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Abstract 
 
The lack of knowledge about the variability of the soil fertility index often leads to the use of inadequate amounts of fertilizers for 
certain areas within the crop. Aiming to analyze a set of variables from the soil chemical analysis, the multivariate analysis was 
applied in order to condense these variables into a smaller group of factors without important information loss to create a Soil 
Fertility Index. Soil sampling was carried out in a total area of approximately 740 ha, with a sampling grid of 5 ha, making a total of 
148 sampling points. Four factors: (1) exchangeable aluminum (Al), aluminum saturation (m%), base saturation (V%), calcium, pH, 
Mg and P. Al and m% (2) the CTC and OM variables (3) Fe and Mn variables and (4) B, S and Zn were extracted from the factorial 
analysis explaining 74.79% of the total variance of the data, which is satisfactory by the criterion of the variance percentage. The 
analysis showed that in the sample dataset, an intersection was occurred in the mean dataset forming three centroids which 
coincides with the number of properties where the set of samples was collected. The use of multivariate analysis proved to be 
efficient for the proposed study, since the analysis of variance could not show efficiency due to the interrelations between the 
variables causing bias in the results. Based on the universe analyzes studied here, approximately 97% of the sampled area 
presented satisfactory or high soil fertility levels, which leads to the use of reduced amounts of fertilizers in most of the growing 
area. 
 
Keywords: Soil fertility index; factor analysis; canonical discriminant analysis. 
Abbreviations: SFI_soil fertility index; FA_factor analysis; CDA_canonical discriminant analysis; KMO_Kaiser-Meyer-Olkin test. 
 
Introduction 
 
The activity of producing grains of rice, corn and soybeans in 
the municipality of Santarém, state of Pará in the Eastern 
Amazon, is carried out in production units that use 
agricultural mechanization, chemical fertilizers, and lime to 
soil acidity and pesticides. The use of no-tillage as well as 
precision agriculture is still in its infancy stage (Teixeira et al., 
2019) 
The depletion of soil nutrients for several decades of 
cultivation, without replacement, as well as the exploration 
of new areas with low fertility soils, makes Brazilian 
agriculture increasingly dependent on massive application of 
fertilizers (Castro et al., 2020). 
In most cases, the variability of arable soils is not considered 
by farmers, who choose to apply homogeneous soil 
management practices, especially chemical fertilization for 
the total growing area, compelling farmer to use inadequate 
amounts of fertilizers for certain areas within the cropping 
fields. 
The excessive use of fertilizers, generally above the real 
needs, in cropping fields increases production costs and is a 

potential source of pollution of surface and groundwater 
over the years (Ahmed et al., 2017; Faulcon et al., 2019). 
Saldanha et al. (2013) identified high variability of chemical 
attributes in Western Amazon soils, due to variations in the 
level of agricultural practices applied by farmers, 
particularly, the amount of fertilizer used and the periods of 
application of lime to soil acidity. 
According to Silva et al. (2015), the soil is the result of the 
interaction of geological, topographical and climatic factors, 
among others, which together confer their own chemical 
and physical characteristics and properties. 
Soil formation factors act naturally and vary, according to 
management, ranging from a few square meters to 
thousands of hectares, making the chemical attributes of the 
soil not randomly organized, but rather with some spatial 
structure (Faulcon et al., 2019)  
Therefore, if homogeneous management practices induce 
spatial variability of soil chemical variables then controlling 
these variables can be decisive to improve soil fertility and 
consequently to increase crop productivity. This could 
promote a better balance of soil quality indicator levels. 
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Thus, it is necessary to investigate if homogeneous soil 
fertility management practices optimize agricultural 
production, recurrent practices in conventional agriculture.  
Simultaneous analysis of soil chemical variables measured 
on one experiment or sampling unit can be made by 
multivariate statistical methods. These methods allow for a 
reduction in the dimension of analyzes with soil variable 
multiple responses in order to simplify their understanding, 
visualization and interpretation, aside from obtaining 
sufficient details for an adequate representation of the 
results (Yeater et al., 2015). 
Assessment of soil variability using multivariate statistical 
analyses was carried out by several authors with satisfactory 
results, including (Freitas et al., 2014; Vasu et al., 2017; 
Bhunia et al., 2018; Carvalho et al., 2018; Ousmenku et al., 
2018; Hou et al., 2021). However, there are no reports on 
application of multivariate statistical methods to assess soil 
variability in the eastern Amazon.  
Therefore, if homogeneous management practices induce 
the spatial variability of chemical attributes in the soil then 
controlling these variables can be decisive for the 
improvement of soil fertility and consequent increase in the 
crop productivity due to a better balance of soil quality 
indicator levels.  
In this context, the objective of this study was to assess 
variability of soil chemical attributes by means of 
multivariate analysis to condense variables into a smaller 
group of factors without significant loss of information, 
aiming to create a Soil Fertility Index that will be used as a 
decision tool for a more rational soil fertilization of the soils. 
The resulting groups of variables will be used for 
discriminant analysis to confirm the existence of statistical 
difference between the variables in each group. 
 
