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Abstract  
 
The image segmentation procedure is fundamental in the phenotyping of plant images. Supervised algorithms have 
been used for pixel soil plant segmentation. Recent research has used the K-means algorithm to evaluate the 
segmentation of agronomic images in different crops with different databases. The algorithm has shown good 
performance in the pixel clustering process despite not being able to classify them directly. The present research 
intends to propose the use of the K-means algorithm in image segmentation and pixel classification in sugarcane 
images. 37,430-pixel samples referring to soil and vegetation were manually extracted from some images. This 
information was used to train and evaluate supervised models. The model with the best performance was considered 
the "standard" model. A rule that can serve as empirical support to interpret the clusters formed by K-means by 
assigning a label to each pixel was proposed. Then K-means was used to segment all images and classify the pixels. 
The vegetation index was used as features and the standard model classification was used as a true label. The 
measures recall, F1Score, precision, and accuracy were used as a performance measure of K-means, and the mask of 
each produced to compare the final result of the two approaches, highlighting the vegetation. Using K-means 
provided better-defined edges than Logistic Regression (standard model) and considerably distinguished the 
occurrence of soil between the leaves, with precision ranging from 0.77 to 0.92. These results expressed the 
importance of vegetation index to the clusterization process and showed that K-means ally to an interpretation 
clusters rule, which could be used to classify pixels in images. 
 
Keywords: Vegetation indices. RGB images. Phenotyping. 
Abbreviations: AUC_Area Under de Curve; CIVE_Colour Index of Vegetation Extraction; COM1_Combined Indices 1; 
COM2_ Combined Indices 2; CNN_ Convolutional Neural Networks; ExG_ Excess of Green; ExGR_ Excess Green minus 
Excess Red Index; ExR_ Excess Red Index; FN_ False Negative; FP_ False Positive; GLI_ Modified Green Red Vegetation 
Index; LR_ Logistic regression; MExG_ Modified Excess Green Index; MGVRI_ Modified Green Red Vegetation Index; 
MPRI_ Modified Photochemical Reflectance Index; NGRDI_ Normalised Green–Red Difference Index; RF_ Random 
Forest; RGVBI_ Red Green Blue Vegetation Index; ROI_ Region of Interest; TN_ True Negative; TP_ True Positive; VEG_ 
Vegetativen or vegetative; XGBoost_ Extreme Gradient Boosting.   
 
Introduction 
 
The image segmentation procedure is critical as it 
enables the extraction of plant phenotypic 
characteristics from images (Ge et al., 2016; Hamuda 
et al., 2016; Guo et al., 2021). Image segmentation is a 
highly relevant task in the field of computer vision. It 
allows for identifying and classifying areas of interest 
in the images and quantifying. Numerous pieces of 
research have shown several applications with its use, 
enabling the detection of foliar diseases of cucumber, 
cotton weeds, sweet potato seedlings, and 
Arabidopsis, among others (Ma et al., 2017; S. Zhang 
et al., 2019; Guo et al., 2021; Lu et al., 2022). 

