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Abstract 
 
Grain yield is a quantitatively inherited trait in groundnut (Arachis hypogea L.) and subject to genotype by environment 
interactions. Groundnut varieties show wide variation in grain yield across different agro-ecologies. The objectives of this study 
were to evaluate Valencia groundnut genotypes for yield stability and classify environments to devise appropriate breeding 
strategies. Seventeen multi-location trials were conducted in six countries, viz., Malawi, Tanzania, Uganda, Zimbabwe, Mozambique 
and Zambia, from 2013 to 2016. The experiments were laid out following a resolvable incomplete block design, with two 
replications at each location (hereafter referred to as ‘environments’) using 14 test lines and two standard checks. The additive 
main effects and multiplicative interaction (AMMI) analysis was conducted. Variation attributable to environments, genotypes and 
genotype × environment interaction for grain yield was highly significant (P<0.001). Genotype, environment and genotype × 
environment interactions accounted for 7%, 53 % and 40% of the total sum of squares respectively. Superior-performing genotypes 
possessing high to moderate adaptability and stability levels included ICGV-SM 0154, ICGV-SM 07539, ICGV-SM 07536, ICGV-SM 
7501, ICGV-SM 99568 and ICGV SM 07520. Nachingwea 2013 in Tanzania, Nakabango 2014 in Uganda and Chitedze 2015 in Malawi 
were the most representative and discriminative environments. Considering the implications of interactions for Valencia groundnut 
breeding in East and Southern Africa we propose that different varieties should be targeted for production in different 
environments and at the same time used for breeding in specific environments.  
 
Keywords: Adaptation, AMMI, Breeding, Stability, Multi-environment trials, Discrimination ability, Representativeness. 
Abbreviations: AEA_average environment axis , AMMI_additive main effects and multiplicative interaction, ANOVA_analysis of 
variance, E_environment, G_genotype,  GGE_genotype and genotype × environment interaction, ICRISAT_International Crops 
Research Institute for the Semi-Arid Tropics, ICGV-SM_ICRISAT groundnut variety selected in Malawi,  IPCA_interaction principal 
component analysis,  Mals_meters above sea level,  PCA_principal component analysis, Temp min_minimum temperature 
Temp Max_maximum temperature ,  V_varieties. 
 
Introduction 
 
Groundnut is a versatile legume grown mainly for food 
including cooking oil and, in some cases, for fodder in sub-
tropical and tropical environments. Cultivated groundnut 
has four major subspecies, Arachis hypogea var: hypogaea 
(synonym = Virginia), A. hypogea var: fastigiata (synonym = 
Valencia), A. hypogea var: vulgaris (synonym = Spanish) and 
A. hypogea var: hirsuta (synonym = Runner). Distribution of 
these subspecies is based on their production and market  
qualities, with most commonly grown varieties being 
Virginia, Spanish and Valencia in East and Southern Africa.     
Groundnut exhibits wide variation in grain yield and is grown  
 

 
 