Results and discussion 
 
Factor analyses  
 
The adequacy of the factor analysis was determined by the 
KMO and Bartlett tests. The KMO test (0.658), indicated that 
the variables are correlated and the factorial model 
presented a good level of adequacy to the data (Table 1). 
Values of this test below 0.50 are unacceptable (Watson, 
2017). In the Bartlett test, the overall significance of the 
correlation matrix was evaluated, which presented a statistic 
of 2392.692, indicating that the correlations are significant 
at the 1% level of probability, that is, the correlation matrix 
is not identity (Table 1). 
In Table 2, the first three columns are the results for the five 
extracted factors, which are the factor loadings for each 
variable in each factor. The fourth column provides the 
statistic, detailing the degree to which each variable is 
“explained” by the four components, called commonality. Of 
the last two columns, the first is the sum of the column of 
squared factor loadings (eigenvalues) and indicates the 
relative importance of each factor in explaining the variance 
associated with the set of analyzed variables. The sums of 
the five factors are 5.021, 2.391, 1.657, 1.470 and 1.428, 
respectively. As expected, the factor solution extracted the 
factors in the order of their importance, with factor 1 
explaining the largest portion of the variance (31.38%), 
factor 2 explaining 14.94%, factor 3 explaining 10.35%, 
factor 4 explaining 9.185% and factor 5 explaining 8.92%. 
The four factors explain 74.79% of the total variance of the 

