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Abstract  
 
There is little knowledge available on the best techniques for transferring spatial information such as stochastic interpolation and 
multivariate analyses for black pepper. This study applies multiple linear and spatial regression to estimate black pepper 
productivity based on physical and chemical properties of the soil. A multiple linear regression including all properties of a Latosol 
was performed and followed by variance analysis to verify the validity of the model. The adjusted variograms and data 
interpolation by kriging allowed the use of spatial multiple regression with the properties that were significant in the multiple linear 
regression. The forward stepwise method was used and the model was validated by the F-test. The influence of the Latosol 
properties was greater than the residual on the prediction of productivity. The model was composed by the physical properties fine 
sand (FS), penetration resistance (PR), and Bulk density (BD), and by the chemical properties K, Ca, and Mg (except for Mg in the 
spatial regression). The physical properties were of greater relevance in determining productivity, and the maps estimated by 
ordinary kriging and predicted by the spatial multiple regression were very similar in shape. 
 
Keywords: mapping, multivariate analysis, geostatistics.   
Abbreviations: BD_Bulk density; CEC_Cation exchange capacity: CS_Coarse sand; ESP_Spherical model; EXP_Exponential model; 
Fcal_Test statistics; FS_Fine sand; LIN_Linear model; PNE_Pure nugget effect; PR_Penetration resistance; PRODUT_Producivity; 
R²_Regression coefficient; SB_Sum of basis; SDI_Space dependence index; V%_Base saturation; Vp_Total volume of pores. 
 
Introduction 
 
According to Boari (2008), black pepper is an important 
spice for the international agricultural trade, and Brazil is 
one of the greatest producers of this commodity. In Brazil, 
plantations are concentrated in the states of Pará and 
Espírito Santo. In Espírito Santo, black pepper is usually 
cultivated in soil with low natural fertility. Because of the 
high nutritional requirements of the crop, the use of 
fertilizers is considered essential for rapid development and 
good productivity (Quartezani et al., 2013b). Quartezani et 
al. (2013a) studied the physical properties of soils of these 
areas and mapped soil particle-size fractions. This allowed 
for a visual diagnosis aiming at better managing black 
pepper plantations. Quartezani et al. (2013b), working with 
chemical properties, mapped the intensity of liming in black 
pepper plantations and confirmed the low fertility of the 
soils and the need to correct acidity to increase nutrient 
levels. This same study also enabled to identify priority areas 
for liming. The lack of knowledge on the preferential use and 
interaction of elements essential to achieve a more 

productive and profitable crop production demands the 
application of techniques of spatial information transfer. The 
main techniques for transfer are associated with 
deterministic or stochastic interpolation or with multiple 
regression analyses that consider spatially intervening 
parameters (Boni et al., 2008). The multiple regression 
analysis is a statistical method used to predict the values of 
one or more response variables (dependent) through a set 
of explanatory variables (independent) (Naghettini and 
Pinto, 2007). The more significant the weight of an isolated 
variable or a set of explanatory variables, the more we can 
be sure that certain factors affect the behavior of a specific 
response variable as opposed to others (Kasznar and 
Gonçalves, 2007). Lado et al. (2007) used multiple linear 
regression and ordinary kriging for modeling maximum, 
minimum, and average temperatures in the state of São 
Paulo. Gonçalves et al. (1990) found correlation between the 
solid volume of wood and the physical and chemical 
properties of the soil. The authors adjusted multiple 
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regression models for sandy and medium texture soils of São 
Paulo. Gonçalves et al. (2008) sorted the environmental 
limitations to productivity in a descending order of 
importance: water deficit, nutrient deficiency, soil depth, 
and soil strength. Multiple and spatial regression techniques 
can be used to correlate predictive variables, such as soil 
properties with average crop productivity in large areas, 
thus providing equations or mathematical models to 
estimate the dependent variable at any point in those areas. 
Such analyses also provide the margin of error in the 
variable estimate as a quantitative unit. Therefore, the 
objective of this study was to apply multiple linear and 
spatial regression models to estimate black pepper 
productivity using chemical and physical properties of the 
soil as predictors. 
 