 
in many agroecologies (Fan et al., 2007). For production at a 
large scale in East and Southern Africa, it is imperative that,  
from farmers’ standpoint, varieties with consistent 
performance across years (temporal stability) be developed 
and identified. From seed companies’ viewpoint, varieties 
with consistent performance across locations (spatial 
stability) would be preferred. For the most part, groundnut 
is a cash and food crop, and therefore, a major component 
of farmers’ livelihoods, especially in Africa’s agrarian 
economies. Groundnut is mostly produced as a monocrop, 
but increasingly, farmers are producing it as an intercrop, to 
reduce risk while maximizing land productivity by 
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diversifying their production systems (Gan et al., 2011; 
Affholder et al., 2013; Jayne et al., 2014).  Groundnut 
breeding program at ICRISAT for East and Southern Africa, 
based in Malawi, has developed a wide range of varieties for 
diverse cropping systems in three major agro-ecologies, i.e., 
low altitude agro-ecologies (400-600 masl) that receive up to 
450 mm of rainfall per year; mid-altitude agro-ecologies 
(600-1001 masl) that receive up to 1000 mm of rainfall per 
year); and high altitude agro-ecologies (1001-1500 masl) 
that receive up to 1000 mm of rainfall annually. In Africa, 
Virginia and Spanish varieties are the predominant 
subspecies, grown partly because of a major focus on large-
seeded genotypes needed for export markets. However, our 
engagement with farmers, via participatory variety selection, 
in East and Southern African countries, has revealed 
increasing demand for Valencia genotypes. Among other 
considerations, Valencia types are desired for their good 
peanut butter quality because of their sweet taste and 
short-duration maturity. The Valencia groundnut types were 
mostly produced in warm region of New Mexico but over 
time have been introduced into African countries. The 
Portuguese carried in the late 15th century the Valencia 
groundnut type varieties from the east coast of South 
America (Brazil) to Africa (Nigram, 2014). The low 
productivity in Africa in the past, can be explained by the 
fact that more focus on groundnuts was on the extraction of 
oil for domestic consumption and export since oil was the 
major item traded. However, the trend in the last decade 
has changed and edible groundnut is dominates the world 
market. In Africa, South Africa is the lead producer of edible 
groundnuts and for processing peanut butter such as the 
Valencia type. Thus, as farmers diversify their groundnut 
production systems to meet different domestic and market 
niche needs, plant breeding must deliver temporally stable, 
locally adapted, highly productive varieties.  
Adoption of new crop varieties, for the most part, is 
influenced by yield. However, yield is a complex trait that is 
subject to modification by the cropping system/environment 
and genotype-by-environment interaction (GEI) (Kang, 
1998). Strong GEI compounds selection of high yielding and 
stable genotypes because of differential reaction of the 
same genotype to varying agroecological conditions (Yau, 
1995; Gauch, 2006). To improve selection precision, 
breeding programs use production data from different 
environments to identify adapted, consistent-performing 
genotypes, and at the same time, identify niche-specific 
genotypes for targeted variety commercialization (Yan, 
2002; Blanche et al., 2007). 
Multi-environment trials (METs) are recommended for 
evaluation of genotypes to identify varieties whose 
performance across environments is stable and predictable 
(Badu-Apraku et al., 2008). Several methods have been 
developed for assessment of GEI (Eberhart and Russell., 
1966; Lin et al., 1986). Multivariate statistical analyses that 
explore multi-directional aspects of GEI are preferred to 
univariate analyses, because they extract additional 
information from GEI components (Gauch et al., 2008). The 
additive main effects and multiplicative interaction (AMMI) 
model is among the most powerful tools for analyzing G × E 
interactions (Gauch, 2006). The AMMI model integrates 
variance analysis of the main effects, i.e., genotypes and 
environments, with principal component analysis for  

multiplicative effects of GE interactions (Oliveira and Godoy, 
2006). A principal component model is fitted to residuals 
from the analysis of variance and the resulting interaction 
principal component analysis scores are calculated for 
genotypes and environments. Thus, AMMI analysis supports 
identification of the most stable and productive genotypes 
and further recommendation for ecology-specific cultivars 
(Pacheco et al., 2005). Yan et al. (2000) proposed the GGE-
biplot method for graphical display of GE interaction. 
Environmental variation (E) explains most of the variation, 
whereas G and GE are usually smaller in comparison (Yan, 
2002; Yan and Kang, 2003). However, only the G and GE 
interactions are relevant for genotype evaluation, 
particularly when GE interaction is repeatable (Yan et al., 
2000; Yan et al., 2011). Moreover, GGE biplot analysis is an 
effective method for mega-environment analysis that allows 
visual examination of relationships among the test 
environments, genotypes and GE interactions (Yan et al., 
2007). These approaches can be adopted in breeding 
programs to ensure delivery of superior varieties that are 
stable across environments/seasons. Limited researches 
have been done in environmental stratification for niche 
targeting in development of Valencia groundnut varieties. 
Environmental stratification can reduce costs by 
concentrating on locations which are more informative and 
discriminatory. Further, within the East and Southern Africa 
Region, only three Valencia varieties have been released, 
thus the need of superior improved varieties. To select 
adapted cultivars for diverse and/or specific production 
domains (Bernardo, 2002), ICRISAT’s East and southern 
Africa groundnut breeding program evaluated performance 
of its elite Valencia groundnut varieties in multi-
environments for yield stability and environmental 
stratification of testing locations across East and Southern 
Africa.  
 
