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Abstract 
 
Beauveria bassiana (Hypocreales) is a cosmopolitan entomopathogen, infecting >700 insect species. Although traditionally 
associated with insects, endophytic colonisation of plants is also known. Endophytism may protect plants against insects/diseases 
and enhance plant growth. Both insect- and plant-derived (endophytic) ‘sources’ of B. bassiana may be present in an 
agroecosystem, both of which may be in contact with plants. Here, growth response, viz.,  root length, shoot height,  fresh root 
biomass, fresh and dry shoot biomass of wheat, Triticum aestivum L. (Poaceae), is reported following inoculation with B. bassiana 
(strain PPRI 7598). The strain was passaged and re-isolated from an insect (IN) versus plant (PL) substrate.  When five wheat 
cultivars were inoculated with either B. bassiana PPRI 7598IN or -PL  isolates through seed imbibition, a significantly higher level of 
endophytism (roots, stems and leaves, combined) was recorded with 7598IN (29.74%) compared to 7598PL (26.13%). Cultivar 
Baviaans responded best to endophytic colonisation (plant parts combined) at 33.54%, followed by Tugela (31.34%), Kariega 
(27.87%), Gariep (25.67%) and Elands (21.28%). On average, B. bassiana-treated plants showed a 71% growth increase over control 
plants. In topically sprayed bioassays, 7598IN caused 57% mortality to Russian wheat aphid, Diuraphis noxia, compared with 50% 
by 7598PL; also recording a significantly shorter mean time to aphid mortality (4.14 days) versus 7598PL (4.58 days). A significantly 
higher level of overt mycosis (58.2%) was noted with 7598IN compared with 7598PL (47.9%). Results underscored several positive 
aspects associated with endophytic B. bassiana in wheat, creating new and exciting IPM possibilities.      
 
Keywords: Beauveria bassiana; Diuraphis noxia; endophyte; plant colonisation; plant growth response; Triticum aestivum. 
Abbreviations: EPF_Entomopathogenic fungi, IPM_Integrated pest management, PHS_Pre-harvest sprouting,

 
SA_South Africa, 

ARC_Agricultural Research Council, RWA_Russian wheat aphid, FHB_Fusarium head blight, SDAY_Sabouraud dextrose agar with 
yeast, CBC_Conservation Biological Control, DPI _Days post inoculation, LSD_Least significant differences, HPR_Host plant 
resistance 
 
Introduction 
 
In South Africa, wheat, Triticum aestivum L. (Poaceae), is 
prone to infestation by at least six cereal aphid (Homoptera: 
Aphididae) species, of which the Russian wheat aphid 
(RWA), Diuraphis noxia, is considered the most damaging 
(Prinsloo and Tolmay, 2015). Host plant resistance (HPR) 
currently forms the backbone of RWA control under dryland 
conditions in the summer rainfall region. However, since the 
arrival of the first aphid biotype, RWASA1 in 1978, four 
subsequent biotypes, RWASA2, RWASA3, RWASA4 and 
RWASA5 made their appearance in 2005, 2009, 2011 and 
2018, respectively (Jankielsohn, 2016, 2019). The 
development of aphid biotypes is not unexpected, as 
widespread deployment of HPR implies evolutionary 
adaptation, fueled by a higher selection pressure (Smith and 
Chuang, 2014; Yates and Michel, 2018). To counteract such 
selection, indiscriminate mortality inflicted by natural 
enemies (predators, parasitoids and pathogens), is seen as a 

