Control period and economic threshold level of glyphosate tolerant weeds in 2.4-D resistant soybean.

Eduardo Roncatto1*, Arthur Arrobas Martins Barroso1, Juliana Calegarim1, Felipe Ridolfo Lucio2, Paulo Fernando Adami3

1Universidade Federal do Paraná/UFPR – Depto. de Fitotecnia e Fitossanidade, R. dos Funcionários, 1540 – Curitiba, PR – Brazil
2Corteva Agrisciences –Alameda Itapercuru, 506 – Barueri, SP – Brazil
3Universidade Tecnológica Federal do Paraná - UTFPR – Estr. p/ Boa Esperança, km 04. Dois Vizinhos, PR - Brazil

*Corresponding author: eduardo.roncatto@hotmail.com

Abstract

Weed densities, species, costs of control, crop value and interference periods should be considered for weed management. With this regard, three experiments were carried out to evaluate weed control periods and weed density in a new soybean cultivar. In the first trial, control efficacy was measured by visual phytotoxicity of four weed species I. hederifolia, E. heterophylla, Conyza spp. and R. brasiensis using four different herbicides with two doses each: glyphosate (720 and 1,440 g ea ha⁻¹), 2,4-D (670 and 1,340 g ea ha⁻¹), glufosinate (400 and 600 g ea ha⁻¹) and glyphosate + 2,4-D (410 + 390 and 820 + 780 g ea ha⁻¹). Herbicides were sprayed in an entirely randomized 4x8+1 factorial scheme with six repetitions. In the second experiment, 2,4-D-resistant soybean growth was measured under increasing densities of the same weeds (21 plants m⁻² vs 21, 42, 84, 168 and 336 plants m⁻²). This experiment was conducted under entirely randomized design with 25 treatments with four repetitions. Critical level of damage and economic threshold level of each weed species in soybean were measured using non-linear regressions. In a third experiment, weed with soybean were submitted to increasing periods of control and coexistence (7, 14, 21, 28, 35, 49 and 70 days after soybean emergence, plus two control treatments). Glufosinate and glyphosate+2,4-D (820 + 780 g ea ha⁻¹) showed greater weed control than glyphosate alone (720 g ea ha⁻¹). The yield loss of 0.85, 2.12, 5.71 and 34.24% were found for each weed of E. heterophylla, I. hederifolia, R. brasiensis and Conyza spp., coexisting with soybean. There was a soybean grain yield loss of 50% in the weedy treatment. Soybean weed management should occur between 18th and 48th days after its emergence. Economic threshold level on soybean yield suggested is below one plant of Conyza spp. and R. brasiensis per m². The use of glufosinate and glyphosate+2,4-D provides a greater flexibility of herbicide use for farmers.

Keywords: Brazil pusley, hairy fleabane, herbicide, morning glory, wild poinsettia.
Abbreviations: CLD_Critical Level of Damage; CPIP_Critical Period of Interference Prevention; ETL_Economic Thresold Level; PPI_Period Prior to Interference; REL_Relative Importance Index; TPIP_Total Period of Interference Prevention.

Introduction

Soybean may be the most important crop for human and animal nutrition, with 36.2 million hectares planted in Brazil and 341 million tons produced worldwide (CONAB, 2020). Among the barriers to higher soybean yield, the presence of herbicide tolerant and resistant weeds, increases production costs and interferes with crop development, leading to yield losses (Varah et al., 2019). The best decision making for weed control and reduced herbicide usage is derived from the determination of the levels of interference of each species together with the control efficacy data of different herbicides, added to the production costs of the crop (Das et al., 2010; Galon et al., 2019; Zhang et al., 2016). Weed interference can be estimated using the Critical Level of Damage (CLD), represented by the percentage of crop yield interference caused by one individual of a given species. In soybean, CDL, of Conyza spp. or Richardia brasiensis can range from 0.97% to 2.0% (Diesel et al., 2016). Another species, such as Ipomoea spp. and Euphorbia heterophylla, can reduce soybean yield about 45% and 22%, respectively (Piccinini et al. 2018; Rizzardi et al., 2004).