Results and discussion 
 
Yield variability among new Valencia genotypes  
 
Analysis of variance showed highly significant genotype, 
environment, and genotype × environment interactions 
(GEI) for yield (supplementary Table 3). Similarly, principal 
components (PC1 and PC2) were highly significant. 
Genotypes, environment, PC1 and PC2 were accounted for 
73% of treatment sum of squares. Therefore, the 
importance of genotype and environment was evident, an 
indication that AMMI model effectively partitioned the 
treatment sum of squares (Moreno-Gonza´lez et al., 2004, 
Gauch, 2006). A small sum of squares attributable to 
genotypes (G) (7% of treatment sum of squares) indicates 
that the contribution of G to the observed variation was 
small (Supplementary Table 3). The results also showed that 
the contributions of environment (E) and genotype × 
environment (G × E) to the variation were much larger (40 
and 53%, respectively) than that of G (supplementary Table 
3). This was an indication of differential response of test 
genotypes to the environments These differences could be 
attributable to variations in temperature and precipitation, 
soil health and diseases, which are factors known to 
influence G × E interaction (Casonoves et al., 2005, Shahriari 
et al., 2018).  
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Table 1. Mean grain yield (Kg/ha), and principal component analysis (PCA) scores of sixteen (16) groundnut genotypes evaluated in 
17 environments 
Genotype Yield (Kg/ha) Ranking based on yield 1IPCAg 2IPCAg 

ICG 405 486.5 16 9.7 -6.6 
ICGV-SM 95741 548.0 15 5.6 -19.1 
ICGV-SM 05521 595.3 14 13.6 2.5 
ICGV-SM 07541 602.7 13 12.7 2.5 
ICGV-SM 07510 612.6 12 5.9 6.0 
ICGV-SM 07532 613.8 11 4.2 -3.6 
ICGV-SM 07501 619.6 10 -1.0 -0.2 
ICGV-SM 06687 626.6 9 12.9 15.0 
ICGV-SM 99568 637.9 8 -12.7 1.2 
JL 24 642.2 7 -1.1 -22.7 
ICGV-SM 07536 667.7 6 8.5 1.0 
ICGV-SM 07502 673.5 5 -14.4 1.5 
ICGV-SM 07517 686.6 4 -5.8 16.4 
ICGV-SM 07539 727.9 3 1.2 6.5 
ICGV-SM 01514 772.3 2 -22.5 4.1 
ICGV-SM 07520 784.4 1 -16.9 -4.4 
1PCA1 accounted for most of the variation in data set such that two dimensions picture of data given in biplot is a reasonable representation of the 
positions of genotypes; Large PCA1 values whether negative or positive indicate the adaptability of genotypes to different environments. 2PCA2 
accounted for substantial variation in the data set too. Small PCA2 indicates stability of genotypes. 

 
Table 2. Grouping of the environments and ranking of the best genotypes. 

   
                                                        Genotype ranking 

Environment Score Environment yield 
(Kg/ha) 

1 2 3 4 

E1 4.1 742.4  ICGV-SM 07539 ICGV-SM 07520 ICGV-SM 07536 ICGV-SM 06687 
E10 -8.5 879.3  ICGV-SM 07520 ICGV-SM 01514 JL 24 ICGV-SM 07502 
E11 5.4 415.8  JL 24 ICGV-SM 95741 ICGV-SM 07520 ICGV-SM 07536 
E12 -12.3 836.1 CGV-SM 01514 ICGV-SM 07517 ICGV-SM 07520 ICGV-SM 07502 
E13 -1.9 545.0 ICGV-SM 01514 ICGV-SM 07520 ICGV-SM 07539 ICGV-SM 07517 
E14 -5.4 286.5  ICGV-SM 07520 ICGV-SM 01514 JL 24 ICGV-SM 07502 
E15 -5.1 951.2  ICGV-SM 07517 ICGV-SM 01514 ICGV-SM 07539 ICGV-SM 06687 
E16 -1.1 688.7 ICGV-SM 01514 ICGV-SM 07520 ICGV-SM 07539 ICGV-SM 07517 
E17 -2.9 510.8  ICGV-SM 07520 ICGV-SM 01514 JL 24 ICGV-SM 07502 
E18 4.7 723.0 JL 24 ICGV-SM 95741 ICGV-SM 07520 ICGV-SM 07536 
E2 4.7 562.8  JL 24 ICGV-SM 07520 ICGV-SM 95741 ICGV-SM 07536 
E3 23.7 686.6 ICGV-SM 06687 ICGV-SM 05521 ICGV-SM 07541 ICGV-SM 07536 
E5 6.1 443.4 ICGV-SM 07539 ICGV-SM 06687 ICGV-SM 07536 ICGV-SM 07517 
E6 -23.8 984.4  ICGV-SM 07520 ICGV-SM 01514 JL 24 ICGV-SM 07502 
E7 -13.5 557.4  ICGV-SM 01514 ICGV-SM 07520 ICGV-SM 07502 ICGV-SM 99568 
E8 10.1 562.6 JL 24 ICGV-SM 07536 ICGV-SM 05521 ICGV-SM 07541 
E9 9.6 765.3  ICGV-SM 06687 ICGV-SM 07517 ICGV-SM 07539 ICGV-SM 07536 