Results and Discussion 
 
Descriptive statistics and geostatistics 
 
Table 1 presents the models and parameters of the 
variograms adjusted for soil properties and black pepper 
productivity. The Pearson’s linear correlation analysis 
between chemical properties and productivity showed a low 
significant correlation of K with V% (0.28) but not with the 
other parameters. A high correlation between K and the 
properties related to soil fertility were expected, especially 
with SB, but this was not observed in the results. One 
explanation might be that the medium texture of the soil in 
the study area favors mobility, which is an intrinsic feature 
of this element. In fact, according to Werle et al. (2008), K 
tends to be scarcer in sandy soils due to its high mobility.  
Another explanation might be this crop high demand for K 
since sampling was conducted after harvest.  The results 
suggest this kind of soil has no potassium supply capacity 
and that the exchangeable potassium is not enough to 
sustain crops for long periods. Therefore, the soil demands 
more frequent inputs of this nutrient. When the soil pH is 
high, a high and positive correlation of CEC with SB is 
expected, which did not occur in the analysis. Under high 
pH, the negative exchange sites on the soil colloids are freed 
up and basic cations are made available with the 
accompanying  basic anion. At the same time, there is a 
moderate negative correlation between the pH value and 
the potential acidity (H + Al) as well as a high correlation 
with the amount of free Al. This is the case because when 
active acidity is reduced, more Al is precipitated and less 
hydrogen becomes available while the basic cations remain 
in the exchanging sites previously occupied by H and Al. 
However, in this study, the pH values were low, revealing an 
acidic soil with low Al precipitation and high hydrogen 
availability. The Pearson linear correlation between the 
physical properties and productivity showed a low negative 
correlation of BD with CS and a high correlation with Vp (-
1.0). This was expected since Vp is calculated from the 
values of BD. PROD showed low positive and significant 
correlation with PR (0.43) and negative correlation with FS (-
0.46).  
The non-violation of the intrinsic hypothesis, a condition 
required for the use of geostatistics, was confirmed by the 
study of the stationarity of data using the trend analysis. The 
trend analysis showed that the soil properties in this study 
had little variation in all directions. It also allowed for spatial 

variability analysis by means of variograms standardized by 
variance. Due to the lack of stationarity of CS in the area as 
shown in Figure 1 (A), it was estimated using the parabolic 
trend surface as a function of the coordinates (x and y) and 
by working with the residuals from the model CSest = a + bx. 
As shown in Figure 1 (B), the variogram did not reach the sill 
expected in this analysis by failing to remove the linear trend 
between the semivariance and the sampling distance. In this 
circumstance, the original data was employed. Myers (1989) 
quoted by Lima et al. (2007) stated that working with 
residuals by fitting polynomials with the least squares 
method is reasonable, but not infallible.  
It is worth noting that of the 20 properties studied, 16 fit the 
EXP model. The properties P and Mg showed no spatial 
dependence for distances larger than the shortest distance 
adopted in the sample and fit the PNE model. This implies 
the construction of a denser sampling grid with closer 
spacing to possibly define the spatial dependence distance. 
In this case, the mean value of the data is a good statistical 
measure to represent those properties. It is apparent from 
Table 1 that the chemical attributes Al, H+Al, and m% 
(aluminum saturation) display the same spatial distribution 
pattern. They reach sills close to 35.1, 38.7, and 33.9 m 
respectively and fit the same EXP model for the theoretical 
variogram, due to existing correlations in their 
determinations. 
 
Multiple linear regression 
 
In the multiple linear regression model, three physical 
properties (FS, PR, and BD) and three chemical properties (K, 
C, and Mg) were used to predict PRODUT and explained 
55.1% of the total variance in productivity. This model can 
be accepted because the statistics (Fcal) indicates that these 
explanatory variables significantly reduce the variance of the 
dependent variable. In other words, the soil properties that 
entered the model have greater influence on the variation in 
productivity than the residuals at 5% probability level (Table 
2). The results of the spatial multiple regression analysis in 
Table 3 shows, based on R

2
, that the five dependent 

properties that entered the model explain 42.39% of the 
variability in productivity. However, as with the multiple 
linear regression, the analysis of variance of the spatial 
multiple regression statistically confirms, at 1% significance, 
the effect of soil properties on the productivity of black 
pepper.  
 
Multiple linear regression and spatial multiple regression 
 
The low R

2
 of the spatial multiple regression (42.39%) 

compared with that obtained for the multiple linear 
regression (55.1%) is due to the fact that in the spatial 
multiple regression, we compare continuous surfaces 
created by interpolation using ordinary kriging and 
therefore,  formed  by a grid of interpolated values and not 
solely by “xyz” values . Moreover, the number of properties 
that entered the regression model to predict productivity is 
lower than that used in the multiple linear regression, and 
the adjustments to the variograms influence the accuracy of 
the kriging interpolation.  
The results in this study confirmed the greater importance of 
the soil physical properties in comparison to the chemical 
properties for determining black pepper productivity. This  
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      Table 1. Adjusted models and variogram parameters scaled to the soil properties and black pepper crop. 