The Economic Threshold Level (ETL) of weeds is corresponded to the density of the species, in which the control cost equals the crop yield loss. It is calculated based on weed interference, herbicide cost and efficacy and crop value (Kalsing e Vidal, 2010; Das et al. 2010; Galon et al., 2007; Tironi et al., 2016). This calculation helps in adoption of management strategies, besides mitigating the misuse of herbicides (Agostinetti et al., 2019; Hazra et al., 2011). Another important aspect for the success in weed management is the definition of the moment when the control should occur (Swanton et al., 2015). Three periods are important such as total period of interference prevention (TPIP), period prior to interference (PPI) and critical period of interference prevention (CPIP). The study of these periods determines the period, in which the methods of weed control are most effective (Tursun et al., 2016).
Furthermore, the adoption of biotechnological tools, such as 2,4-D herbicide-tolerant soybean cultivars, allows the rotation of the glyphosate, decreasing the selection pressure within production systems. ENLIST ES™ soybean is a new technology that promotes soybean post-emergence tolerance to the application of 2,4-D, becoming an important alternative for the management of weeds such as Conyza and E. heterophylla, both resistant to glyphosate (Simpon et al., 2017; Robinson et al., 2015; Wright et al., 2010). No information about weed interference or weed control periods exists in worldwide literature for this cultivar.

Therefore, this study aimed to calculate CLD and ETL of I. hederifolia, Conyza spp., E. heterophylla and R. brasiliensis, using 2,4-D, glufosinate, glufosinate and glyphosate + 2,4-D herbicides and to determine the periods of interference of a weed community in the 2,4-D resistant soybean.

Results and discussion

Glyphosate tolerant weed chemical control options

There were both visual (phytotoxicity level) and physical (dry mass) differences in weed control treatments. In relation to phytotoxicity, there was a significant interaction between herbicides and weed species, while dry mass differed only among herbicides (Table 1). Treatment with glyphosate (1,440 g ea ha⁻¹) and glufosinate (400 and 600 g ea ha⁻¹) proved to be effective in controlling all weed species. At the lowest rate of glyphosate (720 g ea ha⁻¹), control of R. brasiliensis and E. heterophylla was not effective. Similar results were found in both species, where low glyphosate doses were inefficient (Carvalho et al., 2003; Takano et al., 2013). For Richardia brasiliensis the most effective treatments were the application of the highest doses of glyphosate and 2.4-D, glufosinate at both doses and the glyphosate + 2.4-D mixture (410 + 390 g and ha⁻¹) while E. heterophylla showed to be controlled by the same herbicides but needed higher doses of glyphosate + 2.4-D (820 + 780 g and ha⁻¹). Comparison of glufosinate with 2,4-D, glufosinate showed that the mean weed control degree was higher. In its lowest dose (400 g ea ha⁻¹), its control was above 90% for all weed species. In all studied species, Glyphosate + 2.4-D (410 + 390 g ea ha⁻¹) showed higher control (80%) even at higher doses of glyphosate alone. This fact is important, especially in the current scenario, where the resistance of E. heterophylla to glyphosate was recently found in Brazil (Table 3). The use of 2.4-D as an option for broadleaf weed control is highlighted in other studies, where reported synergistic effect of this molecule mixed with glyphosate (Carvalho 2003; Takano et al., 2013; Osipe et al., 2017; Kozlowski, 2001).

Regarding to the dry mass of weed plants, all herbicides differed from the treatment without herbicide application. 2.4-D (1,209 g ea ha⁻¹), glufosinate and glyphosate + 2.4-D (820 + 780 g ea ha⁻¹) showed greater weed suppression capacity than glyphosate (720 g ea ha⁻¹). Glufosinate showed better control than 2,4-D, controlling all species more than 90%. Similar data was found by Castro (2019), with 100% control of E. heterophylla and Ipomoea spp. using 300 and 150 g ea ha⁻¹ of glufosinate, respectively.