 

Fig. 1

G1

G2

G3

 
Fig 1. Additive main effects and multiplicative biplot of interaction principal component analysis (IPCA) scores of genotypes and 
environments against yield (kg/ha) of both genotypes and environments. Description of environmental codes: E1-Nachingwea 2013, E2-Naliendele 

2013, E3-Tumbi 2013, E45-Naliendele 2014, E6-Nakabango 2014, E7-Serere 2014, E8-Msekera 2014, E9-Nampula 2014, E10-Nampula 2015, E11-Ngabu 2014, E12-
Chitedze 2014, E13-Chiedze 2015, E14-Ngabu 2015, E15-Lucydale 2015, E16-Chitedze 2016, E17-Ngabu 2016, E18-Baka 2016.  Description of genotype codes: V1- ICG 
405, V2- ICGV-SM 01514, V3- ICGV-SM 05521, V4- ICGV-SM 06687, V5-ICGV-SM 07501, V6- ICGV-SM 07502, V7-ICGV-SM 07510, V8- ICGV-SM 07517, V9- ICGV-SM 
07520, V10- ICGV-SM 07532, V11- ICGV-SM 07536, V12- ICGV-SM 07539, V13- ICGV-SM 07541, V14- ICGV-SM 95741, V15- ICGV-SM 99568, V16-JL24. 
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Fig. 2

 
Fig 2. Additive main effects and multiplicative biplot of interaction principal component analysis (IPCA) scores of genotypes 
showing which-won where in the different mega-environments. Description of environmental codes: E1-Nachingwea 2013, E2-Naliendele 2013, E3-

Tumbi 2013, E45-Naliendele 2014, E6-Nakabango 2014, E7-Serere 2014, E8-Msekera 2014, E9-Nampula 2014, E10-Nampula 2015, E11-Ngabu 2014, E12-Chitedze 2014, 
E13-Chiedze 2015, E14-Ngabu 2015, E15-Lucydale 2015, E16-Chitedze 2016, E17-Ngabu 2016, E18-Baka 2016.  Description of genotype code: V1- ICG 405, V2- ICGV-SM 
01514, V3- ICGV-SM 05521, V4- ICGV-SM 06687, V5-ICGV-SM 07501, V6- ICGV-SM 07502, V7-ICGV-SM 07510, V8- ICGV-SM 07517, V9- ICGV-SM 07520, V10- ICGV-SM 
07532, V11- ICGV-SM 07536, V12- ICGV-SM 07539, V13- ICGV-SM 07541, V14- ICGV-SM 95741, V15- ICGV-SM 99568, V16-JL24. 
 

Fig. 3 

 
Fig 3. Discriminating ability vs. representativeness of test environments. Description of environmental codes: E1-Nachingwea 2013, E2-Naliendele 

2013, E3-Tumbi 2013, E45-Naliendele 2014, E6-Nakabango 2014, E7-Serere 2014, E8-Msekera 2014, E9-Nampula 2014, E10-Nampula 2015, E11-Ngabu 2014, E12-
Chitedze 2014, E13-Chiedze 2015, E14-Ngabu 2015, E15-Lucydale 2015, E16-Chitedze 2016, E17-Ngabu 2016, E18-Baka 2016.  Description of genotype code: V1- ICG 
405, V2- ICGV-SM 01514, V3- ICGV-SM 05521, V4- ICGV-SM 06687, V5-ICGV-SM 07501, V6- ICGV-SM 07502, V7-ICGV-SM 07510, V8- ICGV-SM 07517, V9- ICGV-SM 
07520, V10- ICGV-SM 07532, V11- ICGV-SM 07536, V12- ICGV-SM 07539, V13- ICGV-SM 07541, V14- ICGV-SM 95741, V15- ICGV-SM 99568, V16-JL24. 