Property Model a ( m ) C0 C0+C SDI (%) R
2
 (%) 

Cross-validation 

R p-value 

pH  EXP 45.6 0.04 1.07 96.3 85.2 0.35 0.001 
P  PNE - - - - - - - 
K  EXP 83.4 0.25 1.15 78.3 92.3 0.38 0.000 
Ca EXP 50.7 0.31 1.05 70.1 90.7 0.24 0.036 
Mg  PNE - - - - - - - 
Al  EXP 35.1 0.13 1.07 88.4 87.0 0.35 0.006 
H+Al  EXP 38.7 0.22 0.97 77.5 88.5 0.40 0.000 
SB  ESP 24.4 0.16 1.03 84.2 97.4 0.30 0.007 
CEC  EXP 97.8 0.47 1.12 57.8 72.5 0.25 0.021 
V%  EXP 51.6 0.27 1.07 93.7 93.7 0.35 0.001 
m%  EXP 33.9 0.23 1.09 79.3 75.9 0.30 0.005 
U% EXP 66.0 0.37 0.98 61.7 86.2 0.52 0.000 
PR EXP 51.0 0.00 1.11 99.9 81.3 0.46 0.000 
CS LIN - 0.61 0.79 23.9 69.0 - - 
FS EXP 25.8 0.27 1.03 73.9 78.0 0.24 0.025 
Sil EXP 25.8 0.25 0.89 72.0 87.6 0.32 0.030 
CL EXP 28.2 0.18 0.73 75.2 72.3 0.58 0.000 
BD EXP 27.6 0.26 0.84 69.4 88.7 0.42 0.000 
Vp EXP 25.8 0.26 0.85 69.5 87.6 0.41 0.000 
PROD. EXP 43.3 0.16 1.15 85.9 83.1 0.21 0.040 

ESP: spherical model; EXP: exponential model; PNE: pure nugget effect; LIN: linear model; s: sill; C0: nugget effect; C0+C: range; SDI: space dependence index (C/C0+C); R
2
: adjusted coefficient of 

determination; r: cross validation correlation coefficient; e p-value: level of significance of the observed value estimated by the cross validation. 

 
 
 
 
 
 
 
 
 
 
 
Fig 1. (A) Plot of standard deviation versus mean in the analysis of the proportional effect of the physical property Coarse Sand; (B) 
Scaled variogram of the physical property Coarse Sand. 
 
 
 
 
 
Fig 1. (A) Plot of standard deviation versus mean in the analysis of the proportional effect of the physical property Coarse Sand; (B) 
Scaled variogram of the physical property Coarse Sand. 
 
 
 

Table 2. Stepwise multiple linear regression model of black pepper productivity and chemical and physical properties of the soil.  

Input 
property 

Model (Y = Productivity) R
2
 (%) Fcal   

FS Y = 38.35 -0.21 * FS 24.0 11 
K Y = -0.17 * 38.07 FS-0.04 * K 34.2 8.8 
PR Y = -0.14 * AF-26.79 0.04 * K + 2.38 * PR 44.0 8.6 
Ca  Y = 30.13 * FS-0.04 * K + 2.32 * PR-2.55 * Ca 49.7 7.9 
BD Y = -0.14 * 4.98 FS-0.04 * K + 2.55 * PR-2.48 * Ca + 14.9 * BD 52.9 7.0 
Mg Y = -5.13 -0.12 * FS-0.04 * K + 2.55 * PR-3.66 * Ca + 25.56 * BD + 2.99 * Mg 55.1 6.1 

FS: Fine sand; K: Potassium; PR: Penetration Resistance; Ca: Calcium; BD: Bulk Density; Mg: Magnesium; R
2
: Regression coefficient; 

Fcal: test statistics.
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Fig 2. Maps of black pepper productivity (kg plant

-1
) predicted by spatial multiple regression analysis (bottom layer) and estimated 

by ordinary kriging interpolation (top layer) over a 3D plane of the area. 
 
   Table 3. Spatial multiple regression model of black pepper productivity and chemical and physical properties of the soil. 