Critical damage level and economic threshold level

In terms of weed interference on soybean, major reductions were found even at low densities, being Conyza spp. the specie that causes the higher damage at lower densities, while Ipomoea hederifolia caused the smallest damage (Figure 1). The critical level of damage, which is represented by the percentage of crop yield interference by each individual of a given weed species were 0.85, 2.12, 5.71 and 34.24% respectively for I. hederifolia, E. heterophylla, R. brasiliensis and Conyza spp. These findings are important contribution to the field of weed management. The resistance to glyphosate is common Conyza spp. in plant coexisting with soybean during all crop cycle.

The economic threshold level (ETL) (Figure 2) shows that the weed control should give priority to suppress Conyza spp. > Richardia brasiliensis > Ipomoea hederifolia > Euphorbia heterophylla, considering a scale of greater to lower importance of these weed species.

Under the studied circumstances and considering soybean yield loss due to weed interference caused by Conyza spp. and R. brasiliensis, is it possible to infer that ETL was always below one weed plant per m². This indicates that the control of the species must be carried out independent of its density per square meter. Plants of Conyza spp. and R. brasiliensis cannot grow with soybean crop. In this case, the choice of herbicide for management will depend on its effectiveness.

Conyza spp. has a worldwide resistance to glyphosate. Therefore its control with the use of cover crops or pre-emergence herbicides before soybean establishment before or early after soybean sowing to suppress this weed is of great importance. If it remains on field beyond soybean yield loss, there will be an increase of this weed species in the next crop seasons due to its seed production. Chenopodium album also presents this behavior in soybean (Fischer et al., 2004). At these cases, authors argue that weed not only competes in resources with crop, but also presents high chances of allelopathy (Shabbir and Javaid, 2010). For example, Conyza spp. is proved to reduce soybean root development by 20%, affecting nutrient and water absorption (Rockeybach and Rizzardi, 2019).

The Economic Threshold Level (ETL) for I. hederifolia, considered that all the herbicides were effective for its control, aiming the choice of herbicide conditioned to the density of plants per area in a range of zero to one plant m⁻² and also to the price of the herbicide. In this case, the tolerated E10 of 0.3 plant m⁻² for the cheapest herbicide (glyphosate 720 g a.e. ha⁻¹) and up to 1.2 plant m⁻² when the herbicide chosen was glufosinate at a dose of 600 g ha⁻¹ and/or glyphosate + 2.4-D at a dose of 820 + 780 g ha⁻¹ is required.

Regarding to E. heterophylla herbicide control efficacy, the study points out four effective options: Glyphosate at dose 1,440 g ea ha⁻¹ can be used as long as the population does not exceed 1.5 plant m⁻², and when this threshold is exceeded, glufosinate appear as an efficient alternatives to be used in a plant population up to 2.3 or 3.14 plants m⁻² (at doses of 400 and 600 g and ha⁻¹, respectively).

Combination of glyphosate + 2.4-D at doses of 820 + 780 g ea ha⁻¹ allows the presence of I. hederifolia, as an effective control for all plants present in the area as suggest by Trezzi et al. (2005).
Table 1. Significance values for isolated factors and interaction between weed species and herbicides applied for visual control (%) and weed dry mass (g).

<table>
<thead>
<tr>
<th>Factors</th>
<th>Visual control (%)</th>
<th>Drymass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Species</td>
<td><0.0001</td>
<td>0.0952</td>
</tr>
<tr>
<td>Herbicide</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Species x Herbicide</td>
<td><0.0001</td>
<td>0.4181</td>
</tr>
<tr>
<td>CV*</td>
<td>9.18</td>
<td>38.70</td>
</tr>
</tbody>
</table>

*Coefficient of variation. Values below than 0,005 are significantly different by 5% Tukey’s test. Values below 0,001 are significant different by 1% Tukey test.

Fig 1. Soybean yield loss (YL) in coexistence with increasing densities of weeds: R. brasiliensis (● YL=(57,94x)/(9,13+x), R²=0,97), E. heterophylla (▲ YL=(61,17x)/(77,54+x), R²=0,76), Conyza spp. (▲ YL=(69,18x)/(1,02+x), R²=0,86) and I. hederifolia (♦ YL=(28,49x)/(12,38+x), R²=0,81).

