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Abstract 
 
The Brazilian agricultural sector is largely responsible for nitrous oxide (N2O) soil emissions, mainly due to beef cattle and the use of 
synthetic nitrogen fertilizers. Therefore, Brazil is looking for measures, such as integrated crop–livestock– forest (ICLF), to increase 
productivity and reduce greenhouse gas emissions in this sector. The forest component within this system plays a positive role in 
the context of climate change, soil conservation, carbon dioxide (CO2) sequestration, and biodiversity protection. The aim of this 
study was to evaluate the effect of management and rainfall on N2O emissions in eucalypt monoculture soils and eucalypt soils in 
ICLF systems. Manual static chambers were used to collect gas samples, from November 2013 to October 2014, in four treatments, 
i.e., one eucalypt monoculture (F) and three modalities of ICLF (livestock–forest [LF], livestock–crop–forest [LCF], and integrated 
crop–livestock–forest [ICLF]). A gas chromatograph with an electron capture detector was used to measure the N2O concentrations. 
The results showed that rainfall considerably affected N2O fluxes across all the treatments, indicating that rainfall is the main factor 
in increasing emissions. During the wet season, the N2O levels ranged from 0.158 to 0.482 kg N-N2O ha

-1
 across all treatments. 

During the dry season, all treatments behaved like sinks of N2O. Moreover, N2O flux did not differ between the soils in the eucalypt 
monoculture and ICLF systems. This indicates that the forestry component in the ICLF systems did not affect N2O soil fluxes. 
 
Keywords: agroforestry system, greenhouse gases, integrated systems, mitigation, sustainability. 
Abbreviations: GHG_greenhouse gases; CO2_carbon dioxide; N2O_nitrous oxide; CH4_methane; N_nitrogen; NDC_Nationally 
Determined Contribution; CO2eq_Carbon dioxide equivalent; ICLF_integrated crop-livestock-forest; NO

3-
_Nitrate; LF_livestock-

forest; LCF_livestock-crop-forest; F_eucalypt monoculture; WFPS_water filled pore spaces; N2_elementar nitrogen.  
 
Introduction 
 
Atmospheric concentrations of the three main greenhouse 
gases (GHG), carbon dioxide (CO2), nitrous oxide (N2O), and 
methane (CH4), increased by 146%, 257%, and 122%, 
respectively, compared to pre-industrial levels (WMO, 2018) 
due to land use change and agricultural practices, among 
other causes (Muller, 2005; Hartmann et al., 2013; 
Rodrigues et al., 2017; Tian et al., 2020). 
In Brazil, the agricultural sector has the largest share (33.6%) 
of the net GHG emissions in 2016, reaching up to 439.213 Gg 
CO2eq, showing an increase of 2.3% compared to that in 
2015 (Brasil, 2020). In terms of the regions associated with 

