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Abstract 
 
Rice is one of the world’s most important crops. The search for genotypes that are more productive and have wide adaptation to 
different environments is paramount. One of the major breeder’s obstacles faced is identification of superior strains is the presence 
of Genotype × Environment Interaction (GEI), which motivated the development of countless statistical procedures aiming to offer 
more efficient studies. In this work we analysed adaptability and stability of 13 upland rice lineages as part of a genetic 
improvement program in nine different environments, resulting from local combination and years of agriculture. The experiment 
was conducted in a completely randomized block design, with three replicates. The main variable is the grain storage in kg/ha. The 
model applied is the Bayesian Main Additive Effects and Multiplicative Interaction (Bayesian-AMMI). Our implementation implies 
an extra assumption of random effects from genotypes coming from a single population as opposed to previous works in the 
literature. Credibility regions with maximum posteriori density allowed identification of cultivars with higher average yield. Stable 
genotypes showed an initial evidence of adaptation to an environment in this rice breeding program. Bayesian-AMMI is flexible, 
and starts to be more widely used, but our suggestion is promising in making it a more powerful tool. 
 
Keywords: Genetic improvement; Genotype × Environment Interaction; inference; multi-evironment; recommendations. 
Abbreviations: AMMI_Additive Main Effects and Multiplicative Interaction, BOA_Bayesian Output Analysis, E_Environment, 
EMBRAPA_Empresa Brasileira de Pesquisa Agropecuária, EPAMIG_Empresa de Pesquisa Agropecuária de Minas Gerais, 
G_Genotype, GEI_Genotypes × Environments Interaction, HPD_Highest Posterior Density, MCMC_Markov chain Monte Carlo, 
MET_Multi-environment trial, MG_Minas Gerais, PCA_Principal Component Analysis, SVD_Singular Value Decomposition,VMF_von 
Mises-Fisher, UFLA_Universidade Federal de Lavras. 
 
Introduction 
 
Rice is one of the world's major crops, being the primary 
food source to more than half of the world’s population. 
Rice supplies 27% of energetic supplies and 20% of protein 
in human diets (Van Nguyen and Ferrero, 2006; Ramos et al., 
2011).  
Rice can be grown in both swamped soils such as uplands. In 
both cases, the great challenge to plant breeders is to 
identify genotypes with ideal performance and broad 
adaptability to different environments. Such identification is 
difficult due to the presence of a phenomenon known as 
genotypes x environments interaction (GEI). This effect is 
very important for quantitative characteristics, among them 
many economic traits (Yang and Kang, 2003). 
Thus, a successful breeding program needs to test crop 
adaptability to cultivation regions, especially elite lines 
(Crossa, 1990; Colombari Filho et al., 2013). Several studies 
in Asian countries showed that the GEI is relatively high in 