Bai et al. (2017) used fuzzy clustering segmentation 
based on grayscale information from images to define 
cucumber leaf spot diseases. Lu et al. (2022) used 
color images for robust segmentation of cotton 
weeds, sweet potato seedlings, and Arabidopsis based 
on image contrast optimization. The same author used 
the color indices ExG (Woebbecke et al., 1995), ExR, 
ExGR (Meyer and Neto, 2008), CIVE (Kataoka et al., 
2003), MExG (Burgos-Artizzu et al., 2011), NGRDI 
(Hunt et al., 2005), VEG (Hague et al., 2006), COM 1 
and COM 2 (Guerrero et al., 2012) as a fundamental 
step in the segmentation process. 
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Barbosa et al. (2019) used the GLI (Modified Green 
Red Vegetation Index), MPRI (Modified Photochemical 
Reflectance Index), RGVBI (Red Green Blue Vegetation 
Index), ExG (Excess of green), and VEG (Vegetativen) 
indices to identify soil and exposed vegetation. 
(emerald grass – Zoysia Japonica). Although all indices 
were affected by the area's lighting variability, the 
MPRI and MGVRI showed better discrimination 
between classes. Concepcion et al. (2022) also 
evaluated different indices. They attributed greater 
importance to ExG and RGBVI regarding the efficiency 
in indicating moisture stress in the canopy of 
aquaponic lettuce leaves. 
It is common to use vegetation indices in image 
segmentation. These enhance the contrast of plants 
with other objects in the image, softening lighting 
effects (Lu et al., 2022). Using these indices allows the 
broad applicability of different techniques for the 
segmentation process. Deep learning techniques have 
been used for this purpose (Lee et al., 2018; Barth et 
al., 2019; Zheng et al., 2019; Adams et al., 2020; Zhou 
et al., 2020). However, supervised learning techniques 
require much image information for the model 
training process (Henke et al., 2021). Additionally, 
many image data for training are not always possible 
since the labels (the class to which each pixel of the 
training database belongs to) 
must be built manually. 
Among the diversity of techniques in this process, the 
K-means algorithm is famous for presenting 
characteristics such as agility, efficiency in forming 
clusters in both small and large data sets, and 
robustness to outliers (Arai and Barakbah, 2007; Reza 
et al., 2019). Recent research highlights the use of the 
K-means algorithm in the evaluation of the 
segmentation of images obtained from different crops 
(Zhang et al., 2019; Chouhan et al., 2021; Guo et al., 
2021; Henke et al., 2021; Sodjinou et al., 2021; Zhang 
and Peng, 2022; Lu et al., 2022). However, unlike 
supervised techniques that assign interest labels to 
each pixel, the K-means procedure only determines 
the number of clusters to split on the image. After 
finishing the clustering process, the researcher is 
required to interpret them so that it is possible to 
assign a label to each pixel. This interpretation is often 
made visually by comparing the actual and cluster 
images. 
In addition, there are no indications of the use of this 
algorithm in the segmentation of images obtained by 
drones in experimental fields of genetic improvement. 
The segmentation of images of crops in this situation 
allows the evaluation of phenotypic characteristics in 
the different phases of studies for the selection of 
potential individuals. The present research intends to 
propose an approach based on K-means allied to an 
empirical rule of interpretation of its clusters and then 
to compare its performance to supervised algorithms 
with the purpose of segmentation and classification of 
sugarcane image pixels. The images were obtained 

using a drone in an experimental research field on 
sugarcane plant genetic improvement.  
 
Results and discussion 
 
Supervised models evaluation 
Initially, we evaluated the supervised models LR, 
XGBoost, and RF, considering only the R, G, and B 
channels in the pixels classification for defining the 
vegetation and soil classes. The models presented 
outstanding performance (accuracy 0.96) similar to 
each other. However, in terms of computational effort 
(Figure 1), the LR model showed the best results. 
Subsequently, we repeated the same analysis using 
only the vegetation indices. A moderately superior 
performance is noticed only for the XGBoost model 
(accuracy 0.97), comparing the previous result in 
which the RGB channels with an accuracy of 0.96 were 
used. However, despite this slight improvement, the 
LR model remains the preferred model, since it still 
presents a significant difference in computational cost 
from the others (Figure 2). 
Considering the model performance, the LR model 
was chosen as a standard (accuracy 0.96 and shorter 
execution time) to evaluate the performance of K-
means

+
.  

 
Unsupervised model evaluation 
The K-means algorithm showed excellent performance 
using vegetation indices (Figure 3), unlike the 
performance presented when using only the R, G and 
B bands. 
These results (Figure 3) express the fundamental role 
of the indices in highlighting the vegetation present in 
the experimental plot. It is essential to highlight the 
tremendous reduction in the number of false 
positives, 18713 false positives when using only R, G, 
and B against 128 false positives when using the 
indices. The number of false negatives also notably 
reduced, going from 7103 occurrences to 3708 when 
using the indices. In all metrics evaluated, there was a 
remarkable difference. Correct pixel classification has 
been increased by 59%. The percentage among all 
vegetation pixels correctly predicted in the model was 
increased by more than 100%, and the proportion of 
pixels classified as vegetation in the actual amount of 
vegetation pixels increased by 4.6 times. Equivalently, 
there was a considerable increase in the harmonic 
mean (F1 Score = 0.92) between precision and recall. 
 
Empirical rule to interpret the clusters 
The pixel distribution values for each attribute used 
were evaluated for the empirical process of 
determining the class related to each group formed by 
K-means and then defining the approach that we 
called K-means

+
. Among the attributes evaluated, 

there is a more significant distinction between the soil 
and vegetation classes when considering the indices 
(Figure 4). Vegetation indices can highlight a stipulated  
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Figure 1. Time spent in the optimization process and model training: logistic regression (LR), XGBoost, and Random 
Forest (RF) using, as predictor variables, the R, G, and B bands. 
 