high emissions, the Midwest and Mato Grosso State are 
leading, accounting for 34% and 12% of the total emissions, 
respectively, with the main sources of emissions being beef 
cattle and the use of synthetic nitrogen fertilizers (Silveira et 
al., 2018). 
Although atmospheric concentrations of all three gases are 
relevant in agriculture, major emphasis should be placed on 
N2O, as its global warming potential is 265 times higher than 
that of CO2 (Myhre et al., 2013). N2O emissions tend to 
increase with the expansion of agricultural sector emerging 
economies, such as Brazil, where the agriculture sector is the 
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largest contributor to GHG emissions (Brasil, 2020; Tian et 
al., 2020). This gas is the result of soil nitrification and 
denitrification processes, which vary with the dynamics of 
nitrogen (N) (Saggar, 2010; Ussiri and Lal, 2013) and is also 
emitted due to the decomposition of plant residues or 
application of nitrogen fertilizers (Sato et al., 2017; Scott et 
al., 2018). Other agronomic management practices (e.g., 
irrigation and the use of manure) (Reay et al., 2012; Bayer et 
al., 2015; Tian et al., 2015; Martins et al., 2015), as well as 
cultivated crops and local rainfall regimes may also add to 
the affect (Li et al., 2016). 
To increase efforts to mitigate climate change, Brazil, 
through its Nationally Determined Contributions (NDCs), 
which include mitigation, adaptation, and implementation 
components, has committed to reducing GHG emissions by 
37% by 2025 and 43% by 2030, below 2005 levels (BRASIL, 
2015). By 2030, actions under the NDCs are anticipated to 
expand the area under integrated crop–livestock–forest 
(ICLF) system by 5 million hectares (BRASIL, 2015). Partial 
results of these public policies are already obvious, as 
according to the ICLF Network, Brazil went from having an 
area of 1.87 million hectares under ICLF systems in 2005 to 
11.5 million hectares by the 2015/2016 harvest, with the 
potential to stock 35.1 million tons of CO2eq (Rede ILPF, 
2016). 
The ICLF system has been identified as an efficient land 
management strategy that provides environmental, 
economic, and social benefits, such as soil and water 
conservation, wood production, and improved animal 
welfare, which can increase milk and beef production 
(Cordeiro et al., 2015; Alves et al., 2017). Additionally, it can 
improve the restoration of degraded pastures, mitigate GHG 
emissions, and increase soil carbon (C) sequestration by 
increasing biomass above and below the ground (Cerri et al., 
2007; Euclides et al., 2010; Nair, 2012; Dube et al., 2012; 
Paula et al., 2013; Carvalho et al., 2014; Salton et al., 2014; 
Paustian et al., 2016; Stocker et al., 2013; Zomer et al., 
2016). Furthermore, the use of crop rotations in ICLF with 
variable nitrogen availability is also a strategy for mitigating 
N2O emissions (Benoit et al., 2015; Jain et al., 2016). 
According to Figueiredo et al. (2017), ICLF can reduce GHG 
emissions mainly due to pasture improvements, increase in 
the livestock yield, and the potential for carbon sinks in soil 
and biomass to offset emissions related to livestock 
management. In addition, these authors report that 
emissions can be reduced in terms of CO2eq emitted per kg 
of bovine weight produced, increasing meat, grain, and 
wood production. According to Nogueira et al. (2016), the 
cumulative N2O emissions in ICLF (0.4 kg N ha

−1
) may be 

lower than that in a monoculture crop (1.4 kg N ha
−1

), and 
similar to pasture monoculture, when there is no livestock 
(0.35 kg N ha

−1
), thereby presenting a potential to mitigate 

N2O emissions. Moreover, the adoption of ICLF can help 
achieve both environmental protection and the 
development of more efficient and sustainable agriculture in 
states with highly intensive livestock systems, low stocking 
rates, and where the agricultural sector is expanding rapidly, 
such as the Mato Grosso State (the country's leading cattle 
and soy producer) (Gil et al., 2015).  
The lower N2O emission from forest areas compared to the 
crop areas is related to the greater ability of the tree roots 
to absorb water and NO

3-
 in depth, reducing denitrification 

and leaching (Amadi et al., 2016). The nitrogen absorbed by 
the tree roots is returned to the soil through the leaf litter, 
resulting in more efficient N cycling and thus, decreasing the 
demand for N and emission of N2O (Thevathasan et al., 

2012). Given the advantages of the ICLF, the forest 
component deserves attention as it plays a positive role in 
control of climate change and deforestation through 
restoration of degraded areas, soil conservation, CO2 
sequestration, biodiversity protection, and reduction of 
pressure for the use of native forests in industrial processes 
(Cuer et al., 2018). 
Of the total planted forest area in Brazil, 5.7 million hectares 
are eucalypt forests (Cuer et al., 2018), which indicates the 
importance of these species for the sector. These are fast-
growing trees with high carbon sequestration potential 
during development (Burrows et al., 2002; Du et al., 2015; 
Bauters et al., 2019). Eucalypt plantations have been 
reported as a source of N2O and CO2 and a sink for CH4 in 
semi-arid and subtropical climates, as observed in most 
forest ecosystems (Zhang et al., 2017). 
However, GHG fluxes in eucalypt plantations have not been 
well described in ICLF systems. Thus, in the present study, 
two questions were posed: 

1. Do the fluxes of soil N2O differ between 
eucalypt monocultures and eucalypt in ICLF 
systems?  
2. Does rainfall affect N2O emissions in a 
similar manner in both eucalypt monocultures and 
ICLF systems? 