the context of rice production (Cooper et al., 1999a, b; 
Inthapanya et al., 2000). 
Adaptability can be viewed as the capacity of a genotype to 
favorably respond to environmental stimuli, while the 
stability is the capacity of genotype to have an expected 
performance in different environmental conditions (Resende 
and Duarte, 2007; Borém et al., 2017). 
Several methodologies have been used to quantify 
adaptability and stability for decades, involving univariate, 
multivariate, parametric, and non-parametric analysis (Finlay 
and Wilkinson, 1963; Eberhart and Russell, 1966; Perkins 
and Jinks, 1968; Freeman and Perkins, 1971; Shukla, 1972; 
Lin and Binns, 1988; Annicchiarico, 1992; Colombari Filho et 
al., 2013). Among diverse statistical procedures developed 
for this purpose, the class of linear-bilinear models 
(Cornelius and Seyedsadr, 1997) has distinguished itself for 
the wide applicability in analysis of Multi-Environment Trials 
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(MET) data, especially the model of Additive Main Effects 
and Multiplicative interaction (AMMI). 
The AMMI model with fixed effects is fitted in two stages, 
analyzing the main effects, and describing the GEI through 
principal component analysis (PCA). Resulting patterns from 
PCA can be graphically represented in a biplot (Kempton, 
1984; Crossa, 1990; Gauch Jr. and Zobel, 1997). The 
efficiency of AMMI procedure was clearly demonstrated by 
several authors using the MET data in soybeans, maize, and 
wheat (Crossa et al., 1991; Yan and Hunt, 2001; Tarakanovas 
and Ruzgas, 2006; Tariku et al., 2013; Gauch Jr., 2013). 
AMMI has also been successfully used to evaluate rice 
genotypes in different environments (Tariku et al., 2013; 
Bose et al., 2014; Akter et al., 2015). 
Despite those descriptive advantages, the AMMI 
implementation uses fixed effects, and therefore is bound to 
limitations such as the difficulty in dealing with 
heterogeneous and/or unbalanced data sets. Resulting 
biplot in classical AMMI analysis brings no uncertainty 
measures on plotted scores. On the other hand, pure 
frequentist's methods to incorporate inference to biplot 
have been criticized upon using restrictive assumptions in 
the randomization of statistics and for problematic intensive 
computation procedures in the rows and columns of the GEI 
matrix (Yang et al., 2009; Crossa et al., 2011).  
These limitations can be avoided by using Bayesian 
methods. Crossa et al. (2011) have drawn credibility regions 
to AMMI-2 biplots.  Other recent studies have demonstrated 
the Bayesian-AMMI flexibility for the GEI study (Perez-
Elizalde et al. 2012; Oliveira et al., 2015; Silva et al., 2015; 
and others). Another advantage of this method is to avoid 
choosing parameters to be treated as fixed or random, 
which is a dilemma in mixed models (Smith et al., 2001; 
Nuvunga et al., 2015). 
In this work we carried out a study on adaptability and 
stability of upland rice genotypes using the Bayesian-AMMI 
model. The main objectives were to identify genotypes with 
wide recommendations and/or specific adaptations using 
the more recent advances in Bayesian inference for AMMI 
models. This evaluation is extremely important, but usually 
messy due to multiple overlapping of confidence regions. 
Our implementation follows (Oliveira et al. 2015) and 
implies an extra assumption of random effects from 
genotypes coming from a single population as opposed to 
Crossa et al. (2011). We expect to obtain more realistic 
estimates for the genotypic values using a hierarchical prior 
distribution specification for the main effects of genotypes.
  
Results 
 
A joint analysis of variance was presented for experiments 
from all considered environments (Table 1). F tests for 
environments, blocks and interaction sources of variation 
were all significant. It is commonplace that a significant 
interaction does not allow consideration of additive model 
for all main effects (Duarte and Vencovsky, 1999). However, 
evaluations should be conditional on levels of main effects. 
In Table 2, estimates for the fixed effects AMMI model 
parameters are depicted. It can be observed that the first 
two main axes explain 81.51% of the GEI variability. The  
selected model was AMMI5 by the Cornelius Fr (Cornelius et 
al., 1992). 
To approximate joint posterior distribution for Bayesian 
Inference, MCMC chains with 88 thousand iterations were 
simulated for each model parameters. The first 8000 