critical component in a HPR x natural enemy-based control 
programme (Sunderland et al., 1988; Marasas et al., 1997).  
The natural enemy complex associated with RWA in South 
Africa is diverse, inclusive of both endemic and (classically) 
introduced species (Hatting, 2002; Prinsloo et al., 2002). The 
impact of entomopathogenic fungi (EPF) on cereal aphid 
populations is of particular importance, especially epizootics 
induced by Pandora neoaphidis (Entomophthoromycota: 
Entomophthorales) (Hatting et al., 2000). Although EPF grow 
in culture medium, the fastidious nature of the 
Entomophthoromycota renders fungal spores a difficulty to 
mass produce/formulate into commercial mycoinsecticides. 
On the other hand, the highly amenable EPF, Beauveria 
bassiana (Hypocreales: Cordycipitaceae), is also known to 
naturally infect RWA in South Africa (Hatting et al., 1999), 
albeit at a low prevalence (Hatting et al., 2000).  
Integration of B. bassiana (topical applications) against RWA 
in combination with HPR, was explored by Hatting et al. 
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(2004); finding around 65% fewer aphids in treated field 
plots compared with controls. Locally, application of B. 
bassiana on various crop commodities has been based on an 
augmentative approach (Hatting et al., 2018), similar to that 
of a chemical paradigm. However, the ubiquitous nature of 
this EPF within global agro-ecosystems, makes it suitable for 
exploitation in Conservation Biological Control (CBC) (Fuxa, 
1998), as proposed by Meyling and Eilenberg (2007). 
Therefore, the notion of exploiting B. bassiana in a CBC 
approach carries relevance, not only in terms of insect 
suppression, but potentially for disease suppression (Busby 
et al., 2016) and also as a plant growth-promoting factor 
(Behie and Bidochka, 2014; Sánchez-Rodríguez et al., 2015; 
Liao et al., 2017; Jaber and Enkerli, 2017; Sánchez-Rodríguez 
et al., 2018). In nature, insect-derived inoculum is the 
primary source of B. bassiana, while the historical frequency 
of recycling remains largely unknown. Host plant contact 
with such inoculum can be via seed/roots in the soil 
environment [see Zimmerman (2007) for a list of worldwide 
soil extractions] and/or via above ground phylloplanes 
(Meyling and Eilenberg, 2006; Howe et al., 2016). 
Beauveria bassiana can be linked to three basic associations, 
namely soil, insects and/or plants (Meyling and Eilenberg, 
2007). In the latter association, the fungus may exist as an 
endophyte (Vega, 2008). In the endophytic state, there is 
potential to exploit the fungus for induced systemic 
resistance to biotic and/or abiotic stressors (Rodriguez et al., 
2009). Moreover, as a host plant, T. aestivum appears 
endophytic-friendly, both as natural host (Crous et al., 1995; 
Larran et al., 2002, 2007; Vujanovic et al., 2012; Comby et 
al., 2016; Grudzinska-Sterno et al., 2016) and when 
artificially inoculated (Dingle and McGee, 2003; 
Gurulingappa et al., 2010; Russo et al., 2015; Sánchez-
Rodríguez et al., 2015; Sánchez-Rodríguez et al., 2018).  
In a recent review on EPF as endophytes in biological 
control, Vega (2018) found that 40% (34/85) of papers 
covered examined plant responses to endophytism, covering 
20 plant species. In that review, generally, the use of 
different inoculation techniques to inoculate plants resulted 
in colonisation of plants. The current study is the first to 
investigate the growth-response of five South African wheat 
cultivars to endophytic B. bassiana (strain 7598; originally 
extracted from a soil sample), passaged through an insect 
versus plant substrate (Russian wheat aphid, Diuraphis noxia 
versus T. aestivum, respectively). Three inoculation 
techniques were employed to simulate potential contact 
mechanisms possible under field conditions. 
 
Results  
 
Endophytic colonisation of wheat (inoculation of seeds 
through imbibition)  
 
Beauveria bassiana was never re-isolated from ‘control’ 
plants in any experiment. The level of endophytic 
colonisation varied significantly among cultivars (F4,90;0.00 = 
24.81), between fungal isolates (PPRI 7598IN vs PPRI 
7598PL; F1,90;0.00 = 17.48), among plant parts (root, stem and 
leaf; F2,90;0.00 = 106.90) and between evaluation times (7 vs 
14 DPI; F1,90;0.00 = 168.15). The most colonised cultivar 
(combined plant parts; n = 96 per cultivar; LSD0.05 = 4.44) 
was Baviaans (33.54%), followed by Tugela (31.34%), Kariega 