Table 2. Herbicides phytotoxic levels (%) on weed species at twenty-one days after its application.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Dose</th>
<th>Conyza spp.</th>
<th>Richardia brasiliensis</th>
<th>Ipomoea hederifolia</th>
<th>Euphorbia heterophylla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyphosate</td>
<td>720</td>
<td>100 Aa</td>
<td>16 Ce</td>
<td>96 Aa</td>
<td>45 Bd</td>
</tr>
<tr>
<td></td>
<td>1,440</td>
<td>100 Aa</td>
<td>88 Aab</td>
<td>99 Aa</td>
<td>99 Aa</td>
</tr>
<tr>
<td>2.4-D</td>
<td>806</td>
<td>90 Aa</td>
<td>60 Bd</td>
<td>89 Aa</td>
<td>68 Bc</td>
</tr>
<tr>
<td>2.4-D</td>
<td>1,209</td>
<td>97 Aa</td>
<td>80 Bbc</td>
<td>97 Aa</td>
<td>76 Bc</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>400</td>
<td>100 Aa</td>
<td>94 Aab</td>
<td>99 Aa</td>
<td>91 Aab</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>100 Aa</td>
<td>99 Aab</td>
<td>99 Aa</td>
<td>97 Aa</td>
</tr>
<tr>
<td>Glyphosate + 2.4-D</td>
<td>410+390</td>
<td>100 Aa</td>
<td>82 Bbc</td>
<td>100 Aa</td>
<td>80 Bbc</td>
</tr>
<tr>
<td>Glyphosate + 2.4-D</td>
<td>820+780</td>
<td>100 Aa</td>
<td>72 Bcd</td>
<td>100 Aa</td>
<td>93 Aab</td>
</tr>
</tbody>
</table>

*Means in the same row followed by distinct capital letters and in the column followed by differ lowercase letters differ by Tukey test (p<0.05).

Fig 2. Economic Threshold Level from different weed species (A: Conyza spp, B: R. brasiliensis, C: I. hederifolia and D: E. heterophylla) in relation to different herbicides and its doses, considering application costs in $ 2.62 and soybean value in $ 0.22 kg of grain.
Table 3. Mean dry mass (g) of Conyza spp, Richardia brasiliensis, Ipomoea hederifolia and Euphorbia heterophylla, at twenty-one days after herbicide application.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Dose g ae ha⁻¹</th>
<th>Dry mass (g)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>0.28 a</td>
</tr>
<tr>
<td>Glyphosate 720</td>
<td>720</td>
<td>0.19 b</td>
</tr>
<tr>
<td>Glyphosate 1,440</td>
<td>1,440</td>
<td>0.15 bc</td>
</tr>
<tr>
<td>2.4-D 806</td>
<td>806</td>
<td>0.14 bc</td>
</tr>
<tr>
<td>2.4-D 1,209</td>
<td>1,209</td>
<td>0.13 c</td>
</tr>
<tr>
<td>Glufosinate 400</td>
<td>400</td>
<td>0.11 c</td>
</tr>
<tr>
<td>Glufosinate 600</td>
<td>600</td>
<td>0.11 c</td>
</tr>
<tr>
<td>Glyphosate + 2.4-D 410 + 390</td>
<td>410 + 390</td>
<td>0.14 bc</td>
</tr>
<tr>
<td>Glyphosate + 2.4-D 820 + 780</td>
<td>820 + 780</td>
<td>0.13 c</td>
</tr>
</tbody>
</table>

*Means in the column followed by different lowercase letters differ by Tukey test (p≤0.05).

Fig 3. Relative Importance (%) of the different weed species coexisting with soybean crop at the field experiment area along different assessment periods (days after soybean emergence).

Fig 4. Soybean yield loss (kg ha⁻¹) in coexistence periods between soybean grow with ([Y=(765.93-1,622.75)/(1+exp(x-9.95)/3.61)], R²=0.98) and without weed interference ([Y=(1,552.48-806.82)/(1+exp(x-49.64/0.57))], R²=0.92).