data, which is satisfactory by the criterion of percentage of 
variance. 
Based on the work of Santana (2007), the total portion of 
the variance explained in this study, by the factorial solution 
(11,967) can be compared with the total variation of the set 
of variables, which is represented by the trace of the 
factorial matrix.  
The trace is the total variance to be explained, obtained by 
the sum of the eigenvalues of the set of variables (sum of 
the total eigenvalues, first column of Table 2, given that each 
variable has a possible eigenvalue equal to 1.0.  
The total sum of the eigenvalues trace percentages 
extracted for the factorial solution serves as an index to 
determine the degree of adequacy of the factorial solution 
in relation to what all the variables represent. The index for 
this solution shows that 74.796% of the total variance is 
represented by the information contained in the factorial 
matrix of the solution in terms of the four factors. The index 
is considered high, and the variables are closely related to 
each other as expected (Table 2) 
The sum of the factor loadings of the squared factors 
generates the commonality (Table 3). The commonality size 
is a useful index to assess how much of the variance in a 
given variable is explained by the factor solution. Large 
commonalities indicate that a large portion of the variance 
in a variable was extracted by the factor solution. A small 
commonality, lower than 0.50, shows that a good part of the 
variance contained in a variable is not explained by the 
factors (Santana, 2007). 
The selection of significant variables that must be part of a 
factor is chosen based on the magnitude of the factor 
loading (Table 3). Thus, they can be chosen by looking from 
left to right along each line and selecting the highest valued 
loads. Adopting this process, factor 1 has seven significant 
loads; factor 2, two significant loads, factor 3, two significant 
loads, factor 4, three significant loads, and factor 5, two. 
The first factor includes the variables exchangeable 
aluminum (Al), aluminum saturation (m%), base saturation 
(V%), calcium, pH, Mg and P. Al and m%, with negative 
values, are antagonistic to other variables of the factor, thus 
being coherent with the knowledge of soil studies. Thus, to 
maintain a satisfactory level of nutrition for the plants, it is 
necessary to reduce the levels of Al and m%. This factor can 
be called the “Base saturation” dimension, since the factors 
influenced by these variables are related to an increase in 
electrical charges in the soil solution. 
The second factor included the CTC and OM variables. These 
variables are related to the cation exchange capacity, where 
organic matter plays a fundamental role in the adsorption of 
nutritive elements by electrical charges and cation 
exchanges. The combination of these variables improves soil 
quality, which is sought after in soybean crops using no-till. 
This dimension of conduct is linked to the provision of 
services, which names the factor as “Cationic exchanges”. 
The third factor was only composed of Fe and Mn variables. 
The factors showed antagonistic signs, with Fe showing a 
negative sign. Although these elements have opposite 
electrical charges, there are no reports that prove 
competition for coupling sites, although Fe presents toxicity 
to plants at high levels in the soil. This factor can be 
represented with the “Iron Toxicity” dimension. 
The fourth factor, represented by B, S and Zn, showed a 
negative  sign  for  the  first two variables, although there are 
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                                Table 1. Kaiser-Meyer-Olkin (KMO) and Bartlett tests for the Soil Fertility Index (SFI). 

Kaiser-Meyer-Olkin measure of sampling adequacy. 0.658 

Bartlett's sphericity test Chi-square aprox. 2392.692 

Df 120 

Sig. 0.000 
 
 

 
Fig 1. Canonical discriminant function of the sample points of the three groups with their respective centroids showing the 
intersection in the cloud of fertility data of three rural properties. 
 
 
Table 2. Results of the eigenvalues for the extraction of component factors and total variance explained by the factors for the Soil 
Fertility Index (SFI) 

Component Eigenvalues (λ) and initial variances Variances after rotation 

Total % of variation % cumulative Total % of variation % cumulative 

1 5.735 35.845 35.845 5.021 31.383 31.383 

2 1.972 12.328 48.173 2.391 14.944 46.327 

3 1.645 10.279 58.452 1.657 10.355 56.682 

4 1.379 8.617 67.069 1.470 9.185 65.868 

5 1.236 7.726 74.796 1.428 8.928 74.796 

6 0.945 5.909 80.704    

7 0.798 4.987 85.691    

8 0.584 3.648 89.339    

9 0.512 3.203 92.542    

10 0.467 2.919 95.461    

11 0.367 2.297 97.757    

12 0.212 1.324 99.081    

13 0.095 0.596 99.677    

14 0.032 0.200 99.877    

15 0.017 0.103 99.980    

16 0.003 0.020 100,000    
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        Table 3. Factor loading matrix (α) after orthogonal rotation by the Varimax method for the Soil Fertility Index (SFI). 

Variables Factor Commonality 

F1 F2 F3 F4 F5 

Al -0.939 -.034 -.029 -.022 .057 .887 

m% -0.937 -.080 -.046 .049 .065 .893 

V% 0.934 .103 .102 .188 .032 .929 

Ca 0.839 .389 .123 .228 .011 .922 

Ph 0.799 .056 .008 .478 .098 .880 

Mg 0.744 .335 -.030 -.258 -.102 .744 

P 0.551 -.126 .291 .182 .421 .615 

CTC .197 0.947 .047 -.023 .005 .938 

MO .182 0.947 .023 .004 .036 .931 

Fe -.125 .092 -0.792 .104 .102 .673 

Mn .012 .243 0.772 .178 .140 .707 

B .006 -.239 .486 -0.633 -.245 .754 

S -.051 .268 -.027 -0.512 .083 .344 

Zn .222 .229 .273 0.510 -.243 .495 

K .122 .183 -.062 .090 ,818 .729 

Cu .189 .124 -.009 .278 -.630 .525 

Sum of squared eigenvalue 5.0213 2.3910 1.6568 1.4696 1.4284 11.967 

Trace percent (%) 31.383 14.943 10.355 9.1854 8.9280 74.796 

 
 
 
Table 4. Values of original and standardized factor scores and the Soil Fertility Index (SFI). (reduced). 