Properties Models (Y = Productivity) R
2
 (%) Fcal  

FS, K, PR,  
Ca and BD 

Y = -0.25 * FS-0.10 0.04 * K + 0.68 * PR-0.05 * Ca + 0.11 * BD 42.39 395.86 

FS: Fine sand; K: Potassium; PR: Penetration Resistance; Ca: Calcium; BD: Bulk density; R2: Regression coefficient; Fcal: test statistics. 

 
 
Table 4. Chemical and physical parameters of the studied soil. 

pH P
1/

 K
1/

 Ca
2/

 Mg
2/

 Al
2/

 H+Al
2/

 V
3/

 CS
4/

 FS
4/

 Sil
4/

 AR
4/

 
4.8 83.2 75.7 1.5 1.1 0.4 4.5 39.5 476.1 108.6 131.1 286.1 
1/ mg dm-3; 2/ cmolc dm-3; 3/ %; 4/ g kg-1; CS: Coarse sand; FS: Fine sand 

 
 
finding is in accordance with those of other studies (Ortiz et 
al., 2006). According to Veloso and Carvalho (1999) quoted 
by Santos et al. (2012), studies undertaken in the top black 
pepper producing countries consistently show that the 
macronutrient requirement of the crop, in descending order, 
is as follows: N and K > Ca > Mg > P. The crop removes large 
amounts of nutrients, primarily N and K, from the soil. 
Interestingly,K is the first chemical property to enter the 
model and Ca is the second. Both variables have negative 
values, which indicates greater productivity in areas with 
low post-harvest levels of these elements due to crop 

intake. The low nutrient level and the minimal influence of 
chemical properties on productivity may be related to 
sampling during the harvest and to the great mobility of 
nutrients like K. On the other hand, it is clear that crop 
productivity is mainly influenced by physical properties such 
as PR, BD, and fine sand particle (FS). PR entered the model 
with a significant and positive value, thus revealing a direct 
contribution to productivity. In general, an inverse 
relationship between penetration resistance and crop 
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productivity is found in publications since soil compaction 
tends to limit the crop root system (Lima et al., 2010). 
However, according to Embrapa (2006), this might not be 
the case for some tropical soils of the Latosol class, as those 
in the area of study, with high macroporosity and 
permeability. 
Figure 2 presents and compares, in the same plane, the map 
of black pepper productivity (kg plan

-1
) estimated by the 

ordinary kriging of values measured in the field with the map 
of productivity predicted by the spatial multiple regression 
analysis. The maps display similar behaviors with 
productivity varying in the same direction over the area and 
overlaying areas of low and high productivity. The map of 
the productivity predicted by spatial multiple regression was 
reclassified to match the scale of the map generated by 
kriging. With this, a difference  can be seen between the 
maps regarding the range of each data series.  
The data on productivity predicted by the regression had a 
lower range, or variability, than the data estimated by 
kriging. This was an expected result since productivity was 
determined by a multiple linear regression equation. As with 
Miranda et al. (2013), who estimated forest productivity 
using soil properties as predictors, we found a high degree 
of similarity between the two maps. Therefore, our findings 
confirm the feasibility of the model to predict black pepper 
productivity in areas with similar environments. 
 
Materials and Methods 
 
Plant material, location and designs 
 
The study was conducted in a commercial black pepper 
plantation located in the municipality of São Mateus in the 
state of Espírito Santo, Brazil (18° 43' 37" south and 40° 05' 
51" west and 87 m average altitude ). The soils were 
classified, according to the Brazilian System of Soil 
Classification, as typical RED-YELLOW DYSTROPHIC 

LATOSOLS of sandy clay loam texture (Table 4). The soils 
have good physical characteristics, are well-drained with 
good infiltration rate and depth, but with low natural 
fertility. Four-year-old black pepper plants derived from the 
vegetative propagation of herbaceous cuttings of the high-
yield variety Bragantina were used in the study. The plants 
were grown in the usual spacing of 3.0 x 2.0 m, in a single 
row system on ridges to avoid waterlogging. Data were 
collected in a selected plotof 15,500 m

2 
(162 m long and 96 

m wide), with 94 sample points spaced 18 m x 12 m apart 
forming a regular grid. Each sample point represented an 
area of 216 m

2
. 