(27.87%), Gariep (25.67%) and Elands (21.28%). A 
significantly higher (P<0.05) level of colonisation (plant parts 
combined) was recorded with PPRI 7598IN (29.74%; n = 240) 
compared with PPRI 7598PL (26.13%; n = 240). The highest 
level of colonisation (44.15%) was recorded in roots with 
PPRI 7598IN at 7 DPI, statistically outperforming all other 
treatments (Fig.1). Generally, leaf colonisation was low, 
ranging from 12% to 28%. Recovery of B. bassiana showed a 
general decline from 7 - 14 DPI for all treatments. 
 
Effect of three inoculation techniques on plant growth of 
five wheat cultivars 
 
On average, treated plants showed a 71% growth increase 
over controls, with mean growth parameter responses 
ranging from 29% to 104% (Table 2). Although seed 
imbibition ranked first (mean improvement of 87.8%) among 
the three inoculation techniques employed (Table 2), leaf 
spraying resulted in a more consistent, high level of plant 
response, ranking first for four of the five parameters, viz., 
fresh shoot biomass, dry shoot biomass, root length and 
shoot height (Table 2). There were significant differences 
among the cultivars for three of the five parameters 
measured, viz., dry shoot biomass (F4,90;0.00 = 3.75), fresh root 
biomass (F4,90;0.00 = 68.66) and root length (F4,90;0.02  = 3.10), 
but not for shoot height (F4,90;0.06 = 2.31) and fresh shoot 
biomass (F4,90;0.11 = 1.91). However, when pairwise 
comparisons were performed among the cultivars for shoot 
height and fresh shoot biomass, the Fisher’s unprotected 
LSD test (Hsu, 1996) did indicate differences. This variation is 
further emphasized by the fact that for each growth 
parameter, a different cultivar ranked first (Table 3). Of 
particular interest was cultivar Kariega, showing a 260% 
increase in fresh root biomass (inoculation techniques 
combined), far exceeding the second-best responder 
(Gariep) at 81%. When considering the fresh root biomass-
response of cultivar Kariega, by inoculation technique, seed 
imbibition significantly outperformed leaf spraying and soil 
drenching at +672%, +54% and +7%, respectively (LSD0.05 = 
52.15).  
 
Virulence of Beauveria bassiana PPRI 7598 to RWA 
following passage and re-isolation from an insect (‘IN’) 
versus plant (‘PL’) host  
 
The conidial depositions (estimated number of propagules 
deposited per square millimeter on an agar plate; counted at 
40x magnification using the light microsope) for PPRI 7598IN 
and -PL, were 1820 ±68 conidia mm

-2 
and 1958 ±60 conidia 

mm
-2 

, respectively. During these assays, the insect-derived 
versus plant-derived isolates caused respective aphid 
mortalities of 57% versus 50%, 7 days post inoculation; 
albeit not significantly different at the 5% test level with LSD 
of 7.56. (Fig. 2). Moreover, the insect-derived isolate 
recorded a shorter mean time of mortality (4.14 ±0.04 days) 
compared to the plant-derived isolate (4.58 ±0.08 days) 
(LSD0.05 = 0.25), while the level of overt mycosis recorded 
with PPRI 7598IN (58.2%; n = 60) was significantly higher 
(LSD0.05 = 6.49) compared with PPRI 7598PL (47.9%; n = 55) 
(Fig. 3). 
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Table 1. Wheat cultivars, their pedigree and general characteristics. 
General 
characteristics 

Cultivars 

Tugela Elands Gariep Kariega Baviaans 

Breeding history 
and pedigree 
origin¥ 

Kavkaz/Jaral PI137739/*4Molopo 
(77) 

PI137739/*4Molopo 
(20) 

SST44// K4500 
/SAPSUCKER”S”  