observations (burn-in) were discarded and every fourth 
observation was sampled (thinning), resulting in a sample 
size of 5,000. Good convergence properties were observed 
for all parameters of diagnostic criteria with a dependence 
factor I<5 (Raftery and Lewis, 1992). All parameters also pass 
stationary testing (Heidelberg and Welsh, 1983), signaling 
that samples could be used to carry on the inference. 
On Fig. 1, summaries of the marginal distributions a 
posteriori are presented (averages and Higher Posterior 
Density intervals - 95%  HPD). Overlaps in this graph suggest 
similar effects. Measures are ranked in descending 
magnitude (from left to right). Note that G4, G7 and G9 
could be selected based on average productivity once their 
ranges do not include zero.  From a breeder’s viewpoint, it is 
likely that selection will increase average genetic values.  In 
Table 3 point and interval estimates (at 95% credibility) for 
singular values and components of variance are presented. 
Frequentist estimates were obtained by singular value 
decomposition (SVD) of the interaction matrix and included 
for comparison purposes. It is observed that the two first 
main components explain about 97% of the interaction 
variability, higher than the percentage explained by the 
conventional analysis (81.51%). We used no procedure to 
adjust the number of components in the model but AMMI-2 
biplot was presented based on two first components. 
For the selection and recommendation of highest 
production genotypes, we choose combining ranking 
averages and HPD regions for GEI analysis. In the AMMI 
model, this is done by interpreting the biplot representation. 
In Bayesian-AMMI, adaptability and stability analysis are 
carried out to observe the positions and overlaps of 
credibility regions in the biplot. The AMMI-2 biplot along 
with the 95% credibility bivariate regions are shown in Fig. 2. 
Overlaps between regions indicate similar effects in relation 
to GEI. Genotypes and environments whose credibility 
regions include the origin were not represented in the biplot 
to simplify the interpretations. 
From the visual analysis of the biplot, it is possible to suggest 
the formation of homogeneous subgroups {G7, G8, G10, 
G12, G13}, as well as the subgroups {G3, G6} and {G1, G5}, 
as well as {G2}, despite existence of some overlaps between 
regions. On the other hand, G4 and G9 form a fifth group 
whose credible regions for genotypic scores include the 
origin (point [0,0]); therefore, being considered stable (with 
no relevant contribution to GEI). 
In the same way, it is possible to suggest homogeneous 
subgroups of environments, namely: {E2, E7, E9}, {E1}, {E5}, 
{E4} and {E3, E6, E8}, the latter being formed by stable 
environments (regions covering the origin).  
In this interpretation, environments were considered 
independent. Knowledge that they are a composition of 
locations evaluated in different agricultural years (Table 2) 
must be considered in further interpretation as follows: First 
location (UFLA - Lavras) is represented in environments {E1, 
E3, E9}, two of those (E1 and E9) were contrasting in the 
biplot. Patos de Minas {E2, E4, E7} has greater similarity with 
a slightly different agricultural year 2015/16 (E7), whose 
credibility region is closer to the origin. Lambari {E5, E8} was 
the place that most contributed to the interaction in the 
agricultural year 2014/15 (E5), showing stability in the next 
harvest (2015/16) (E8). Muquem - Lavras (E6) tests were 
included in the agricultural year 2015/16 and was a stable 
environment in the biplot. 
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Suggesting genotypes adaptability or genotypes to target 
environments is another interesting decorrence of biplots. 
Interpretations based on inner products properties are done 
on resulting positions and overlaps of the respective 
credibility regions for the scores which describe the GEI. 
However, location consistency along years is paramount for 
cultivar recommendation and mega-environments 
identification. 
 
Discussion 
 
GEI's remarkable effect on genotypic performance verified 
by analysis of variance (Table 1) is reflected in biplot 
analysis. Some genotypes and environments do not 
contribute to the interaction, which is very common in MET 
tests that generally incorporate a mixture of crossing and 
non-crossing GEI patterns. In the present study, GEI 
apparently causes more dissimilarity in the genetic systems 
which control the physiological process, conferring yield 
stability in different environments. Similar results are found 
in Saied (2010) and Tariku et al. (2013).  
G4 (CMG 2097) and G9 (CMG 1896) genotypes were 
superior, presenting significantly higher productivity than 
the general average. Based on biplot analysis, those 
genotypes are more stable and suitable for broad 
recommendation, having no significant contribution to GEI. 
G7 genotype (CMG 2089) has shown good adaptability to 
Lambari location. However, it is unstable and more testing 
would be important to confirm a consistent response. In 
fact, G7 would be considered adapted to Lavras in the 
agricultural year 2013/14, but had unfavorable responses in 
2015/16. This important genotype × location × year 
interaction should be investigated. 
Muquém - Lavras (E6) was evaluated in only one season and 
has shown relatively low discriminative capacity. Lambari 
and UFLA were also stable in 2015/16 (E8) - Lavras and 
2014/15 (E3), respectively. This pattern has not been 
repeated in other years. Patos de Minas was the more 
consistent location resulting in more reliable 
recommendations. However, the subgroup adapted to this 
location is formed by the genotypes with the worst 
performance in terms of average yield ({G1, G3, G5, G6} 
Figure 1). For these locations, productive genotypes such as 
G4 and G9 are recommend. Note that complex overlaps in 
which credibility regions spam more than a single quadrant 
can cause interpretation problems. Identification of 
homogeneous subgroups regarding GEI can be sometimes 
deceiving. Here, we use the criterion proposed by Júnior et 
al. (2018) interpreting positions and overlaps based on the 
first two PC lines and respective quadrants. Denis and Gower 
(1994) suggested separable subgroups even under intense 
overlaps. Perez-Elizalde et al. (2012), circumvented this 
problem by using a hierarchical algorithm based on 
Euclidean distances from posterior averages. However, this 
is a point estimate solution. 
Data used in this study has been previously described and 
analyzed by Inácio et al.  (2018) who used joint analysis of 
variance combined with other methods of GEI (Wricke, 
1965; Lin and Binns, 1988; Annichiaricco, 1992).  In here, we 
advocate the use of the AMMI model, which offers a 
multivariate analysis and allows the disposal of additional 
residues present in the sum of squares of GEI (Duarte and 
Vencovsky, 1999). In addition, Bayesian-AMMI 
approximation by MCMC samples of the joint posterior 