 
Statistical analysis 
 
Before running the spatial multiple regression, there are 
assumptions that have to be confirmed: that the dependent 
variable is normally distributed; that the number of 
observations is greater than the number of independent 
variables; and that there is no exact or close linear 
relationship between independent variables (no 
multicollinearity). When two independent variables showed 
a correlation coefficient greater than 0.80, one of them was 
excluded from the multiple linear regression model to avoid 
multicollinearity. Initially, a multiple linear regression 
analysis was performed with the chemical and physical data, 

which were considered mutually independent. Then, an 
analysis of variance was also performed to validate the 
model for prediction of productivity. The stepwise 
regression, which is often chosen for exploratory studies, 
was used. In this regression, the input sequence of 
parameters into the equation follows no theoretical model 
and is set statistically (Abbad and Torres, 2002). Productivity, 
the dependent variable (Y), was estimated based on the 
procedures described by Ortiz et al. (2006) and Diggle and 
Ribeiro Jr. (2007) by including the independent variables (X) 
into the model at each step (forward stepwise) to explain 
the Y behavior. In this case, the model required a multiple 
linear regression to verify the relationship between "xyz" 
data. It is possible, however, to perform this analysis with a 
spatial approach by examining the relationship between the 
resulting maps. To do this, the spatial multiple regression 
tests cumulative dependencies of a single dependent 
variable in relation to a number of independent variables 
based on their known geographical coordinates. Thus, for 
example, when three independent variables are used to 
explain one dependent variable, the equation of the spatial 
multiple regression becomes: 
 
Y = a + b1x1 + b2x2 + b3x3 
Where, Y is the dependent variable; x1, x2, and x3 are the 
independent variables; a is the intercept; and b1, b2, and b3 
are the coefficients of the independent variables which 
define the increase (or decrease) of variable Y for a one-unit 
change in variable Xi.  
Stationarity conditions must be fulfilled to build and 
interpret the variogram, which was tested by plotting means 
against standard deviations calculated for each row and 
column of the soil parameters. For stationarity to occur 
requires that the mean and variance are not correlated, 
given that the proportionality of the variance to the mean is 
determined by the significance of the linear regression 
analysis at 5 % probability. Since the data did not comply 
with stationarity, a second-degree parabolic trend surface 
was applied by working with the residuals towards an 
intrinsically stationary process. Once stationarity was 
assumed, the geostatistics analysis attested the spatial 
dependence of the soil properties with the equation:                  
 

]h)+xZ(-)x[Z(
) N(h 2

1
 = (h)

2
ii

N(h)

1=i

∑̂

 
where N(h) is the number of pairs of the measured values Z 
(xi) and Z (xi + h) separated by a vector h; and Z (xi) is the 
random variable in the i-th position. 
Gaussian, exponential, and spherical models were tested for 
adjusting the variograms with determination of the 
parameters nugget effect (C0), sill (C0 + C), and range (a) of 
spatial dependency. 
Ordinary kriging was used to estimate soil properties in 
unsampled locations. This method of interpolation applies a 
linear unbiased estimator with minimal variance and takes 
into account the structure of the spatial variability found for 
each property. It is defined by the following equation: 

∑
N

1=i

)iZ(xiλ=)0Z(x
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where is the value estimated for the unsampled 

location; is the value obtained by sampling in the 

field; and e is the weight associated with the measured 
value at xi position. 
The data interpolated by ordinary kriging allowed the 
creation of thematic maps for each of the soil properties and 
crop productivity, thus it was possible to run the spatial 
multiple regression using the properties that were 
significant for productivity in the multiple linear regression. 
A map of crop productivity was modeled by multiple 
regression aiming to decrease the number of properties in 
the analysis to simplify the process and reduce the effect of 
errors accumulated. 
In order to determine the number of explanatory properties 
(predictors) in the adjustment of the spatial multiple linear 
regression model, a stepwise forward regression was 
performed with STATÍSTICA 8.0. The method begins with an 
empty equation in which the predictors are entered 
individually until the best predictors are identified. The 
validation of the results was tested by the F statistics and R

2
 

values. R
2
 shows how much of the total variability of the 

dependent variable can be explained by the model. In other 
words, it shows how much of the variance of the dependent 
variable can be explained by this specific group of 
independent variables. For visual analysis, an isoline map 
was created and compared with both the productivity values 
predicted by the multiple regression model and with the 
values estimated by kriging. 
 
Conclusions 
1. Both the multiple linear regression and the multiple 
spatial regression resulted in models that are suitable to 
predict the productivity of black pepper. 
2. The physical properties of the soil are more relevant to 
the productivity of black pepper than the chemical 
properties, with the multiple spatial regression having a 
lower coefficient of determination (R

2
) than the multiple 

linear regression. 
 3. The maps estimated by kriging and predicted by spatial 
multiple regression were highly  similar thus confirming the 
feasibility of regression models to predict black pepper 
productivity in areas with similar environments. 
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