Queen 
Fan(A50)/4/Jup/Emu”S”//
Gjo”S”/3/Kvz/K4500L-6-A-
4 

      
Agronomic traits♠♠ High yield 

Good straw 
strength 
Good kernel 
attachment 
Susceptible to 
PHS§ 

140 days to flowering 
Good straw strength 
Good kernel attachment 
Resistant to PHS 
High yield potential  

138 days to anthesis 
Good straw strength 
Good kernel attachment 
Resistant to PHS 
High yield potential and 
excellent yield stability 

114 days to flowering 
Good straw strength 
(similar to Gamtoos) 
Good kernel attachment 
Resistant to PHS 
yield potential similar to 
Gamtoos  

109 days to anthesis 
Good straw strength 
(similar to Kariega) 
Good kernel attachment 
Resistant to PHS 
High yield potential 
similar to Kariega 

RWA resistance♠♠ Susceptibe to all 
SA biotypes 

Resistant to RWASA1^ 
  

Resistant to RWASA1 
 

Susceptibe to all SA 
biotypes 

Susceptibe to all SA 
biotypes 

Disease  
resistance♠♠ 

Resistant to 
stem and leaf 
rust♠ (similar to 
Tugela - DN) 

Moderately resistant to 
stem rust; moderately 
susceptible to stripe rust 
and susceptible to leaf rust 

Resistant to stem rust; 
susceptible to stripe rust 
and leaf rust (at adult 
stage) 

Susceptible to 1 of 5 stem 
rust races in SA#, 
moderately susceptible to 
leaf rust and resistant to 
stripe rust 

Susceptible to 1 of 5 stem 
rust races in SA, 
moderately susceptible to 
leaf rust and resistant to 
stripe rust 
 

Production area¥ Winter dryland Winter dryland Winter dryland Irrigation & Spring dryland Spring dryland & Irrigation 
 

Year released¥ 1986 1998 1995 1993 2000 
N/A = not available; §PHS = Pre-harvest sprouting; #SA = South Africa; ^RWASA1 = Russian wheat aphid South African Biotype 1; Sourced from ARC-Small Grain Production guideline (♠1998 (Tugela only); ♠♠2018); ¥Sourced from Smit et al. 
(2010) and Coale (2017)    
 
 
 
 
 

 
Fig 1. Colonisation of different plant parts by Beauveria bassiana PPRI 7598 isolates at 7 and 14 days post inoculation. Bars 
(Means±SEM) marked with different letters indicate significant differences at  P<0.05; LSD = 4.1742. 
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Table 2. Effect of three inoculation techniques on seedling growth of five wheat cultivars (combined) after 21 days. 

Inoculation 
technique 

Fresh shoot 
biomass 

(g) 

Dry shoot 
biomass 

(g) 

Fresh root 
biomass 

(g) 

Root 
length 
(cm) 

Shoot  
height 
(cm) 

Grand mean 

Seed imbibition 80.03b
1
(2)

2
 45.25b (3) 235.23a (1) 48.85b (2) 29.47ab (2) 87.77±42.22 (1) 

Soil drenching 76.96b (3) 75.35b (2) 39.48b (2) 32.20c (3) 25.84b (3) 49.97±12.20 (3) 
Leaf  
spraying 

92.96a (1) 152.63a (1) 35.88b (3) 56.30a (1) 32.53a (1) 74.06±25.04 (2) 

LSD0.05 9.10 33.95 23.32 6.74 5.99 - 
Grand mean 83.32±4.9 91.08±31.98 103.53±65.86 45.78±7.12 29.28±1.93 70.60±15.79 

 
1 Means±SEM (% increase over controls) within columns followed by the same letter are not significantly different at the 5% test level, 2 Performance ranking within a given growth parameter 
(column) in parenthesis 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2.Mean percentage Schneider-Orelli - corrected mortality of the Russian wheat aphid 7 days post inoculation, caused by the 
chemical standard, Aphox and two PPRI 7598 isolates. Bars (Means±SEM) marked with different letters indicate significant 
differences at the P value <0.05; LSD

  
= 7.562. 

 
 
Table 3. Cultivar growth response at 21 days following inoculation (three techniques, combined) with Beauveria bassiana PPRI 
7598IN. 