The implementation of an integrated management system is 
expected to reduce N2O emissions due to the increased 
inclusion of different crops, favoring increased productivity 
and efficiency in nutrient utilization. Rainfall is also expected 
to have a positive effect on N2O emissions owing to the 
filling of porous soil spaces and the stimulation of microbial 
action, thereby altering N2O production. 
 
Results 
 
The N2O fluxes from eucalypt soil in the monoculture and in 
the integrated systems had the same variation throughout 
the year, as shown in Figure 1. The months from October to 
May showed positive N2O fluxes, while the months from 
June to September showed negative fluxes across all 
systems. In this study, the data show an evident seasonal 
effect of rainfall on N2O fluxes. 
The monthly variation of N2O fluxes throughout the year in 
the study areas did not exceed 0.10 kg N-N2O month

-1
. In the 

dry season (from May to September), when soils have low 
humidity due to low rainfall, all systems acted as N2O sinks, 
except in May for ICLF, livestock–forest (LF), and livestock–
crop–forest (LCF) (Figure 1). The cumulative highest average 
monthly N2O flux observed during the period was 
approximately 0.08 kg N-N2O month

-1
 for the eucalypt soil in 

the ICLF system in May, while the highest consumption 
potential was -0.05 kg N-N2O month

-1
 for the eucalypt soil in 

the LF system during June (Figure 1). 
There was a significant difference between the cumulative 
emissions of the dry and wet seasons for all the treatments 
(p = 0.0000415) (Figure 2a). Overall, the dry season shows 
negative emission values, indicating that the soil acts as a 
sink for N2O. Furthermore, there were no significant 
differences between the treatments in the dry season (p = 
0.1129), varying from -0.022 (ICLF) to -0.156 kg N-N2O ha

-1 

(LF). Similarly, in the wet season, there was no significant 
difference between the treatments (p = 0.0987), and the 
emission varied from 0.158 (LCF) to 0.482 kg N-N2O ha

-1
 (F) 

(Figure 2a). 
The results from analyses of the net cumulative emissions 
during the entire period shows that eucalypt soil from all the  
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Figure 1. Cumulative average monthly N-N2O fluxes (lines), and standard deviation (whiskers), and rainfall (bars) throughout the year for each 
treatment. F_eucalypt monoculture; ICLF_integrated crop-livestock-forest; LCF_livestock-crop-forest; LF_livestock-forest. 

 
Figure 2. Cumulative N-N2O soil emissions between dry and wet seasons for each treatment (a) and net cumulative emission between the 
wet and dry period for each treatment (b). The vertical bars represent the standard deviation. F_eucalypt monoculture; ICLF_integrated crop-
livestock-forest; LCF_livestock-crop-forest; LF_livestock-forest.  

 
Figure 3: Location of the study site in Mato Grosso, Brazil. 

 
Figure 4. Aerial image of the four treatments and three replications evaluated in Sinop, Mato Grosso, Brazil. Source: Google Earth. ICLF_integrated 
crop-livestock-forest; LF_livestock-forest; LCF_livestock-crop-forest; F_eucalypt monoculture. 

130 



131 

 
Figure 5. Timeline and description of all management (i.e., Fertilizing, Sowing, Harvest) applied in the treatments, including all species planted and 
rotation used. The crop timeline for this study starts in the year 2011 (light gray) and finishes in 2015 (dark gray). F_eucalypt monoculture; 
LF_livestock-forest; LCF_livestock-crop-forest; ICLF_integrated crop-livestock-forest.  
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treatments had positive emission values, with no significant 
differences in the treatments (p = 0.1473) (Figure 2b). The 
emissions varied from 0.057 (LCF) to 0.336 kg N-N2O ha

-1 
(F). 