 
Figure 2. Time spent in the optimization process and model training: logistic regression (LR), XGBoost, and random 
forest (RF) using vegetation indices as predictor variables. 
 
color (Woebbecke et al., 1995), making it possible to 
identify the plant in contrast to the soil (Meyer and 
Neto, 2008). This discrepancy occurs because they 
attenuate the luminosity and intensify the difference 
between backgrounds (Campbell and Wynne, 2011). 
Note that the attributes that separate the classes 
easily are those with minor areas of overlap between 
the soil and vegetation distribution curves. This 
overlap corresponds to the sum of the false positive 
and false negative rates. Equivalently, to define a 
metric for choosing the attribute that allows for the 
best distinction between classes, the absolute value of 
the standardized variable z was considered: 
| |

    ((                 ) √
      
      

 
            

            
⁄ ) 

Table 1 presents the values obtained. Higher values of 
|z| are linked to more easily separable distributions of 
values. As can be seen, the indices demonstrate better 
performance than the R, G, and B bands. In addition, 
among the indices, the one with the highest value is 
the MGVRI. Therefore, it was used as a criterion to 
define the class of groups. 
The class with the lowest average of MGVRI was 
assigned the soil label, and the class with the highest 
average was the vegetation label, as seen in Figure 5. 
In this way, it was possible to set the black color to 
mask the pixels belonging to the soil class in the 
images.  

 
Evaluation of models in image segmentation 
Henke et al. (2021) used K-means in plant 
segmentation and phenotyping using the kmSeg tool. 
The authors achieved an average of 96% to 99% 
accuracy when comparing actual data in different 
image databases. In optimizing the K-means cluster, 
those authors used additional pre-processing, filtering, 
and ROI masking steps. However, despite the high 
values for accuracy, some images were recorded in 
controlled environments. In contrast, others were 
recorded in an open environment without a drone. 
Taha et al. (2022) used a convolutional neural network 
(CNN) to study nutritional deficiencies based on 
imaging plants cultivated in aquaponics. The authors 
compared CNN with K-means. Despite CNN presenting 
optimal accuracy and F1Score values greater than 
99%, K-means presented values greater than 83% in 
these evaluated metrics. CNN's prominence regarding 
K-means was expected, as deep learning algorithms 
present better results in large data sets (Henke et al., 
2021). Similar values to these were also observed with 
K-means in the dataset of two images of sugarcane, 
obtained with a drone, from the experimental field in 
genetic improvement of this study (Figure 5 and Figure 
6). 
The presented images exemplify the best (Figure 5) 
and the worst (Figure 6) performance of K-means

+
. In 

both scenarios, the efficiency of K-means in 
segmentation is noticeable. With K-means

+
, the edges 

became  better  defined  and  the  occurrence of soil in  
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                       Table 1. Absolute z values calculated for each attribute. 

Index MGVRI MPRI GLI ExG RGVBI VEG red green blue 

| | 2
81.71 

2
76.95 

2
63.82 

2
47.25 

2
27.26 

1
87.5 

9
9.56 

6
0 

2
0.38 

 

 
Figure 3. Evaluation metrics and confusion matrix of clusters formed from k-means when using the (A) vegetation 
indices or (B) only the R, G, and B bands. 
 
the middle of the vegetation was better discriminated 
in the masking process. These results show the 
potential of K-means

+
 for image segmentation 

obtained from plots of field experiments. It also 
emphasizes the importance of vegetation indices in 
the pixel clustering process and as an essential tool 
that can be used to classify the groups formed by K-
means. 
 
Materials and methods 
 
Data  
The images were collected from an experiment 
conducted in 2019 at the Sugarcane Research and 
Improvement Center (CECA) of the Federal University 
of Viçosa – UFV, located in the municipality of 
Oratórios – MG, Brazil. The images were obtained 
from this experiment (Figure 1) with a DJI Phantom 4 
UAV-RPA drone. This drone was equipped with an RGB 
camera (R, red; G, green; and B, blue) with a 
resolution of 12 megapixels and a focal length of 3.61 
mm. The flight was conducted on 03/15/2019 
between 11:00 am and 1:00 pm. The six images used 
in this research (Figure 7) correspond to diverse 
samples of the original images. These were chosen to 
have a variability of possible situations when images 
are collected directly in the field. We have, as 
extremes, an image with more soil and less developed 
plants (Figure 7-F) and an image where plants occupy 
almost the entire plot area (Figure 7-E). 
 