distribution allows for working out credibility regions to the 
biplot. This implies higher levels of reliability in 
discriminating and grouping genotypes and environments, 
as well as contributes to more accurate predictions (Smith et 
al., 2005; Oliveira et al., 2015).  
In Bayesian predictions and SVD estimates for singular 
values (Table 3) a clearcut shrinking effect for the posterior 
averages is noted from λ3, despite the non-informative prior 
distributions choosed to variance components. This was also 
reported by several authors (Crossa et al., 2011; Oliveira et 
al., 2015). By using the Bayesian method, the GEI effect is 
pronounced for the first components, while others are 
shrunk to near zero. In this sense, more severe shrinking 
would be expected if informative priors were elicited as 
demonstrated by Silva et al. (2015). 
Bayesian AMMI is a flexible inference tool. In this approach, 
random genotypes are considered (Oliveira et al., 2015). 
Dataset is balanced and the ranking of better genotypes will 
not change compared to the more traditional approaches. 
However, shrinking such as those obtained by Bayesian 
predictors allows for more accurate predictions of genotypic 
values (Piepho, 1995; Smith et al., 2001; Resende and 
Duarte, 2007). 
Bayesian AMMI models are not yet widely used, but 
certainly offer broad perspectives for MET data analysis. 
 
Materials and Methods 
 
Plant materials 
 
Thirteen upland rice lines were used, originating from a 
partnership between UFLA (Universidade Federal de Lavras), 
EPAMIG (Empresa de Pesquisa Agropecuária de Minas 
Gerais) and EMBRAPA (Empresa Brasileira de Pesquisa 
Agropecuária) Rice and Beans, are they : BRSMG Relâmpago 
(G1); CMG 1511 (G2), BRSMG Caçula (G3); CMG 2097 (G4); 
BRSMG Caravera (G5); Esmeralda (G6),  CMG 2089 (G7); 
CMG 1977 (G8); CMG 1896 (G9); CMG 2085 (G10); CMG 
1987 (G11), CMG 2170 (G12), CMG 1509 (G13). 
 
Field trials 
 
The experiments were conducted in nine environments that 
are combinations of locations and agricultural years (Table 
4). The locations are in the cities of Lavras, Patos de Minas 
and Lambari, all belonging to the state of Minas Gerais (MG) 
-Brasil. In the 2013/14 harvest, experiments were conducted 
at Universidade Federal de Lavras (UFLA) located in Lavras-
MG and Patos de Minas-MG. In the 2014/15 harvest, the 
experiments were conducted at UFLA / Lavras-MG, Muquém 
farm located in Lavras-MG, in Lambari-MG and in Patos de 
Minas-MG and in the 2015/16 harvest were conducted at 
UFLA / Lavras-MG, Lambari-MG and Patos de Minas-MG. 
The locations have a tropical semi-humid and tropical 
altitude climate, with quite different edaphic and climatic 
conditions, suitable for this type of study (Inacio et al., 
2018). 
More details on the locations of the experiments are 
available in Fig. 3 built using ArcGIS software version 10.8.1.                            
 
Trials 
 
Experiments were conducted in a randomized complete 
block design with three blocks. Plots consisted of five rows  
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Table 1. Joint analysis of experiments for the rice production variable (kg. ha-1). 13 rice genotypes evaluated in 9 environments 
combining four different locations and three agricultural seasons (2014/15/16/17) , in the state of Minas Gerais-Brazil 

Source  DF SS MS F-value   Pr(>F) 

Environments 8 573.093 71.637 29.131 < 0.001*** 
Genotypes 12 47.529 3.961 1.611    0.101 
Blocks (Env) 18 36.636 2.035 4.335 < 0.001*** 
GEI 96 236.078 2.459 5.237 < 0.001*** 
Residues  216 101.41    
Total 350 994.747    
DF: degree of freedom, SS: sum of squares, MS: means square, Level of significance: 0.001 = ***, 0.01 = ***, 0.05 = *. 