Obs Original fator score Standardized fator score SFI 

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 FP1 FP2 FP3 FP4 FP5 

127 1.3129 0.4533 1.8204 0.8981 2.1036 0.90756 0.60227 0.76744 0.69591 1.00000 0.81221 

124 1.3593 0.3895 1.0530 0.3415 1.3823 0.91819 0.58980 0.61193 0.61399 0.88428 0.76877 

129 1.7160 0.2260 0.1916 0.4103 1.0151 1.00000 0.55783 0.43737 0.62412 0.82537 0.76676 

102 0.8633 0.8767 2.1830 0.7310 0.2003 0.80446 0.68510 0.84091 0.67131 0.69464 0.75620 

125 0.9199 0.2525 1.5888 0.9012 1.7583 0.81745 0.56301 0.72050 0.69636 0.94459 0.75350 

137 1.3673 1.8764 -1.0395 0.5756 -0.2541 0.92004 0.88064 0.18790 0.64844 0.62175 0.74185 

114 0.3571 2.0606 1.7329 0.2837 0.6489 0.68840 0.91667 0.74970 0.60549 0.76661 0.74164 

123 0.4841 0.7050 2.9681 1.6307 -0.5371 0.71752 0.65151 1.00000 0.80372 0.57634 0.73717 

128 1.4009 -0.5751 0.6819 0.3519 1.6602 0.92775 0,40114 0.53672 0.61551 0.92887 0.73019 

105 0.6384 1.9651 2.0439 0,9737 -2.3652 0.75290 0.89799 0.81273 0.70703 0.28304 0.72845 

2 1.5092 0.8499 -0.0787 -1.1346 0.5643 0.95256 0.67986 0.38261 0.39674 0.75304 0.72710 

126 1.0955 0.0308 0,9916 0.3040 1.1464 0.85771 0,51964 0.59949 0.60847 0.84643 0,72246 

146 0.3608 2.3834 0.5647 0.0531 0.4322 0.68925 0.97980 0.51298 0.57154 0.73185 0.71353 

135 1.1115 1.4596 -1.3777 0.5500 0.9040 0.86138 0.79910 0.11938 0.64468 0.80754 0.71317 

111 0.8241 0.3692 1.2367 1.0079 -0.0486 0.79547 0.58583 0.64916 0.71207 0.65472 0.70629 

106 0.9644 -0.4815 1.6539 0.0616 1.0314 0.82766 0,41945 0.73369 0.57279 0.82799 0.70183 

118 1.0965 0.7143 -0.9181 0.3213 0.8702 0.85795 0.65332 0.21251 0.61101 0.80212 0.69072 

143 0.6837 2.4867 -0.9500 -0.6519 -0.0537 0.76328 1.00000 0.20605 0.46778 0.65390 0.68409 

109 0.9354 0.4337 -0.0662 1.1351 -0.1165 0.82099 0.59844 0.38514 0.73079 0.64383 0.68396 

. 

. 

. 

          . 
. 
. 

86 -1.8409 -1.1902 0.7599 0.8386 -0.1016 0.18441 0.28083 0.55253 0.68715 0.64620 0.37150 

61 -2.5662 0.6717 -0.1819 1.0906 -0.4506 0.01808 0.64500 0.36169 0.72424 0.59021 0.34592 

22 -1.9156 -0.7993 0.4263 -0.2482 -0.9189 0.16726 0.35729 0.48494 0.52719 0.51508 0.33493 

66 -2.1877 -0.5204 -1.7210 1.0336 0.0612 0.10487 0.41183 0.04980 0.71585 0.67233 0.30134 

53 -2.6451 -0.8944 -0.6385 1.3219 0.2424 0.00000 0.33869 0.26916 0.75828 0.70140 0.28178 

Máximo 1.7160 2.4867 2.9681 2.9642 2.1036      0.81221 

Mínimo -2.6451 -2.6259 -1.9668 -3.8302 -4.1294      0.28178 

FP: Standardized factor, SFI: Soil Fertility Index. 
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                                                        Table 5. Results of the M of Box test. 