Fig 5. Dry mass accumulated (g m⁻²) by weeds present in the experimental area at different days after soybean emergence.
Economic threshold level of Conyza spp. in soybean crop reported by Trezzi et al. (2013), indicate that even low plant densities (four plants m	extsuperscript{-2}) is enough to cause economic damage to the soybean crop. In this study, four plants were found to cause great damage and a critical level noticed on Fig 2 is below one plant m	extsuperscript{-2}. It is worth remembering that these levels can be altered if the plants come to show resistance to the used herbicides. Furthermore, soybean yield loss can reach easily 35% in cases of high Conyza plant population (average of 13.3 plants m	extsuperscript{-2}) as reported by Trezzi et al. (2013). Furthermore, this control prevents new seeds from being produced and spread in the field, since a plant can produce more than 150,000 seeds that will inherit the resistance characteristic and can remain viable in the soil up to three years (Wu et al., 2007).

Weed interference periods

Weed species present in the field experiment was composed of four major species, such as *Paspalum notatum* the most important one once maintained its Relative Importance Index (REI) above 45% during the entire soybean crop cycle and a eudicotyledonous specie (*I. hederifolia*) that had its Relative Importance Index (REI) above 9% during the crop cycle. These relative values were obtained mainly due to high density of *P. notatum* and high dry mass accumulation of *I. hederifolia* especially 45 days after the soybean crop emergence. Other species such as *turnip* (*Raphanus sativus*) and nutsedge (*Cyperus rotundus*) were identified coexisting with the crop until 42 days after its emergence. There was a grain yield loss of 50% between the treatment without weed interference (weed controlled) and with its presence along the whole soybean cycle (weed not controlled) (Figure 4).

The regression $Y=(1,552.48-806.82)/(1+\exp(x-49.64/0.57))$ indicates a yield threshold of 1,552.48 kg ha	extsuperscript{-1} achieved at 18 days after soybean emergence (TPIP). The weeds that emerged after this period did not cause significant yield damage. For coexistence treatments the regression calculated a yield threshold of 1,622.75 kg ha	extsuperscript{-1} obtained at 48 days after soybean emergence (PPI), which is the period that the crop supported coexistence with the weeds. Period before interference (PPI) reported in the literature goes from 10 to 50 days after soybean emergence (Silva et al., 2009). A great number of biotic and abiotic factors that results in different levels of interference and competition may explain these differences on PBI reported among experiments.

Comparison of PPI and TPIP results showed a longer period of PPI, meaning that the used soybean cultivar proved to be very competitive in relation to the weed population during its first’s stages of growth. Likewise, Silva et al. (2012), reported a similar situation in a study with sunflower (*Helianthus annuus*). A possible explanation for this competitiveness might be due to the undetermined growth habit of the cultivar, which ensures plasticity and ability to adapt various spatial arrangements. With regard to weeds growth, we showed low dry mass accumulation up to 14 days after the soybean emergence (Figure 5). This result may be explained by the rainfall shortage that occurred at this period and a small weed seedbank of problematic species such as those previously reported in the work. Therefore, it is recommended to control weeds between any of the given periods, between 18	extsuperscript{th} and 48	extsuperscript{th} days after crop emergence.

Materials and methods

Plant materials and site description

Three experiments were carried out to identify the control effectiveness of different herbicides on different weeds as well interference and interference periods of them in a glyphosate, glufosinate and 2,4-D tolerant soybean cultivar. The application of 2,4-D in soy post-emergence is possible due to the genes that translate aryloxyalkanoate-dioxigenase-type enzymes (AADs) and catalyze the degradation of 2,4-D, transforming the herbicide molecule into non-toxic metabolites to the plant. Currently this technology, called Enlist (Scott, 2014; Wright, 2010).

First experiment was carried out under semi-controlled conditions (irrigation control) at the Federal University of Paraná - UFFPR (25° 24’ 42.40” S; 49° 14’ 54.00” O). Curitiba, Paraná-Brazil, at an altitude of 935m above sea level and a Cfb climate according to Köppen classification, characterized without a defined dry season, cool summers and moderate winter with minimum annual average temperature between 17°C and 18°C. Average annual rainfall varies between 1,400 and 1,600 mm.