Cultivar Fresh shoot 
biomass 

(g) 

Dry shoot 
biomass 

(g) 

Fresh root 
biomass 

(g) 

Root 
length 
(cm) 

Shoot 
height 
(cm) 

Grand 
mean 

Tugela 86.84ab
1 

(2)
2
 61.98b (5) 70.07bc (3) 50.39a (1) 26.63b (4) 59.18±10.07 (5) 

Kariega 77.06b (5) 89.14b (3) 260.37a (1) 47.88a (3) 25.22b (5) 99.93±41.64 (1) 
Baviaans 89.44a (1) 93.97b (2) 63.78bc (4) 37.59b (5) 28.87ab (3) 62.73±13.17 (4) 
Elands 77.22b (4) 139.75a (1) 42.40c (5) 42.97ab (4) 29.62ab (2) 66.39±19.97 (2) 
Gariep 86.03ab (3) 70.56b (4) 81.04b (2) 50.10a (2) 36.08a (1) 64.76±9.46 (3) 
LSD0.05 11.75

3
 43.83

4
 30.11

4
 8.71

4
 7.74

3
 - 

Grand mean 83.32±2.58 91.08±13.51 103.53±39.71 45.79±2.44 29.28±1.89 70.6±6.91 
1 Means±SEM (% increase over controls) within columns followed by the same letter are not significantly different at the 5% test level 
2 Performance ranking within a given growth parameter (column) in parenthesis 
3 Fisher’s unprotected LSD test 
4 Fisher’s protected LSD test 
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Fig 3. Mean percentage overt mycosis by the two PPRI 7598 backgrounds 7 DPI. Bars (Means±SEM) marked with different letters 
indicate significant differences at P value <0.05; LSD = 6.488.  
 
Discussion 
 
Successful colonisation of roots, stems and/or leaves, 
following seed imbibition with B. bassiana, has been 
reported for wheat (Russo et al., 2015; Sánchez-Rodríguez et 
al., 2015; Sánchez-Rodríguez et al., 2018), broad bean (Jaber 
and Enkerli, 2016), sorghum (albeit only in sterile soil; Tefera 
and Vidal, 2009) and also for cotton, tomato and snap bean, 
following topical seed inoculation with dry conidia (Ownley 
et al., 2008). Similar results were found in our study, 
although compared with other plant parts, a significantly 
higher level of endophytism was observed in roots for PPRI 
7598IN and -PL, at both 7 and 14 DPI. Clearly, the uptake 
and systemic spread of endophytic B. bassiana (Behie et al., 
2015) via seed treatment, holds significant potential as an 
economical and practical inoculation method; especially for 
wheat, where seeding volumes range from 15 – 30 kg per 
hectare (ARC-Small Grain, 2018). Although the current study 
did not measure endophytic persistence beyond 14 days, 
fungal colonisation of host plants at the early developmental 
stage may provide a crucial competitive advantage to these 
plants, potentially improving their ability to cope with stress 
and/or utilise limited resources (Hubbard et al., 2013; Bokati 
et al., 2016). In South Africa, wheat cultivated under dryland 
conditions in the summer rainfall region, is typically sown in 
the winter months of May-July and plants emerge during 
June-August, just prior to the arrival of spring rains in late 
September/early October, onwards. During and shortly after 
seedling emergence, soil moisture levels (residual from the 
preceding summer season) continue to drop amidst 
increasing temperatures. Endophytic colonisation of such 
seedlings, with special emphasis on improved root 
development (on average, 65% increase in fresh root 
biomass among the three dryland-production cultivars 
tested in this study) may hold significant advantages; a 
notion supported by the findings in our plant-response trials.  
For all five plant growth parameters measured within 42-45 
DPI, fungus-treated plants significantly outperformed 