 
Fig 1. Highest Posterior Density (HPD) regions with 95% credibility for genotype main effects. The posteriori means are ranked in -
order of magnitude from left to right. 
 
Table 2. Summary of the AMMI model fitting to yield of 13 rice genotypes evaluated in 9 environments. Cornelius Fr test for the 
number of axes to be kept in the GEI model. 

AMMI P % CP % DF SS MS Fr-value Pr (>F) 

AMMI1 64.98 64.98 19 153.415 8.074 17.198 <0.001 *** 
AMMI2 16.53 81.51 17 39.023 2.295 4.889 <0.001 *** 
AMMI3 6.07 87.58 15 14.323 0.955 2.034    0.014 * 
AMMI4 4.73 92.31 13 11.156 0.858 1.828   0.040 * 
AMMI5 3.84 96.14 11 9.058 0.823 1.754   0.064 
AMMI6 2.01 98.15 9 4.744 0.527 1.123   0.348 
AMMI7 1.09 99.25 7 2.581 0.369 0.785   0.6 
AMMI8 0.75 100 5 1.778 0.356 0.758   0.581 

P: percentage, CP: cumulative percentage, DF: degree of freedom, SS: sum of squares,  
MS: means square, Level of significance: 0.001 = ***, 0.01 = ***, 0.05 = *. 

 
Fig 2.  Biplot of Bayesian-AMMI model (AMMI-2). Genotypes (G) and Environment (E) scores, and respective bivariate credibility 
regions (95%) for the multi-environmental trial (MET) data of the rice. Only genotypes whose credibility regions do not include the 
origin (0.0) are depicted, to simplify the interpretations. 
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Table 3. SVD: likelihood estimates of singular values from the decomposition of GEI matrix. Bayesian -AMMI singular values and 
variance components estimates posterior means, standard deviations, lower and upper limits HPD (95%) regions. 

Parameters SVD Mean SD LL UL 

λ1 7.151 6.931 0.421 6.093 7739 
λ2 3.607 3.164 0.449 2.252 4.009 
λ3 2.185 1.189 0.593 0.024 2.156 
λ4 1.928 0.576 0.429 <0.001 1.362 
λ5 1.738 0.276 0.278 <0.001 0.849 
λ6 1.258 0.131 0.166 <0.001 0.485 
λ7 0.928 0.064 0.098 <0.001 0.262 
λ8 0.770 0.034 0.064 <0.001 0.156 

𝜎𝑔
2 - 0.153 0.086 0.039 0.313 

𝜎𝑒
2 - 0.509 0.048 0.418 0.602 

SVD: Singular Value Decomposition, SD: Standard deviation, LL: Lower limit, UL: Upper limit,λk: k-th 
singular value, 𝜎𝑔

2: genotypic variance, 𝜎𝑒
2:residual variance  

      
Fig 3. Places where the experiments with upland rice lines were installed 

 
 
Table 4. Geographic coordinates of the locations (cities in the states of Minas Gerais-Brazil) where the tests were installed in 
different agricultural years. Environments (E) are constituted by a combination of places and agricultural years. 

Places Altitude South Latitude West Longitude 

Lavras 919 21’14’’45 44’59’’59 
Patos de Minas 832 18’34 46’31 
Muquem 919 21’14’’45 44’59’’59 
Lambari 845 21’58 45’22 

Environments (E) composed of agricultural places and years 

E1 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 

UFLA/Lavras 13/14 
Patos de Minas13/14 
UFLA/Lavras 14/15 
Patos de Minas 14/15 
Lambari 14/15 
Muquém/Lavras 14/15 
Patos de Minas 15/16 
Lambari 15/16 
UFLA/Lavras 15/16 
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of 4 m with sowing density of 80 seeds/meter.  The crops 
treatment used in the tests were the same as those 
recommended for culture. Evaluated character was grain 
yield (kg.ha-1). 
 