M of box 1243.973 

F Aprox. 3.649 

df1 272 

df2 19883.629 

Sig. .000 

Tests the null hypothesis of equal population covariate matrices. 

 
Table 6. Wilks' Lambda Hypothesis Test of sample groups. 

Function test Lambda de Wilks Chi-square Df Sig. 

1 to 2 .078 351.558 32 .000 

2 .341 147.819 15 .000 

 
 
                          Table 7. Classification by Ward's method grouping soil samples into sample groups for each property. 

Ward Method Association to predicted group Total 

1 2 3 

Original Countinng 1 37 5 0 42 

2 2 73 4 79 

3 1 3 23 27 

% 1 88.1 11.9 .0 100.0 

2 2.5 92.4 5.1 100.0 

3 3.7 11.1 85.2 100.0 

Note: 89.9% of the original cases were grouped correctly. 

 
no reports of interdependence of these nutrients in 
their availability to plants. This factor was named “metabolic 
and sanitary regulators”, since such elements improve the 
resistance and metabolism of plants. 
The fifth and last factor is represented by the variable K and 
Cu. The name of this factor is “potassium nutrition”, since 
this element has a very high charge for the factor. 
In Table 4, the five original factor scores can be positive or 
negative. A positive sign indicates that the soil in the 
sampled region is in a satisfactory nutritional balance for the 
plants and that a negative sign means a soil nutritional 
imbalance, even though, the effects of the positive forces 
outweigh the effects of the negative forces in the first 16 
samples observed (first highlighted area with SFI from 
0.70183 to 0.81221). In the last 4 positions of Table 4 
(second highlight area with SFI from 0.28178 to 0.34592), 
the negative sign means that the effects of the positive 
forces are outweighed by the effects of the negative forces. 
Sorting the SFI values, sixteen sample points were obtained 
that presented SFI > 0.70 (the SFI mean was 0.56). One 
hundred and twenty-eight samples showed an intermediate 
degree of fertility, with SFI between 0.35 and 0.70. The other 
four sampling points showed a low degree of fertility. 
It is observed that most of the sampled points (86%) were 
classified in the category of “satisfactory” fertility levels, 
which do not present much nutritional deficiency, 
guaranteeing reasonable productivity of the cultivated 
species. 
The SFI aims to assess soil fertility in the three properties 
under study and was used to test the hypothesis. 
 
Canonical discriminant analysis 
 
This statistical technique classifies individuals or objects into 
mutually exclusive groups based on a set of independent 
variables. Separation is the first step of this analysis, and the 
exploratory part of the analysis consists of looking for 
characteristics that allocate objects in different previously 

defined groups. In the analysis, Box's M test was significant 
at 1%, rejecting the null hypothesis, which characterizes that 
the covariance matrices between sample groups are not 
equal (Table 5). 
The null hypothesis test is rejected (significant at 1%) since 
the two functions in the three groups are not equal (Table 
6), agreeing with the Factor Analysis result (Table 4). 
Figure 1 shows that in the sample data set there is an 
intersection in the data cloud, where 5 samples originally 
belong to rural property 1 are in group 2. Of the 79 sampling 
points of rural property 2, only six samples were 
decharacterized from group 2 and of the 27 sampling points 
of rural property 3, four do not belong to group 3. 
Table 7 shows that 89.9% of the sampled cases were 
correctly classified, with group 1 reaching 88.1%, group 2 
with 92.4% and group 3 with 85.2%. The analyzed functions 
serve to classify the soil samples that might not be contained 
in the sample group of each property. 
In general, the multivariate analysis of this mass of data 
suggests that only 20 ha is considered to have a low level of 
fertility, while 640 ha have satisfactory levels of fertility and 
80 ha indicated to have a high level of soil fertility. 
This result serves as a tool for technicians and farmers to 
adopt decision-making measures, acting on the set of 
variables that define soil fertility levels. 
 