Images processing 
From those six images (Figure 7), pixel samples were 
extracted with their respective classes (soil and 
vegetation). These samples were used in structuring a 
two-dimensional table (data frame) for subsequent 
analyses. 
The six images (Figure 7) were used to manually 
extract pixels corresponding to the soil and vegetation 
classes. From these images, 37430 pixels were 
manually extracted. The corresponding values of the 
red (R), green (G), and blue (B) bands were saved in 
the columns of a data frame, accompanied by the 
corresponding class (soil or vegetation). The R, G, and 
B bands were used to calculate the vegetation indices 
GLI, MPRI, RGVBI, ExG, and VEG that were saved in 
new columns of the same data frame. These indices 
are defined as: 

Modified Green Red Vegetation Index:       
      

      
   

(Louhaichi et al., 2008); 
Modified Photochemical Reflectance Index: 

      
   

   
  (Yang et al., 2008); 

Red Green Blue Vegetation Index:         
  (   )

   (   )
  

(Bendig et al., 2015); 
Excess of green:             (Woebbecke et 
al., 1995); 

Vegetation:      
 

     (   )
  , where         

(Hague et al., 2006). 
The columns composed of bands and vegetation 
indices were named attributes in this data frame. The 
columns  corresponding  to  the  class  of  pixels   were  
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Figure 4. Distribution of pixels related to soil and vegetation by each evaluated indices. 

 

 
Figure 5. Summary of best-observed performance of the K-means

+
 approach. Comparison between the performance 

of Logistic Regression and K-means combined with an empirical rule to interpret the clusters (K-means
+
). The table 

shows the best performance observed for K-means
+
. A) Selection of pixels corresponding to vegetation using K-

means
+
. B) Selection of pixels corresponding to vegetation using Logistic Regression. C) Drone Image. D) Confusion 

Matrix and table with the evaluation metrics of classification.  
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Figure 6. Summary of worse observed performance of the K-means

+
 approach. Comparison between the performance 

of Logistic Regression and K-means combined with an empirical rule to interpret the clusters (K-means
+
). A) Selection 

of pixels corresponding to vegetation using K-means
+
. B) Selection of pixels corresponding to vegetation using Logistic 

Regression. C) Drone Image. D) Confusion Matrix and table with the evaluation metrics of classification. 
 
named labels. Therefore attributes and labels were 
used to train and validate the pixel-by-pixel 
classification of the proposed models to perform the 
image segmentation process. 
 
Supervised models training and evaluation 
Three supervised models were considered for the 
pixels classification process for image segmentation: 
Random Forest – RF (Breiman, 2001), XGBoost (Chen 
and Guestrin, 2016), and Logistic Regression – LR (Cox, 
1970). The pixels used for model training in image 
segmentation were evaluated in two scenarios: 1) 
considering only the R, G, and B bands; 2) using the 
vegetation indices: GLI, MPRI, RGVBI, ExG, and VEG. 
The identification of parameters that maximize the 
model effectiveness in image segmentation was 
performed through Gaussian processes using the 
Bayesian Optimizer (Wu et al., 2019). Based on the 
previously selected pixels, the algorithm combines 
them with a priori distribution and, in this way, 
obtains the posterior distribution, which is then 
maximized to identify the model's optimal 
hyperparameters (Wu et al., 2019). In this context, 
they were optimized using the scikit learn library, the 
max depth and learning_rate hyperparameters of the 
RF classifier, and the n_estimators, min_samples_leaf, 
and max_depth hyperparameters of the XGBoost  

 
classifier. For the LR, all parameters were used in the 
library standard mode. After obtaining the 
parameters, the models were evaluated. 
Among the supervised models, the one with the best 
performance was used as the 'standard' image 
segmentation model. The best model corresponded to 
the one with the highest accuracy value and the 
analyses' shortest processing time. The purpose of 
choosing one of the three supervised models is to use 
it as a comparison in image segmentation with the K-
means algorithm (Sodjinou et al., 2021). 
 