 
Environmental stratification 
 
Yield stability across environments  
 
The PCA biplot showed a relatively large amount of variation 
among environments and less among genotypes (Fig. 1). The 
biplot had three distinct groups; the first group, G1, had 
genotypes with IPCA1 scores between 8 and 16, indicative of 
high adaptability to specific environments. The second 
group, G2, included genotypes with IPCA1 scores between -1 
and 5, indicative of fairly stable genotypes but with limited 
adaptability to specific environments. The third group, G3, 
comprised genotypes with IPCA1 scores between -10 and -
20, indicating that these genotypes were highly adapted to 
specific environments. The highest yielding genotypes, viz., 
ICGV-SM 07520 and IGCV-SM 01514, had large principal 
component scores and were situated far from the vertical 

reference line, indicative of their adaptability to different 
environments and were stable at the same time (Fig. 1). 
Genotypes ICGV-SM 07536, JL 24, ICGV-SM 99568 and ICGV-
SM 07501 had IPCA2 scores that were close to zero, and 
were, as per Gauch and Zobel (1997), relatively more stable 
across different environments. These genotypes can thus be 
grown in a wide range of environments. However, 
genotypes ICGV-SM 01514 and ICGV-SM 07520 were high 
yielding, widely adapted and stable-performing across 
different environments. Most of the genotypes (ICGV-SM- 
07536, ICGV-SM 07510, ICGV-SM 07532, ICGV-SM 07501, 
ICGV-SM 07539, ICGV-SM- 06687 and ICGV-SM 07541) and 
the environments Nampula 2014, Nakabango 2016, 
Nachingwea 2013, and Chitedze 2016, contributed positively 
to interactions, because they were grouped in the same 
direction and had positive IPCA 1 scores (Fig. 1).  
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In general, the score-points for environment were more 
scattered than for genotypes, indicative of relatively higher 
variability attributable to environmental effects (Table 1). 
The vast majority of genotypes were adapted to specific 
environments. The genotypes ICGV-SMs 01514, 07517 and 
07539 were highly adapted to Nachingwea 2013 in Tanzania, 
Chitedze 2014/2015/2016 in Malawi and Lucydale 2015 in 
Zimbabwe (Fig. 1; see supplementary Table 2 and Fig 1 for 
details on environments). Genotypes ICGV-SM 07501, 
07502, and 99568 were also highly adapted to Naliendele 
2013 in Tanzania, Nakabongo 2014 in Uganda, Serere 2014 
in Tanzania, Nampula 2015 in Mozambique and Ngabu 2015 
in Malawi (Fig. 1; Supplementary Table 2). Such highly 
adapted genotypes could be deployed for improving 
performance of highly stable genotypes that are low 
yielding. The genotypes ICGV-SM 07539 and ICGV-SM 07536 
were high performing and exhibited high levels of 
adaptability and stability across environments and are thus  
considered ideal genotypes. Genotype ICG-SM 07501 was 
among the most stable but had low yield, thus low level of 
adaptability (Yan and Tinker, 2006). In addition, genotypes 
ICGV-SM 01514 and ICGV-SM 07520 were high yielding 
(>750 kg/ha), highly adapted and moderately stable across 
different environments, and therefore, are important for use 
in breeding programs (Fig. 1; supplementary Table 3).  
 
Genotype ranking based on yield  
 
Based on grain yield, genotype ICGV-SM 07520 was ranked 
first, followed by ICGV-SM 01514 and ICGV-SM 07539 (Table 
1). Among the high-yielding genotypes, ICGV-SM 01514 and 
ICGV-SM 07520 were highly adapted and moderately stable 
across environments; whereas ICGV-SM 07539 was 
moderately adapted and stable across environments. Other 
genotypes that performed better than the local check (ICGV-
SM 99568), a highly adaptable genotype widely grown in 
different countries of East and Southern Africa, were ICGV-
SM 07517, ICGV-SM 07502 and ICGV-SM 07536. The least 
productive genotypes were ICG 405 and ICGV-SM 95741, 
which were moderately to highly unstable across 
environments (Table 1).  
 