 
Discussion 

 
The predominantly positive N2O fluxes observed during rainy 
season across all treatments may be a reflection of the 
availability of inorganic N due to fertilizer application and 
mineralization of plant residues (Bayer et al., 2015; Piva et 
al., 2019) from the other components of the integrated 
systems. In addition, the anaerobic conditions of the highly 
humid soil can directly influence the soil’s water-filled pore 
spaces (WFPS), which are important in the denitrification 
processes and are the main factor in the formation of N2O 
(Rosenkranz et al., 2006; Konda et al., 2008; Fang et al., 
2012; Butterbach-Bahl et al., 2013). These processes may be 
related to the higher activity of microorganisms in soaked 
soils, potentiated when saturation level of WFPS is more 
than 70% (Weerden et al., 2012; Butterbach-Bahl et al., 
2013; Corrêa et al., 2016). However, when the WFPS 
saturation is equal to or greater than 80%, the denitrification 
process is intensified, and the end product under these 
conditions will be mainly N2 (and not N2O) (Linn and Doran, 
1984; Davidson et al., 2000; Bateman and Baggs, 2005; 
Butterbach-Bahl et al., 2013). Thus, the reduction in 
emissions after December (Figure 1) in ICLF, LCF, and LF may 
be related to high WFPS saturation due to high rainfall. 
Changes in soil moisture and temperature maybe 
responsible for approximately 95% of the temporal 
variations in field N2O emissions (Bouwman, 1998). 
Nevertheless, higher N2O consumption potential during 
periods of low rainfall may be associated with the low N 
content available in the soil, reducing the nitrification and 
denitrification activities, which are the main processes for 
N2O emission (Chapuis‐Lardy et al, 2007). Furthermore, low 
mineral nitrogen and rapid soil water drainage may not offer 
favorable conditions for high N2O fluxes (Neves, 2016; 
Carvalho et al., 2017). Under these circumstances, air can 
diffuse into the macro- and micro-pores of the soil and allow 
microorganisms to use N2O as a source of N (Rosenkranz et 
al., 2006). In their study evaluating GHG emissions with 
different N rates in eucalypt areas in China, Zhang et al. 
(2017) found higher emissions of nitrous oxide in the wet 
season and lower emissions in the dry season, with the 
highest emissions always observed for the treatments with 
higher N rates, even in the dry season. Thus, the low N2O 
fluxes found in this study during the dry season may be 
related to the high soil porosity, drought conditions, and low 
soil N content. Our results showed a high standard deviation 
(Figure 2), as soil N2O fluxes normally have high spatial and 
temporal variability due to the heterogeneity of 
environmental parameters and soil characteristics (McDaniel 
et al., 2017; Rivera et al., 2019; Charteris et al., 2020). The 
climate seasons also impact the N2O emission, as found by 
Nascimento and Rodrigues (2019) who found positive 
cumulative fluxes in the dry period with approximately 0.25 
kg N-N2O ha

−1
 and 0.50 kg N-N2O ha

−1
 in soils with eucalypt 

monoculture and in native forests, respectively. Their results 
differ from the results of this study, in which we showed 
that the eucalypt soil from all the treatments acted as a sink, 
with negative values (N2O consumption) in the dry period 
(Figure 2a). In the study by Nascimento and Rodrigues 
(2019), the maximum cumulative value during the rainy 
season was 0.45 kg N-N2O ha

−1
 for the eucalypt monoculture 

and 0.50 kg N-N2O ha
−1 

for the native forest. A comparison 

between the above results and the results of this study 
showed that the soil of a eucalypt forest planted in an 
integrated system has a lower potential N2O emission than 
that of a eucalypt monoculture (F).  
The total N2O emission for the entire period for the eucalypt 
soil is still low (Figure 2b) when compared to the total values 
of the native Amazon Forest soil (0.6 kg N-N2O ha

-1
) 

(Nascimento et al., 2020), native Atlantic Forest soil (0.82 kg 
N-N2O ha

−1
), and soil of eucalypt monoculture (0.55 kg N-

N2O ha
− 1

) (Silva, 2019). The results in this study are also 
moderate as compared to a study carried out in the 
transition biome Cerrado and Amazon Forest, which found 
cumulative values of approximately 1.0 kg N-N2O ha