Unsupervised model evaluation 
The K-means algorithm minimizes the sum of the 
distances of each image pixel to the pre-established 
centroids of the clusters, defining the classes 
(Sodjinou et al., 2021). As the objective was to 
segment the image separating vegetation and soil, a k 
= 2 cluster was defined. In this case, each P pixel in the 
.tif (Tagged Image File Format) image was related to 
attributes used in the distance calculation. 
Segmentation with K-means was also evaluated in the 
two scenarios mentioned above (1 - considering only 
the R, G, and B bands; and 2 - using the vegetation 
indices: GLI, MPRI, RGVBI, ExG, and VEG) and, later, 
compared to the segmentation defined with the 
'default' model selected in the previous step. In the  
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Figure 7. Drone images of experimental plots collected at the Sugarcane Research and Improvement Center (CECA) of 
the Federal University of Viçosa – UFV. 
 
comparison, we used accuracy, precision, recall, and 
F1Score (Lu et al., 2021). 
To understand such metrics, knowledge of the 
confusion matrix is essential (Ma et al., 2018). For the 
binary classification in this research, where the pixel 
can belong to the soil or vegetation, the confusion 
matrix allows visualizing the correctly and incorrectly 
predicted pixels. The confusion matrix has the 
following elements: correctly predicted (true positive - 
TP) and incorrectly (false positive - FP) positive values; 
and negative values correctly predicted (true negative 
- TN) and incorrectly (false negative - FN). From these 
elements, the metrics are defined: 
       

  
     

           
 

       

  
  

     
                               

   
         

  
  

     
                       

        

 
                  

                
 

 
The accuracy, precision, and recall metrics allow to 
measure the proportion of pixels correctly predicted in 
the soil and vegetation classes, the correct percentage 
among all vegetation pixels correctly predicted in the 
model, and the percentage of pixels classified as 
vegetation in the real world. The F1Score metric refers 
to the harmonic mean of precision and recall. The 
higher the F1Score value, the better the model 
performance (Lu et al., 2021). 
 
Empirical rule to interpret the clusters 
A new pixel classification approach was defined based 
on the K-means algorithm. This approach associates 
the algorithm with an automated criterion to 
determine the label associated with each group. We 
call this approach K-means

+
.  

When using K-means for grouping pixels in two 
classes,  the  labels  0  or  1  are  randomly assigned for  
 

each class. Thus, label 0 can be assigned to different 
clusters at each repetition of the analysis. In this work, 
we defined a criterion to choose which class groups 
(soil/vegetation) the labels 0 and 1 belong to. The 
criterion was based on the distribution of the values of 
the sampled pixels. Based on this evaluation, a 
decision rule was defined using the average of one of 
the attributes.  
 
Image segmentation 
A black mask was applied to the pixels corresponding 
to the soil class of all images, leaving the vegetation 
unmasked in the image after segmentation. This final 
phase was then called masking. The mask was created 
using K-means

+
 and the default model. So, we 

compared the performance of the two approaches 
visually and obtained metrics to evaluate the 
performance of K-means

+
 considering the 

classification of the standard model as the true label. 
The entire process mentioned above in the 
methodology of this research can be seen in Figure 8.  
 
Resources used for data analysis and processing 
To extract the constituent pixels of the data set 
manually, we used the R software's mapedit library 
(Appelhans et al., 2020). Subsequently, in the 
segmentation of the images, with the application and 
evaluation of the models: RF, XGBoost, K-means, and 
LR, the Scikit-learn package (Kramer, 2016) of the 
Python language was used. For the hyperparameter 
optimization process of the RF and XGBoost models, 
the Scikit-optimize package also from the Python 
language was used. 
 
Conclusion 
 
The K-means algorithm presented a similar result to 
the supervised algorithms in this research. We show 
that the groups formed using K-means can be 
interpreted  using  the  averages  of  the  values  of the  
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Figure 8. Illustrative diagram of the entire process developed in the research methodology. 1) Drone images. 2) Data 
processing. 3) Training of supervised models. 4) Evaluation of supervised models. 5) Evaluation of clusterization 
obtained by K-means algorithm with two sets of attributes. 6) K-means

+
 represent the algorithm K-means combined 

with an empirical rule to interpret the clusters. 7)  Comparison between the best-supervised model and K-means
+
 for 

an image segmentation task. 
 
MGVRI index within each group of pixels. We 
presented an approach to an image segmentation 
process that does not depend on a priori pixel 
classification. The novel unsupervised approach can 
classify pixels as efficiently as supervised learning 
models. 
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