Favorable ecologies for Valencia genotypes 
 
Discriminating environments for specific agroecologies  
In East and Southern Africa, the highly discriminating 
environments for grain yield were Nakabango 2014 in 
Western Uganda (984 kg/ha), Lucydale 2015 in Southern 
Zimbabwe (951 kg/ha) and Nampula 2015 in Eastern 
Mozambique (879 kg/ha). Materials tested at these sites 
exhibited high levels of instability, demonstrating the 
discriminating ability of these environments. These can be 
referred to as type 3 environments useful in culling unstable 
genotypes but not suitable for selecting superior genotypes 
(Yan et al., 2007). The biplot (Fig. 1) showed that two 
environments, viz., Chitedze 2016 and Ngabu 2016, 
representing mid-altitude and low altitude agroecologies of 
Malawi, respectively, consistently supported stable 
performance of the test genotypes. Such environments can 
be regarded as type 2 test environments that are suitable for 
selecting superior genotypes. Stability in particular 
environments demonstrates reliability of genotype ordering 
in an environment, in relation to its rating in other 

environments (Yan et al., 2007). Thus, Lucydale 2015, 
Nakabango 2014 and Nampula 2015 identified genotypes 
that were highly adapted and met specific market needs. 
Nakabango serves the broader East African market needs, 
Lucydale serves Southern Africa market needs and Nampula 
serves South-East Africa market needs for low-lying 
groundnut-producing agro-ecologies bordering the Indian 
Ocean in Mozambique, Tanzania and South Africa.  
 
Genotype and Genotype by Environment interactions (GGE)  
 
The biplot analysis grouped the 17 environments into three 
mega environments, of which two intersected close to the 
biplot origin, an indication that both belong to the same 
mega-environment (Figure 2). The first mega-environment 
included: Naliendele 2013, Ngabu 2014 and Baka 2016 that 
had a negative direction in relation to the origin of the biplot 
(located on the left side in the biplot), which is indicative of 
their negative contribution to the genotype × environment 
interaction. These locations represent low altitude 
environments (100-500 masl) and agro-ecologies that 
receive 600 mm or less rainfall annually, and therefore, may 
not support high productivity as in high potential areas 
(altitude > 1200 masl and rainfall >1000 mm).  
The second mega-environment included Tumbi 2013 in 
Southern Tanzania, and Nampula 2014 in Eastern 
Mozambique, which lie in the mid-altitude (500-1100 masl) 
agroecologies of East and Southern Africa. This mega-
environment shares characteristics with the third and largest 
mega-environment and had five genotypes mapped to it. 
This mega-environment, though highly discriminative, is less 
representative compared with the other two for production 
of Valencia genotypes and groundnut, in general. The third 
mega-environment was the largest and included most test 
sites (seven in total) across East and Southern Africa. These 
included Lucydale 2015 in Zimbabwe, Nachingwea 2013 in 
Tanzania, Chitedze 2014/2015/2016 in Malawi, Nakabango 
2015 in Uganda and Nampula 2015 in Mozambique. These 
environments recorded the highest grain yield, an indication 
that they are high-yield-potential groundnut production 
areas. Among them, Nachingwea 2013, Chitedze 2015/016 
and Nakabango 2015, being closer to the center of the 
origin, were the most representative and discriminating 
environments (Figure 2). These environments (Nachingwea 
2013, Chitedze 2015/016 and Nakabango 2015) supported 
moderate (600-800 kg/ha) to high yields (>800 kg/ha).   
Most of the genotypes were situated within the third mega-
environment, with less deviation in mean yield performance 
than the average response. Similar results have been 
reported elsewhere for other field crops (Yan et al., 2007; 
Yan et al., 2011). Winning genotypes for the different 
categories were located at the vertex of the polygon (Figure 
2). These included ICGV-07517, ICGV-SM 01514, ICGV-SM 
95741, JL 24, ICGV 405, ICGV-SM 7520, ICGV-SM 6687 and 
ICGV-SM 95741. The best genotypes, farthest in the polygon 
from the straight line passing through the origin (0), were 
ICGV-SM 01514, ICGV-SM 06687 and JL24 in one or more 
environments (Figure 2). Environments and genotypes that 
fall near the origin are considered stable and/or adapted, 
thus represent ideal environments and genotypes, 
respectively. The IPCA1 and IPCA2 explained 33.35% and 
17.33%, respectively, of genotype by environment 
interaction. 
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Environment and genotype ranking 
 