Materials and methods 
 
Study area: Location and characteristics 
 
The study was carried out on three farms in the municipality 
of Santarém (2°26'22'' S and 54°41'55'' W), state of Pará, in 
the eastern Amazon. The region's climate type is Am, which 
corresponds to a humid tropical climate, with a short dry 
season according to Köppen's classification (Alvares et al., 
2013; Beck et al., 2018). The region has an average annual 
rainfall of 2,100 mm, with a season of lower rainfall ranging 
from one to five months. The average annual temperature is 
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25°C. The relief of the area varies from flat to slightly 
undulating. The predominant soil is the Dystrophic Yellow 
Latosol and the vegetation is of the Lowland Dense 
Ombrophilous Forest type (Veloso et al., 1991).  
We used a database of soil analyses results from samples 
collected in 2009 and 2010 in three agricultural properties 
with soybean and rice conventional cultivation. Soil sampling 
was carried out in an area of approximately 740 ha, with a 
sampling grid of 5 ha, making a total of 148 sampling points 
(composite samples). Each composite sample was formed 
from 10 single samples collected in a 1 m diameter circle 
within each sampling grid, thus, resulting in a total of 1,480 
single collected samples. Soil collections were carried out 
using an automated stainless steel screw auger with an 
electric motor, installed in a quadricycle equipped with GPS, 
at a depth of 0 – 20 cm depth. 
The soil samples were sent to the soil laboratory to 
determine: pH in water (1:2.5), potential acidity, 
exchangeable calcium, magnesium and aluminum, 
potassium and phosphorus, according to EMBRAPA (1997).  
Based on the results we computed, base saturation and 
aluminum saturation values.  
 
Factor analysis 
 
We used factor analyses to test the hypothesis that the 
management practices induce the spatial variability of the 
attributes and are decisive for the increase in soil fertility 
when properly conducted, and consequently, for the 
increase in productivity. Therefore, we analyzed the 
structures of correlations between a large numbers of 
independent variables, grouping them into a set of factors, 
facilitating the understanding of the structure of the data 
cloud. The use of this technique can initially identify the 
isolated dimensions of the data structure and then 
determine the degree to which each variable is explained by 
each factor, enabling the reduction of the data mass (Gama 
et al., 2007). 
A factor analysis model can be presented in matrix form, as 
in Dillon and Goldstein (1984): 
                                                        (1) 
Where  X = p-dimensional transposed vector of observable 
variables, denoted by X = (x1, x2, ..., xp)’. 
F=q-dimensional transposed vector of unobservable 
variables or latent variables called common factors, denoted 
by F = (f1, f2, ..., fq)’, where q < p; e= p-dimensional 
transposed vector of random variables or single factors, 
 e = (e1, e2, .., ep)’; and  
α= matrix (p, q) of unknown constants, called factor 
loadings. 
In the factor analysis model, it is assumed that the specific 
factors are orthogonal to each other and with all common 
factors. Normally, E(ε) = E(F) = 0 and Cov (ε, F) = 0. 
To confirm the initial structure, the method of orthogonal 
rotation of the factors called varimax was used, which is a 
process in which the reference axes of the factors are 
rotated around the origin until some other position is 
reached. This method aims to redistribute the variance of 
the first factors to the others, thus reaching a simpler and 
theoretically more significant factorial pattern (Santana, 
2005; Hair et al., 2009). 
According to Santana (2007) the Soil Fertility Index (SFI) was 
defined as a linear combination of these factor scores and 
the proportion of variance, explained by factor in relation to 

the common variance. The mathematical expression is given 
by: 

    ∑  [
  

∑   
]

 
                                                      (2) 