The Interference periods experiment was carried out at field condition at Colombo, Paraná-Brazil in the 2018/2019 growing season (25° 21’ 10.90” S; 49° 08' 42.00” O), on a haplic gleisole. Soybean ENLIST E3™ (same cultivar used at the 1	extsuperscript{st} experiment) was sown at a density of 13 seeds per linear meter and 0.45 m inter-row spacing, targeting an initial population of 288,886 plants per hectare. Final stand included 244,000 plants per hectare. As a base fertilizer, we used 350 kg ha	extsuperscript{-1} of 04-20-20 (N-P	extsubscript{2}O	extsubscript{5}-K	extsubscript{2}O) chemical fertilizer.

Weed control efficacy

Control efficacy of four weed species, *I. hederifolia, E. heterophylla, Conyza spp.* and *R. brasilensis* was evaluated using four different herbicides with two doses each: glyphosate (Gлизmax Prime, 480 g ea L	extsuperscript{-1}, Dow AgroSciences, São Paulo, Brazil), at doses of 720 and 1,440 g ea ha	extsuperscript{-1}; 2,4-D (DMA 806BR, 670 g ea L	extsuperscript{-1}, Dow AgroSciences, São Paulo, Brazil) at doses of 670 and 1,340 g ea ha	extsuperscript{-1}, glufosinate (Finale, 200 g ea L	extsuperscript{-1}, BASF, São Paulo, Brazil) at doses of 400 and 600 g ea ha	extsuperscript{-1} and glyphosate + 2,4-D (EnlistDuoColex-D, 205 + 195 g ea L	extsuperscript{-1}, Dow AgroSciences, São Paulo, Brazil) at doses of 410 + 390 and 820 + 780 g ea ha	extsuperscript{-1}, in addition to a control without herbicide application. Experiment was carried out in an entirely randomized 4x8+1 factorial scheme composed of four species, eight herbicide treatments above cited and two control treatment (without herbicide application) with six repetitions. Each weed species was sown directly in two-liter pots. Soil chemical traits were: pH (CaCl	extsubscript{2}) 4.8; P-Mehlich 7.0 mg dm	extsuperscript{-3}; Ca, Mg, K and Al 8.4, 4.9, 0.12 and 0.1 cmol, dm	extsuperscript{-3}, respectively; H+Al, and CECpH7 were 8.4 and 21.62 cmol,dm	extsuperscript{-3}; and base saturation (%) of 61%. No fertilizer was applied due to good soil chemical condition.

After germination, plants were thinned to the density of one plant per pot. At four to six leaves stage, herbicides were sprayed with a CO	extsubscript{2}-pressurized backpack sprayer equipped with an application bar of one meter with two spray tips (AIxR110.015 TeeJet Technologies, Wheaton, IL) calibrated.
to deliver 200 L ha\(^{-1}\) maintained at constant pressure (3 kPa). Temperature at the time of application was 27 °C and relative humidity of 39%. The amount of herbicide to be applied was calculated considering the concentration of active ingredient of the herbicide trademarks.

The assessment of herbicide phytotoxicity on weeds species were carried out at seven, 14 and 21 days after its application (DAA) assigning percentage grades from 0% to 57% at the same place as the represents yield loss (%), \(Y\).

To calculate the economic threshold level (ETL), we used the equation one, and also the adapted according to Eq. (1):

\[
Y_L = \left(\frac{a \times X_d}{b + X_d}\right) \quad (1)
\]

In which: \(Y_L\) represents yield loss (%), \(X_d\) value of the variable \(a\), \(a\), the maximum asymptote value and \(b\), the value of weed infestation level, which is equivalent to 50% of the maximum asymptote value. The ECL was then obtained by the ratio of parameters \(a\) and \(b\) in the equation, representing the impact of each plant on soybean crop yield.