The 17 environments were ranked based on environmental 
average yield and genotype reaction to the different 
environments with yield as the unit of measure (Table 2). 
The results indicated inconsistency in genotype grain yield 
rankings from location to location (Figure 1; Table 2). Multi-
environment-trial data may constitute a mixture of 
crossover (change in yield ranking of genotypes across 
environments) and non-crossover (constant yield ranking 
across environments) types of GEI (Matus-Cadiz et al., 2003; 
Yan and Tinker, 2005; Yan et al., 2007). The results 
suggested that there was crossover GEI, albeit with some 
genotypes exhibiting non-crossover performance, with 
consistent ranking in different locations. For example, 
genotype ICGV-SM 07520, which had high yield and was 
moderately adapted to different environments, was among 
the best performers in 11 out of 17 environments. Genotype 
JL 24, a local stable check in the region but susceptible to 
groundnut rosette disease (a destructive viral disease) and 
early leaf spot, was ranked among the best four genotypes 
in 8 out of 17 environments. Genotype ICGV-SM 07539, the 
most adapted and stable genotype, was ranked among the 
best four in 6 out of the 17 environments (Table 2). These 
new improved genotypes (ICGV-SM 07520 and ICGV-SM 
07539) could thus be used to meet the increasing demand 
for Valencia varieties in East and Southern Africa. 
 
Best test environments for Valencia groundnut genotypes 
 
The results showed that environments Nachingwea 2013, 
Nakabango 2014 and Chitedze 2015 were representative of 
the average environment. These environments had relatively 
small PCA2 scores, a requirement for an ideal environment 
(Yan et al., 2011) and their angles to the average 
environment axis (AEA) were small, indicative of their 
representativeness of other test environments (Yan and 
Rajcan, 2002; Sharma et al., 2009).  Environment Nakabango 
2014 had the longest environmental vector, smallest angle 
with the AEA and was located at the circumference of the 
first inner score, implying that it was the most discriminating 
environment (Figure 3). Environments Lucydale 2015, 
Chitedze 2014, Serere 2014, Tumbi 2013 and Nampula 2014 
also had long environmental vectors, and thus had the 
capacity to discriminate genotypes according to their 
performance but lacked representativeness as they had 
larger angles with the AEA than those designated to be so. 
Such environments are therefore suitable in selecting for 
specifically adapted genotypes. Conversely, environments 
Nachingwea 2013, Naliendele 2013, Naliendele 2014, 
Chitedze-2015 and Ngabu 2016 had the shortest 
environmental vectors, indicative of their inability to 
discriminate genotypes but were representative of average 
environment, since they had small angles with the AEA (Yan 
et al., 2011, Yan and Tinker, 2006).  
The angle between vectors of two environments is related to 
the correlation coefficient between them (Yan and Kang, 
2003). The different environments are either positively 
correlated or negatively correlated or not correlated, if the 
angles between their vectors are <90°, >90° or = 90°, 
respectively (Yan and Kang, 2003; Sharma et al., 2009). 
Based on the angle of environment vectors, the comparison 
biplot grouped the environments into five sub-groups, of 

which four represented those that were positively 
correlated, and the fifth group comprised distinct 
environments that were negatively correlated to the other 
four (Figure 3). These sub-groups included: i) Nachingwea 
2013, Chitedze 2016, Naliendele 2014, Nakaango 2014, 
Chitedze 2015; ii) Naliendele  2013, Baka 2016, Ngabu 2014; 
iii) Ngabu 2016, Ngabu 2015, Nampula 2015; iv) Lucydae 
2015, Chitedze 2014; and v) Serere 2014, Tumbi 2013, 
Nampula 2014. The first three groups were, however, close 
to one another; therefore, they had positive correlation, as 
opposed to the fourth and fifth groups, which were far from 
the other three groups and negatively correlated to all other 
groups with high dissimilarity between them.  
Different winning genotypes were clustered in the different 
test locations and the between-environment-group variation 
was greater than the within-group variation. This distinct 
variation further supports the existence of mega-
environments and the possibility of grouping genotypes into 
the different mega-environments as an important option for 
exploiting G × E interaction.  
An ideal genotype should have high mean performance and 
be stable (Yan and Kang, 2003; Blanche and Myers, 2006). 
An ideal genotype thus has the longest vector and maps at 
the center of the concentric circles. Genotype ICGV-SM 
01514 was in the center of the concentric circles and was 
therefore the ideal genotype in this study. It can therefore 
be used as a reference for genotype performance 
evaluations (Dehghani et al., 2006; Yan et al., 2010). 
Genotype ICGV-SM 07520 was located in the second 
concentric circle and can thus be regarded as a desirable 
genotype. The genotype ICGV-SM 07520 was among the 
highest yielding but moderately adapted to different 
environments. 
 