− 1 
for 

native forest and 0.70 kg N-N2O ha
−1

 for monoculture of 
eucalypt (Nascimento and Rodrigues, 2019).  
Although we did not evaluate all the components of the 
integrated systems (crops, livestock, and forest), Nogueira et 
al. (2016) evaluated it in the same study area and found 
cumulative values of 0.4 kg N-N2O ha

-1
 for ICLF and 1.4 kg N-

N2O ha
-1

 for monoculture crops, demonstrating the trend of 
low emissions in the eucalypt soil of integrated systems. In 
this study, animal non-grazing in the areas near eucalypt 
may also have been reflected in the low emissions, as there 
was no deposition of urine residues and cattle feces, which 
can influence emissions (Piva et al., 2014). 
Overall, low N2O fluxes in the eucalypt component could be 
a consequence of the high demand for nitrogen by the 
plants, reducing the loss of mineral nitrogen as N2O, helping 
to mitigate the emissions (Figueiredo et al., 2018). 
Moreover, the low N2O fluxes in these forest component 
systems may be related to changes in the phenolic content 
of eucalypt litter (Soumare et al., 2015), which contributes 
to the decreasing microbial community size and enzymatic 
activities and the increasing physiological microbial stress 
(Chen et al., 2013). Carvalho et al. (2017) evaluated ICLF and 
integrated crop–livestock (ICL) system over a 2-year period 
and found that soil N2O fluxes were lower in the ICLF system 
than in the ICL system associated with eucalypt litter, which 
is rich in phenolic compounds that leads to a low carbon 
microbial biomass. 
 
Materials and Methods  

 
Study area characterization 
The experimental field was located in the municipality of 
Sinop, Mato Grosso, Brazil (11°51 'S, 55°35 'W, 384 m 
altitude) (Figure 3) in the experimental field of Embrapa 
Agrossilvipastoril. The climate is classified as Am (Köppen 
monsoon climate) (Alvares et al., 2013). The annual average 
air temperature is 25.8 °C with an accumulated rainfall of 
2,250 mm (Embrapa, 2017), with a dry season that extends 
from May to September (Souza et al., 2013). The average 
annual relative humidity is 71% (Embrapa, 2017). 
 The soil of the experimental area was classified as a typical 
dystrophic red-yellow latosol according to the Brazilian Soil 
Taxonomy (Santos et al., 2018), which is equivalent to a 
Hapludox under the US Soil Taxonomy (Soil Survey Staff, 
2014). It has a clayey texture, moderately flat relief, sub-
perennial vegetation, and kaolinitic-gibbsite composition 
(Viana et al., 2015). The soil, in the 0–20 cm layer, presented 
the following features at the start of the experiment: 5.7 pH 
in H2O, 13.7 mg dm

-3
 of P (Mehlich 1), 79 mg dm

-3
 of K 

(Mehlich 1); 2.3 cmolc dm-3 of Ca, 0.66 cmolc dm
-3

 of Mg, 
0.01 cmolc dm

-3
 of Al, and 29.6 g kg

-1
 of organic matter 

(Farias Neto et al., 2019). The soil texture was clayey with 
28% sand, 16% silt, and 56% clay. 

132 
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The experimental field originally showed a transition 
between the Cerrado and Amazon vegetation. Deforestation 
occurred in 1984 for the production of cassava (Manihot 
esculenta Crantz) (Araujo et al., 2009). In the 1990s, it was 
cultivated with rice (Oryza sativa) and later with soybean 
(Glycine max L.). Between 2002 and 2007, the area was 
cultivated with soybean and corn (Zea mays L.), and during 
the 2007–2009 harvests, soybean and cotton (Gossypium 
hirsutum L.) successions were conducted. During the 2010–
2011 harvest, the area remained fallow (Diel et al., 2014).  
In October 2011 (2011–2012 season), four treatments were 
implemented using a randomized complete block design 
with three replications. There were three types of integrated 
crop-livestock-forest (ICLF) systems: livestock-forest (LF), 
livestock-crop-forest (LCF), and ICLF, named in the order of 
entry of the agricultural component and livestock in each 
treatment, and a eucalypt monoculture (F). The F was 
evaluated in experimental plots of 1 ha and the other 
treatments (LF, LCF, and ICLF) were in plots of 2 ha, 
amounting to a total area of 21 ha with 12 experimental 
units (Figure 4). 
The hybrid Eucalyptus urophylla × E. grandis clone H13 was 
used in the F treatment, and the clones were implanted with 
a spacing of 3.5 × 3.0 m and a density of 952 plants ha

