rio Largo (09º28´02"S; 35º49’43"W; 127m a.s.l.) in 
2011. Arapiraca´s climate is (As’), according to the Köppen 
classification with a dry Summer and rainy Autumn and 
Winter; temperatures are high throughout the year (annual 
average air temperature of 25°C and precipitation totals 
between 750 and 1000 mm year

-1
). The rainiest months are 

May and June (> 50% of the annual total). The soil is 
classified as dystrophic Red Yellow Latosol, with a sandy 
loam texture and the bulk density is 1.35 g cm

-3
 in the first 

60 cm depth. The experimental design used was a 
randomized block design with six replicates and four sowing 
dates by treatment (Table 1). Row spacing was 0.80 cm and 
each experimental plot consisted of 12 rows 10 m long, 
which resulted in a stand population of 55,000 plants ha

-1
. 

Further experimental details for Arapiraca can be found in 
Medeiros (2009). 
The Rio Largo experiment was carried out at the Center of 
Agricultural Sciences at the Federal University of Alagoas 
(CECA/UFAL). The climate of the Rio Largo region is classified 
as As according to the Köppen classification, with monthly 
average minimum and maximum air temperatures of 17.2 
and 35.2

o
C, respectively. The interannual rainfall variability is 

high, with an annual average of 1800 mm. The rainy season 
starts in early April and lasts until late August, with a total 
that corresponds to 70% of the annual total; the dry season 
spans from early October until the first half of February, 
representing about 16% of the total precipitation (Souza et 
al., 2004). The soil of Rio Largo site is classified as 
Distrocohesive Yellow Latosol, intermediate/clayey texture 
with an average density of 1.44 g cm

-3
 in its first 30 cm. The 

experimental design used was a randomized block design 
with five replicates and four sowing dates by treatment 
(Table 1). The experimental field was approximately 960 m

2
 

(0.096 ha and the plot dimensions were 8 x 6 m). Row 
spacing was 0.80 m, and each experimental plot consisted of 
10 rows 6 m long; the stand population was 75,000 plants 
ha

-1
. Further experimental details for Rio Largo can be found 

in Silva (2013). 
For both sites, the depth of the radicular system set up in 
the model was 0.60 m, according to the field observations. 
The maize variety used was the AL Bandeirante, which were 

sown in four different dates during 2008 (Arapiraca’s site) 
and 2011 (Rio Largo’s site), as shown in Table 1.  
 
Input datasets  
 
The weather data were grouped in a metfile, containing daily 
data such as (i) global solar irradiation (MJ m

-2
) obtained 

using a Pyranometer (CM3, Kipp & Zonen); (ii) air 

temperature and humidity (ºC) obtained using a thermo-
hygrometer (HMP45C, Vaisala Inc.); (iii) wind speed (m s

-1
) 

obtained using a cup anemometer (051035/Young, Campbell 
Sci.); (iv) rainfall (mm), obtained using a pluviometer (TB3, 
Hydrological Service PTY, Sydney, Australia). All the above 
data were collected at agrometeorological stations using a 
datalogger (CR1000, Campbell, Sci. Logan, Utah). The soil 
water content (mm

3 
mm

-3
) measurements utilized to 

evaluate the simulated soil water dynamics were obtained 
using a TDR (model-CS616, Campbell Sci. Logan, Utah). The 
TDR calibration procedures for Arapiraca and Rio Largo can 
be found in Medeiros (2009) and Sarmento (2015), 
respectively. 
 
APSIM configuration  
 
The APSIM version 7.6 was used in this study on a daily time 
step. The simulations were configured using the following 
modules: MAIZE (crop module), FERTILIZER and 
SURFACEOM. The application of fertilizer was programmed 
using the “operations schedule” function – available in the 
APSIM’s management toolbox – that creates a chronology of 
all operations. 
 
APSIM parametrization 
 
The model parametrization was achieved according to an 
established logical pattern: (i) meteorological and soil 
variables, representative of the local environmental 
conditions, were inserted; (ii) phenological parameters of 
the maize variety were used to perform the crop 
parametrization; (iii) finally, an interactive approach was 
used to fit some variables such as soil water content, LAI and 
biomass. During the parametrization, several sensitivity 
analyses were carried out in order to better define the 
model response regarding the crop estimates. We also used 
some available information in the literature to complement 
the parametrization of the phenology and growth. The 
parametrization process was considered complete when an 
equilibrium between observed and simulated variables was 
attained. 
The soil parametrization was performed by creating a soil 
file containing hydrophysical (Table 2) and chemical (Table 3) 
soil properties in each of the referred sites. The soil files 
consist of several submodules that include all the inputs 
necessary to specify the water balance and uptake of 
nutrients, which in turn were setup in the parametrization. 
Some soil chemical properties such as starting mineral N 
pools (NH4 and NO3), organic carbon (OC), biomass fraction 
(FBIOM) and inert OC fraction (FINERT), were used according 
to Probert et al. (1998) due to the lack of experimental data 
(Table 3). The soil surface organic matter residues were 
modified aiming at more precise estimates of the soil water 
dynamics. This modification was necessary to adjust the 
initial surface residue (residue_wt), whose value was 
suggested by Probert et al. (1998) of 5000 kg ha

-1
.  However, 

this value was not in agreement with the soil water 
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measurements. For this reason, we reduced the initial 
surface residue to 1000 kg ha

-1 
for both sites, which allowed 

for better estimates. In addition, the depth of the radicular 
system in the Arapiraca simulation had to be increased (from 
60 to 75 cm) for the fourth sowing date to obtain better 
predictions of LAI and biomass (see results).  
Some modifications had to be made to achieve a better fit of 
the predicted LAI to the observations (Table 4). Firstly, the 
x_lai parameter, which represents the variation of LAI, was 
changed to fit into experimental LAI variation that achieved 
a maximum value of 5.6. This, in turn, exceeded the upper 
limit previously considered in the model (LAI = 4.0). Second, 
the leaf_no_dead_slope parameter was changed to 
represent the decay in the LAI curve according to 
Archontoulis et al. (2014). Finally, the lai_sen_light 
parameter, which indicates when the induced senescence 
occurs, was modified due to the same reason the parameter 
“x lai” was changed. 
 