Statistical methods 
 
Bayesian AMMI Model 
 
The Bayesian AMMI Model is expressed by: 

𝒚 = 𝑿1𝜷 + 𝒁𝒈 + ∑ 𝜆𝑘𝑑𝑖𝑎𝑔(𝒁𝜶𝑘)𝑿2𝜸𝑘
𝑡
𝑘=1 + 𝜺                                 

(1) 
where the vector ynx1 is a vector of  n = lr phenotype 
realizations, being r the number of genotypes l = bc the 
number of repetitions, where b=3 is the number of blocks 
and c=9 is the number of environments. Vector 𝜷 has main 
effects of blocks and environments, and vector g has 
genotypes main effects. 
The terms λk,  αk,  γk are, respectively, the k-th singular value 
and the k-th genotypic and environmental singular vectors 
related to the k-th main component, (k=1, …, t), subject to 
decomposition restrictions by singular value being, t = min 
(r, c), the post of the matrix interaction between genotypes 
and environments 𝑮𝑬𝑟×𝑐. The design matrices 𝑿1, 𝑿2 and 𝒁 
describe, respectively, the linear model for Environments, 
Blocks and Genotypes main effects. The vector 𝜀𝑛×1 contain 
random error effects with 𝜺 ~𝑁(𝟎, 𝑰𝑛𝜎𝑒

2). 
The prior distribution specification for model parameters are 
the same used by Oliveira et al. (2015): 

𝜷|𝝁𝜷, 𝜎𝜷
2~𝑁(𝝁𝜷, 𝑰𝜷𝜎𝜷

2),  𝜎𝜷
2 → ∞ which is equivalent 

to 𝛽~constant; 𝒈|𝝁𝒈, 𝜎𝒈
2~𝑁 (𝟎, 𝑰𝒈, 𝜎𝒈

2), 𝜎𝒈
2~

1

,𝜎𝒈
2 ; 

𝜆𝑘|𝜇𝜆𝑘
, 𝜎𝜆𝑘

2 ~𝑁+ (𝜇𝜆𝑘
, 𝜎𝜆𝑘

2 ),  𝜎𝜆𝑘

2 → ∞ in a way that  

𝜆𝑘|𝜇𝜆𝑘
, 𝜎𝜆𝑘

2 ~ constant; 

𝜶𝑘 ∼ spherical uniform on the correct subspace; 
𝜸𝑘 ∼ spherical uniform on the correct subspace; 

𝜎𝑒
2 ∼  

1

𝜎𝑒
2 . 

The likelihood was assumed as: 

𝐿(�̅�|𝒚) =
1

(2𝜋)
𝑛
2|𝑰𝜎𝑒

2|
1
2

𝑒𝑥𝑝 {−
1

2𝜎𝑒
2

(𝒚 − 𝜽)⊤(𝑦 − 𝜽)}  

Where; �̅� = (𝜷, 𝒈, 𝝀𝑘 , 𝜶𝑘 , 𝜸𝑘 , 𝜎𝑒
2)  and  𝜽 = 𝑿1𝜷 + 𝒁𝒈 +

∑ 𝜆𝑘𝑑𝑖𝑎𝑔(𝒁𝜶𝑘)𝑿2𝜸𝑘
𝑡
𝑘=1 .  

 The joint posterior distribution for all parameters is given by: 
 𝑝(𝜱|𝒚)

∝ 𝑝(𝒚|𝜽, 𝜎𝑒
2)𝑝(𝒈|𝝁𝒈, 𝜎𝒈

2)𝑝(𝜷|𝝁𝜷, 𝜎𝜷
2)𝑝(𝜎𝒈

2|𝑣𝒈, 𝑆𝒈
2) × 

× 𝑝(𝜎𝑒
2|𝑣𝑒 , 𝑆𝑒

2) ∏ 𝑝(𝜆𝑘|𝜇𝜆𝑘
, 𝜎𝜆𝑘

2 )𝑝(𝜶𝑘)𝑝(𝜸𝑘)

𝑡

𝑘=1

 

where;  𝜱 = (𝜶, 𝜸, 𝜆, g, 𝜷, 𝜎𝒈
2, 𝜎𝑒

2). 

  Considering the assumptions made regarding the 
hyperparameters of the prior densities one can rewrite the 
joint distribution a posteriori as follows: 

 𝑝(𝜱|𝒚) ∝ (𝜎𝑒
2)−

𝑛

2𝑒𝑥𝑝 {−
1

2𝜎𝑒
2 (𝒚 − 𝜽)⊤(𝒚 −

𝜽)} (𝜎𝑔
2)−

𝑛𝒈

2 𝑒𝑥𝑝 {−
1

2𝜎𝑔
2 𝒈⊤𝒈}

1

𝜎𝒈
2

1

𝜎𝑒
2 

 
 
Full conditional distribution are all obtained in closed forms 
as presented below:   