Where λ = is the variance explained by the factor and Σλ is 
the sum total of the variance explained by the set of 
common factors. 
The factorial score was standardized (FP) to obtain positive 
values from the original scores and to allow for the 
hierarchization of the samples, since the SFI values are 
situated between zero and one. The proposed mathematical 
formula was as follows: 

    (
       

         
)                                             (3) 

Where Fmin and Fmax  = are the maximum and minimum 
values observed for the factor scores associated with the 
observations of soil samples according to Santana (2007). 
To facilitate the interpretation of the results, the following 
ranges of SFI values were established, grouping the samples 
according to their degree of importance: SFI values equal to 
or greater than 0.70 are considered high; values between 
0.35 and 0.69 are intermediate and values less than 0.35 are 
low. 
The Bartlett's sphericity and the Kaiser-Meyer-Olkin (KMO) 
tests were performed to assess the suitability of the method 
to the data sample. 
In one hand, the Bartlett's sphericity test assesses the 
overall significance of the correlation matrix, which tests the 
null hypothesis that the correlation matrix is an identity 
matrix. 
On the other hand, the KMO test is based on the principle 
that the inverse of the correlation matrix approximates the 
diagonal matrix, so it compares the correlations between the 
observable variables. The mathematical formulas of these 
tests are as follows (Dillon and Goldstein, 1984). 
 

    
∑ ∑    

 
  

∑ ∑    
  ∑ ∑    

 
    

                                      (4) 

Where rij is the sample correlation coefficient between 
variables xi and xj and aij is the partial correlation coefficient 
between the same variables, which simultaneously is an 
estimate of the correlations between the factors, eliminating 
the effect of the other variables. The aij should assume 
values close to zero, since the factors are assumed to be 
orthogonal to each other. Values of this test below 0.50 are 
unacceptable (Hair et al., 2009). The Bartlett’s test of 
sphericity tests the null hypothesis that the variables are 
independent, against the alternative hypothesis that the 
variables are correlated with each other (Santana, 2007). 
 
Canonical discriminant analysis 
 
We used the canonical discriminant analysis in the IBM SPSS 
Statistics software, version 20 to confirm the data grouping, 
a technique consists of analyzing a model in which the 
dependent variable is categorical, which in this case consists 
of three classification groups (properties), and the 
independent variables are metric or of an interval nature 
(chemical attributes of the soil). When three classifications 
are involved, the technique is referred to the three groups of 
discriminant analysis, being appropriate to test the 
hypotheses that the means of the groups of independent 
variables found for the three groups are equal. These means 
of the values of the groups' discriminant scores refer to their 
centroids, with as many centroids as there are groups.



 

400 

 

A comparison between these shows how much the groups 
are separated during the discriminant function test 
(Gonçalves et al., 2008). 
The general equation of the discriminant model is: 
                                                
(5) 
Where D = discriminant score; 
b = is the discriminant coefficient or weight; 
D = is a categorical variable; 
X = independent variable; 
X1, X2, X3, X4,..., Xk are interval and/or ratio variables. 
The quantitative variables used for the study were: 
Hydrogen potential (pH), base saturation (V%), Phosphorus 
(P), Potassium (K), Calcium (Ca), Magnesium (Mg), 
Exchangeable aluminum (Al), organic matter (OM), cation 
exchange capacity (CTC), aluminum saturation (m%), Sulfur 
(S), Copper (Cu), Iron (Fe), Manganese (Mn), Zinc (Zn) and 
Boron (B). The dependent variable, were the rural 
properties. 
 
Conclusions 
 
The use of discriminant analysis, especially factor analysis, 
with the creation of the SFI, proved efficient for the 
proposed study, since the analysis of variance could not 
show efficiency due to the interrelationships between the 
variables causing bias in the results. 
Approximately 97% of the sampled area presented 
satisfactory to high soil fertility, which induces the use of 
reduced amounts of fertilizers in most of the cultivated area. 
Although this type of sampling could be analyzed using 
geostatistics, which would give more robustness to the 
results, the absence of geographic coordinates in the 
database prevents this analysis from being done efficiently. 
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