-1
. In 

the other treatments (LF, LCF, and ICLF), the clones were 
planted with a spacing of 3.5 × 3.0 m, in the east–west 
direction, and with a distance of 30 m between each grove. 
Furthermore, each grove consisted of three rows of eucalypt 
trees, totaling 270 plants ha

-1
. LF treatment always consisted 

of Brachiaria brizantha (Hochst. ex A. Rich.) R. D. Webster 
grass between eucalypt groves. In the LCF treatment, crop 
and livestock components were alternated every 2 years. In 
the first two harvests (2011–2012 and 2012–2013), marandu 
palisade grass (Brachiaria brizantha ‘Marandu’) was 
cultivated between eucalypt groves. In the third and fourth 
harvest years (2013–2014 and 2014–2015), the area 
between groves was planted with soybean [Glycine max L. 
(Merr.)] from October to February, followed by corn (Zea 
mays L.) in combination with marandu palisade grass (cover 
crop) from February to July. In the ICLF treatment, the crop 
and livestock components were alternated annually. 
Soybean was cultivated every year between October and 
February (2011–2012, 2013–2014), followed by corn in 
combination with marandu palisade grass (cover crop) from 
February to July (Figure 5). 
The planting of eucalypt in all treatments was carried out in 
November 2011. Plowing was performed at a depth of 50 
cm, and 350 kg ha

-1
 of simple superphosphate was applied 

to the planting furrow. 
The activities of each treatment varied over the first three 
years of the system in relation to culture and fertilization, as 
shown in Figure 5. 
The treatments were established in 2011, and until 2015, 
there were no livestock insertions. That is, during the period 
of evaluation of this research, no animal grazing occurred in 
any of the treatments, as the intention was to use the 
pasture for cutting in the use of silage and as a cover crop 
during the first year. As the experimental plot is located in 
an Amazon region with high rainfall, soil cover and 
enhancement of organic matter in the soil for other crops is 
extremely essential. Therefore, in the beginning of the 
experiment the animals were not inserted into the area, and 
the marandu palisade grass was used for silage and hay, 
being harvested with mechanical machines. 

N2O sampling of soil 
Gas samples were collected every seven days during the 
2013–2014 harvest (November 2013 to October 2014). 
Owing to logistics issues related to the circulation of 
agricultural machinery, it was not possible to perform 
sampling in February 2014. Thus, the fluxes from this month 
could not be measured. 
N2O flux was collected through a manual static chamber in a 
base-top rectangular model, similar to that described by 
Nogueira et al. (2015). Metal bases (length × width × height) 
of 60 × 40 × 11 cm were installed in the field one week 
before the first collection in order to avoid disturbances in 
the soil. The bases were fixed at a depth of 5 cm in the soil 
and were maintained throughout the experiment. The top of 
the chamber consisted of a 60 × 40 × 9.2 cm (length × width 
× height) polyvinyl chloride (PVC) tray covered with a 
double-sided thermal blanket to decrease solar absorption 
and maintain internal temperature (Parkin and Venterea, 
2010). Approximately 50 cm

3
 of air that had accumulated in 

the chamber was removed through a three-way valve 
connected to a 60 cm

3 
polypropylene syringe. 

 After chamber coupling (i.e., bottom-top), an air sample 
was immediately taken from the interior of the chamber, 
considered as time zero, and subsequent samples were 
taken at 20, 40, and 60 min (Parkin and Venterea, 2010). 
Consequently, the tops were removed from the base and 
the soil area was again exposed to the environmental 
conditions. N2O sampling was always performed between 8 
and 11 h (Zuchello, 2010). At the time of gas collection, the 
internal chamber temperature used for the N2O flux 
calculation was monitored using thermohygrometers. 
In each treatment, a chamber was allocated to the soil under 
the eucalypt tree canopy. In the F treatment, the chamber 
was installed at the center of it. The chambers were installed 
in the central row of the central eucalypt grove in the 
integrated systems (e.g., LF, LCF, and ICLF). The static 
chambers evaluated soils from within the eucalypt 
component of the respective systems, and not in areas with 
crop or livestock components. The meteorological station of 
Embrapa (Embrapa, 2017) was used to obtain the daily 
accumulated rainfall (mm), and then the accumulated 
monthly rainfall was calculated. 
 