To calculate the economic threshold level (ETL), we used the ECL estimates from equation one, and also the adapted equation proposed by Lindquist and Kropff (1996), following Eq. (2):

\[
ETL = \left[\frac{CC}{(P + 200) \times 100}\right] \quad (2)
\]

In which: \(ETL\) represents the economic threshold level (number of weed plants per square meter), \(CC\) the control cost (herbicide + application cost in dollars), \(P\) the price of soybean (dollars per kg of grain), \(Y\) the maximum yield of soybean in the experiment (kg ha\(^{-1}\)), \(CLD\) the critical level of damage and \(H\) the efficacy of each herbicide (%) (Piasecki and Rizzardi, 2017).

To determine weed cost of control, the mean price of each treatment along the last ten years (from 2009 to 2019) was considered, using a reference data from the Center for Advanced Studies in Applied Economics (CEPEA, 2019). The cost of the application was set to \$ 3.07 ha\(^{-1}\) considering one dollar equals to R$ 5.34 (Oliveira and Dalchiavon, 2019). Control effectiveness was determined in the first experiment (control effectiveness) and the price paid for soybean was of \$ 0.22 kg of grains (equivalent to \$ 13.29 for a bag of 60 kg, which was the main value paid at the local where experiment was established) (CONAB, 2020).

Interference periods

Each experimental unit (plots) was composed of five soybean rows three meters long each, totaling 6.75 m², where, the 0.5 m of the plots ends were excluded. Experiment was laid out as a random block design with four repetitions in a 2x7+2 factorial scheme, being factor A related to the beginning or end period of weed control and Factor B to seven coexistence periods between soybean and weed control, which happened at seven, 14, 21, 28, 35, 49 and 70 days after soybean emergence (70% at minimum), plus two control treatments (one soybean plant was kept with the presence of weeds during its entire cycle (120 days and other soybean without weed interference). Weeds were removed through manual weeding. At the end of each coexistence period, the present species were identified, quantified and dried to obtain its dry mass. A square metal of 50x50 cm (0.25 m²) were randomly released at two places in each plot. After counting, the plants were removed (cut rent to the soil), stored in paper bags and oven-dried at 60°C until constant weight. These data were used for phytosociological calculations and to determine the relative importance (RI) of the weed species (Mueller-Dombois and Ellenberg, 1974).

Soybean was evaluated by harvesting the plants in the useful plot of each treatment when the grains reached 13% of moisture (+120 days after emergence). These data were submitted to the Boltzmann non-linear analysis in the Origin 9 program, using Eq. (3) (Beluci et al., 2018):

\[
Y = \left(\frac{(P1-P2)}{1+e^{-dX}}\right) \quad (3)
\]

In which: \(Y\) corresponds to the soybean yield (kg ha\(^{-1}\)), \(P1\) the maximum yield (kg ha\(^{-1}\)) from soybean grown without weed interference during its entire cycle, \(P2\) the minimum yield (kg ha\(^{-1}\)) obtained by soybean coexisting with weeds during its entire cycle, \(P1-P2\) the yield loss (kg ha\(^{-1}\)) caused by the weed community presence, \(x\) the upper limit of the control or coexistence period (days), \(xi\) the intermediate value between the maximum and minimum yield (days) and \(d\) the rate of yield loss (kg ha\(^{-1}\) day\(^{-1}\)) by coexistence between weeds and soybean.

The period prior to interference (PPI), total period of interference prevention (TPIP), critical period of interference prevention (CPIP) were determined considering the arbitrary level of 5% soybean yield loss, expressed in kg ha\(^{-1}\), value relative to the average cost of weeds control (Galon et al., 2019).
Conclusions

Among data, glufosinate and glyphosate + 2.4-D (820 + 780 g ea ha⁻¹) showed greater weed control capacity than glyphosate (720 g ea ha⁻¹). Soybean crop yield loss of 0.85, 2.12, 5.71 and 34.24% was found for each plant of E. heterophylla, I. hederifolia, R. brasiliensis and Conyza spp., respectively. There was a soybean grain yield loss of 50% at the treatment with weed interference along its whole cycle. Soybean weed management should occur between 18th and 48th days after its emergence. Threshold Economic level on soybean yield is below one plant of Conyza spp. and R. brasiliensis per m². Use of glufosinate and glyphosate + 2,4-D on ENLIST E3™ soybean provides a greater flexibility of herbicide use in relation to the weeds management.

References