Materials and methods 
 
Germplasm 
 
Sixteen Valencia groundnut genotypes, i.e., 14 from the 
Malawi breeding program and two accessions from 
ICRISAT’s gene bank, were evaluated in 2013, 2014, 2015 
and 2016. The test materials were derived from crosses 
between a line resistant to aphid infestation (ICG 12991) and 
an early leaf spot (Cercospora arachidicola Hori)-tolerant line 
(ICGV-SM 93555) (supplementary Table 1). Local checks used 
in the study were Kakoma (JL 24) and Chitala (ICGV-SM 
99568), which are high-yielding commercial varieties grown 
widely in East and Southern Africa.  
 
Experimental sites 
 
Test materials were evaluated in six countries, 
representative of major groundnut-producing agroecologies 
of East and Southern Africa (supplementary Fig 1). 
Evaluations started during the 2013 cropping season, and 
continued annually through the 2014, 2015 and 2016 
cropping seasons. Each cropping season, in each of the 
studied geographies, was considered a different 
environment, generating 17 environments in total 
(supplementary Table 2). These environments represented 
low, medium and high-altitude production potential areas. 
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Experimental design and management 
 
The experiment was laid out following a resolvable 
incomplete block design (4 × 4 lattice) with two replications 
at all locations. The plot size comprised 4 rows, each 6 m 
long, with a spacing of 0.75 m between rows and 0.1 m 
between plants. Recommended agronomic practices for 
groundnut (planting, weeding and harvesting) were 
followed. Harvesting and all other post-harvest handling 
processes were done manually on a plot basis. Pods from 
each plot were sun-dried to 13% moisture, determined using 
a moisture meter (Min GAC-Plus moisture tester DICKEY-
John Corporation, UK) and thereafter weighed using a 
weighing scale (LBK, ADAM equipment, USA).  
 
Data collection 
 
Data on yield and yield-related traits were collected at 
different stages during each cropping season, which 
included days to 75% flowering, 100-seed weight (g), shelling 
out-turn (%), haulm yield (kg/ha) and grain yield (kg/ha). 
Grain yield per plot was converted to kilograms per hectare 
using the following formula: grain yield (kg/ha) = (Plot yield 
(kg) x 10,000 square meters/plot size in square meters (ha), 
adapted from Rana and Kumar (2014): 
 
Data analysis 
 
ANOVA was performed separately for each site, followed by 
Bartlett’s homogeneity test of variances (Steel and Torrie, 
2006). Subsequently, based on Bartlett’s test, pooled 
ANOVA was done (Steele and Torrie, 2006). Environments 
were treated as random effects and genotypes as fixed 
effects. Analysis of variance was performed using Genstat 
20

th
 edition (VSN, 2017). Means of genotypes per site were 

ranked to assess the importance of crossover genotype × 
environment interactions. The AMMI model was used to 
assess genotype adaptability and stability as well as for 
environmental stratification using the winning-genotype 
approach to determine mega environments (Gauch and 
Zobel, 1997). Genotype + genotype × environment 
interaction (GGE) scatter plots were generated to identify 
genotypes adapted to specific environments and the most 
discriminating and suitable culling environments (Yan and 
Tinker, 2006). 
 
Conclusions 
 
The best-performing stable genotypes across environments 
were ICGV-SM 07539, ICGV-SM 07536, ICGV-SM 7502,  
ICGV-SM 01514 and ICGV SM 07520. These are desirable 
genotypes that could be deployed in breeding programs to 
improve yield and stability. Other stable genotypes with 
moderate yields included ICGV-SM 07532, ICGV-SM 07536 
and ICGV-SM 07501. The study also identified three 
environments, namely, Nachingwea 2013, Chitedze-2015 
and Nakabango 2014 as the most discriminating and 
representative environments. These three locations can be 
used for early generation screening and data capture for 
release of varieties in the region.  
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