Laboratory analysis 
Gases were transferred from syringes to butyl rubber sealed 
vials (e.g., glass vial) with 20 cm

3
 (Parkin and Venterea, 

2010), previously vacuumed (approximately -100 kPa) using 
an electric vacuum pumping system for concentration 
analysis. After the transfer of the gases, the vials were left in 
an air-conditioned room at a temperature of 21 °C for 
approximately 24 h before analysis.  
Subsequently, the samples were analyzed using a gas 
chromatography (Shimadzu GC-2014) equipped with an 
automatic injector and electron capture detector (ECD) to 
measure N2O concentrations with 95% precision. The ECD 
detector temperature was maintained at 325 °C, and the 
column was maintained at 75 °C in the isothermal system. 
The columns were in the Hayesep series (1.0, 4.0 M; 1.5 M; 
1.5 M; 0.7 M). Ultrapure nitrogen was used as the carrier gas 
at a flux rate of 25 mL min

-1
, and the injector pressure was 

maintained at 300 kPa. To determine the standard curve, 
three gaseous solutions containing the N2O standard (white 
Martins) were used. The default values were 382.8, 808, and 
2080 mol mol

-1
, respectively. The sample run time was eight 

minutes. 
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From the sample concentrations, the gas concentration 
change rate was calculated by considering the linear fit 
model. After obtaining the best fit in the gas increment 
inside the chamber, the flux was determined according to 
Equation 1, proposed by Hutchinson and Livingston 
(Hutchinson and Livingston, 1993). From equation 1, the 
fluxes of N2O in µg N m

-2 
h

-1
 were obtained, and the 

cumulative emission (kg N-N2O ha
-1

) was obtained. 

        (    
    )  

(
  

  
)  

 
 (

 

  
)           

where ∆C/∆t is the slope of a linear function adjusted to the 
gas concentration of the samples taken at 0, 20, 40, and 60 
min after chamber closure (ppm hour

-1
); V is the chamber 

volume (L), A is the chamber area (m
2
), m is the gas 

molecular weight (g mol-¹), and Vm is the molar volume of 
the gas (m³ mol-¹) corrected for air temperature (K) from 
inside the chamber. 
 
Data analysis 
The cumulative N2O emissions (kg N-N2O ha

-1
) of dry (May to 

September) and wet (October to April) seasons were 
estimated using the trapezoidal integration method 
(Hergoualc’h et al., 2019). The net cumulative emissions 
from the entire period were estimated by subtracting the 
wet and dry period emissions. The data were not normally 
distributed, and nonparametric statistics were used. We 
used the Kruskal–Wallis (Kruskal and Wallis, 1952) test to 
perform comparisons among treatments by season, and 
Mann–Whitney U-test (Mann and Whitney, 1947) to 
perform comparisons between dry and wet seasons. All data 
analyses were performed using R Core Software (R Core 
Team, 2016). 
 
Conclusions 

 
Soil use and management intensification in other 
components from the ICLF system did not increase N2O 
emission from the eucalypt soil, which was equal to that of 
eucalypt in monoculture (in which the total area is less 
intensive). It was observed that across all the treatments, 
eucalypt soil had positive emission values in the wet season, 
whereas in the dry season, the soil acted as a sink with 
negative emission values, thereby proving the influence of 
rainfall on the N2O emissions. ICLF is considered a 
technological option that contributes to the objectives of the 
ABC Plan to Brazil to achieve its NDCs commitment under 
the Paris Agreement. However, to confirm the mitigation 
potential of ICLF systems, it is necessary to quantify N2O 
emissions from all components of the system (crop, 
livestock, and forests). 
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