Nutritional management configuration 
 
The nutritional management was programmed using the 
function “fertilizer apply amount”, which in addition to 
indicating the fertilizer amount also specifies the 
constituents and application depth. The fertilizer application 
was shaped in order to represent the experimental 
applications, which in turn was performed by foundation 
fertilization and topdressing. The foundation fertilization in 
the Arapiraca site was 40 kg ha

-1
 of nitrogen (N), 60 kg ha

-1
 

of phosphorus pentoxide (P2O5), 50 kg ha
-1

 of potassium 
oxide (K2O) and 2 kg ha

-1
 of Zinc (Zn) and topdressing utilized 

100 kg ha
-1

 of N. In the Rio Largo experiment, the following 
was used: 10 kg ha

-1 
of N, 60 Kg ha

-1
 of P and 45 kg ha

-1 
of K 

(foundation fertilization) and 60 kg ha
-1

 of N (topdressing) 
whose sources were ammonium sulfate ((NH4)2SO4), single 
superphosphate (SSP) and potassium chloride (KCl). 
However, the model accepts only nutritional sources based 
on nitrogen (N) and phosphorus (P) and for this reason, 
fertilization using potassium as a source of nutrients was not 
considered in programming the nutritional management. 
Foundation fertilization was programmed at the beginning 
of the simulation (sowing date) and there were two types of 
topdressing corresponding to the V4 (fourth fully expanded 
leaf at 15 DAS) and V8 (eighth fully expanded leaf at 30 DAS) 
phonological stages, according to the experimental 
practices. The N source used in the model was ammonia 
nitrate (NH4NO3) which contains about 34% of N (Malavolta 
et al., 2002). Since the APSIM does not accept the ammonia 
sulphate as a source of N, the NH4NO3 amount inserted into 
the model had to be adjusted by proportionality in order to 
correspond to the N applied experimentally. After this 
adjustment in the N, the fertilizer amount programmed for 
the Arapiraca simulation was 117.6 kg ha

-1
 of NH4NO3 in the 

foundation fertilization and 206 kg ha
-1

 of NH4NO3 for each 
topdressing programmed. For Rio Largo, it was programmed 
as 29.4 kg ha

-1
 of NH4NO3 in the foundation fertilization and 

88.2 kg ha
-1

 of NH4NO3 for each topdressing. 
 
Crop variety implementation  
 
The APSIM platform does not include the maize variety (AL 
Bandeirante) used in the field experiment, hence the need 
to implement it in the model. The required phonological 
parameters, based on the accumulated degree-day (ADD) 
regarding varieties such as: ADD between the beginning and 

the end of the juvenile stage (tt_emerg_to_endjuv), 
between the flowering and maturity 
(tt_flower_to_maturity); the flag leaf appearance and 
flowering (tt_flag_to_flower) and flowering to the beginning 
of the grain filling (tt_flower_to_start_grain); and ADD 
between maturity and harvest (tt_maturity_to_reap) were 
introduced into the maize.xml file. These phenological 
parameters are shown in Table 5. 
 
Statistical analysis  
 
The performance of the APSIM model was quantitatively 
given by different statistical tests, such as i) model error (± 
20%); and ii) Root mean Square Error (RMSE), indicating 
respectively the relative and absolute mean error, which 
both show a better fit when the indices approach zero; iii) 
determination coefficient (R

2
); iv) Willmott's index of 

agreement (d) and v) modelling efficiency (EF), where these 
last three perform better when their values are high. These 
statistical variables are described in detail in Yang et al., 
(2014a). 
 
Conclusions  
 
From the model-observation comparisons, it can be 
concluded that the APSIM-Maize model satisfactorily 
predicted the LAI of the AL Bandeirante maize variety under 
well-drained soil conditions. The biomass production was 
satisfactorily predicted for Rio Largo. On the other hand, for 
Arapiraca, the model was able to attain a good performance 
only for the grain yield with an error less than ± 20% within 
the range considered acceptable. The soil water dynamic 
estimations showed good precision under well-drained soil. 
In the conditions under impaired drainage (Rio Largo’s soil), 
the model did not properly predict the soil water dynamics. 
A better agreement was achieved after a drainage 
parameter adjustment, but despite this, the model was 
incapable of simulating SW accurately. Further adjustments 
in drainage parameters are still required in order to simulate 
the soil water dynamics and LAI variations more accurately. 
Finally, this study showed that the APSIM model is a very 
useful tool to help establish agricultural policies and 
optimize production systems in the region. In the present 
study, the model was evaluated for specific environmental 
conditions, and therefore these results should not be 
extrapolated to other conditions without the necessary 
adjustments. 
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