𝜷| ⋯ ~𝑁[(𝑿1
⊤𝑿1)−1𝑿1

⊤(𝒚 − 𝒁𝒈 − 𝜣), (𝑿1
⊤𝑿1)−1𝜎𝑒

2];  

where 𝜣 = ∑ 𝜆𝑘𝑑𝑖𝑎𝑔(𝒁𝜶𝑘)𝑿2𝜸𝑘
𝑡
𝑘=1 ; 

𝒈| ⋯ ~𝑁 [(𝒁⊤𝒁 + 𝑰
𝜎𝑒

2

𝜎𝒈
2)

−1

𝒁⊤(𝒚 − 𝑿1𝜷 − 𝜣), (𝒁⊤𝒁 +

𝑰
𝜎𝑒

2

𝜎𝒈
2)

−1

𝜎𝑒
2]; 

𝜎𝑒
2| … ~𝑆𝑐𝑎𝑙𝑒 −  𝜒−2[𝑛, (𝒚 − 𝜽)⊤(𝒚 − 𝜽)]; 

𝜎𝑔
2| … ~𝑆𝑐𝑎𝑙𝑒 − 𝜒−2[𝑛𝒈, 𝒈⊤𝒈]; 

𝜆𝑘| ⋯ ~𝑁+[(𝝓𝑘
⊤𝝓𝑘)−1𝝓𝑘

⊤𝜟𝑘′, (𝝓𝑘
⊤𝝓𝑘)−1𝜎𝑒

2]; 

Considering that: 𝜟𝑘′ = 𝒚 − 𝑿1𝜷 − 𝒁𝒈 −
∑ 𝜆𝑘′𝑑𝑖𝑎𝑔(𝒁𝜶𝑘′)𝑿2𝜸𝑘′

𝑡
𝑘′≠𝑘 ,   

𝝓𝑘 = 𝑑𝑖𝑎𝑔(𝒁𝜶𝑘)𝑿2𝜸𝑘 and 𝜆1 ≥ ⋯ ≥ 𝜆𝑡 ≥ 0. 

𝑝(𝜶𝑘| … ) ∝ 𝑒𝑥𝑝{𝑘𝜶𝑘
⊤ 𝜦𝑘

⊤(𝒚 − 𝑿1𝜷 − 𝒁𝒈)}; has a 
distribution that proportional to the Von Mises-Fisher 
distribution: 𝜶𝑘| … ~𝑉𝑀𝐹[𝜌𝑘 , 𝝁𝜶𝑘

] with concentration 

parameter and directional mean proportional, respectively, 

to   𝜌𝑘 =
𝜆𝑘

𝜎𝑒
2 and 𝝁𝜶𝑘

= 𝜦𝑘
⊤(𝒚 − 𝑿1𝜷 − 𝒁𝒈), being 𝜦𝑘 =

𝑑𝑖𝑎𝑔(𝑿2𝜸𝑘)𝒁. 
 Similarly, 𝜸𝑘  has a full conditional posterior 
distribution that is proportional to the Von Mises-Fisher 

distribution, 𝜸𝑘| … ~𝑉𝑀𝐹[𝜌𝑘 , 𝝁𝜸𝑘
]; 𝝁𝜸𝑘

= 𝜴𝑘
⊤(𝒚 − 𝑿1𝜷 −

𝒁𝒈) and 𝜴𝑘 = 𝑑𝑖𝑎𝑔(𝒁𝜶𝑘)𝑿2.  
 
Sampling and estimation process 
 
To approximate the joint posterior distribution a Gibbs 
sampler was used via Markov chain Monte Carlo (MCMC) 
methods.  Convergence of the resulting chains was verified 
using the Heidelberger and Welch (1983) and Raftery and 
Lewis (1992) methods. Resulting sample was used to 
produce marginal estimates for all parameters. All inference 
was performed using the R statistical software (R CORE 
TEAM, 2017). 
 
Conclusion 
 
Bayesian AMMI applied to this example allows for selecting 
stable and or adapted genotypes for yield such as: G4 (CMG 
2097), G9 (CMG 1896, both stable) and G7 (CMG 2089, with 
initial evidence on adaptation to Lambari).  
Producing credibility regions in biplot help to identify stable 
genotypes, as well as to group genotypes and environments 
according to existing interaction patterns with greater 
precision than previous techniques.   
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