control plants. Similarly, positive growth response with B. 
bassiana-inoculated wheat was reported by Gurulingappa et 
al. (2010) and more recently by recording an impressive 40% 
increase in wheat grain yield (Sánchez-Rodríguez et al., 
2018). Using only one wheat cultivar (Chinese Spring) and 
essentially the same techniques and conidial concentrations 
as in this study, Sánchez-Rodríguez et al. (2018) reported 
superior colonisation and subsequent growth responses 
with seed dressing compared with controls. A similar 
‘cultivar-specific’ reaction may be involved with cultivar 
Kariega, showing a very high affinity towards seed treatment 
with B. bassiana in the current study. An interesting 
observation from the studies by Quesada-Moraga et al. 
(2014) and Sánchez-Rodríguez et al. (2018), is vertical 
transmission of B. bassiana. This phenomenon could hold 
potential for suppression of seed-related diseases like 
Fusarium head blight (FHB), an important wheat disease not 
only in South Africa, but globally (Dean et al., 2012). 
According to Rabiey and Shaw (2016), application of the 
root-colonising endophyte, Piriformospora indica 
(Sebacinaceae) to wheat, reduced FHB disease severity and 
incidence by 70%, while lowering mycotoxin (DON) 
concentration of winter and spring wheat samples by 70 and 
80%, respectively. The approach also increased aboveground 
biomass, 1000-kernel weight and total grain weight. 
Although endophytic Beauveria is known to suppress 
damping-off in cotton (Griffin et al., 2005; Griffin, 2007), 
bacterial blight in tomato (Ownley et al., 2008), zucchini 
yellow mosaic virus in squash (Jaber and Salem, 2014) and 
downy mildew in grapevines (Jaber, 2015), its biocontrol 
potential against FHB in wheat is yet to be explored. 
Artificial introduction of B. bassiana as an endophyte in 
wheat or any other host plant implies subjecting the fungus 
to a different growing environment in terms of nutrients, 
pH, phytochemicals, etc. Generally, passage of an EPF 
through an insect host is seen as advantageous, i.e. a means 
of either enhancing or restoring virulence (Song and Feng, 
2011). However, the effect on virulence following passaging 
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through a wheat host plant has remained largely 
unexplored, with this study being the first to report on such 
endeavour. Use of plant-passaged conidia caused slightly 
lower aphid mortality, a significantly longer mean time of 
mortality as well as a lower level of overt mycosis 
(sporulation of cadavers), suggesting some level of 
impediment demonstrated by the plant-derived isolate. 
Relatively, the insect-derived isolate outcompeted the plant-
derived isolate in all aphid mortality parameters measured.  
Our findings underscored several positive aspects associated 
with endophytic B. bassiana in wheat. Additional to our 
study, endophytic B. bassiana is also being explored locally 
(in South Africa) in crops like sugarcane (Memela, 2014; 
Memela et al., 2017) and ‘Rooibos’ (Hatting, 2017), an 
indigenous shrub from which tea is made through leaf 
fermentation. Clearly, expanding the use of B. bassiana (and 
other EPFs) from a topically applied bioinsecticide to 
systemic bioinsecticide, with potential disease suppressive 
(Jaber and Ownley, 2018) and plant growth promoting 
attributes (in addition to wheat, see also Sasan and 
Bidochka, 2012; Lopez and Sword, 2015; Jaber and Enkerli, 
2017), creates new and exciting IPM possibilities. 
 
Materials and Methods 
 
Plant materials 
 
Seeds of three dryland-production bread wheat cultivars 
(Tugela, Elands and Gariep) and two irrigated-production 
cultivars (Kariega and Baviaans), all developed by ARC-Small 
Grain, Bethlehem, South Africa, were used in this study 
(Table 1). Seed surface sterilisation based on the Akello and 
Sikora (2012) procedure was performed prior to seed 
treatment. Following sterilisation, seeds were dried in the 
laminar flow hood for 30 minutes and later immersed in a B. 
bassiana fungal suspension at the concentration of 1 x 10

8
 

conidia ml
-1 

for 18-24hrs (Dhingra and Sinclair, 1995). Each 
cultivar was treated separately, with the “IN-” and “PL-
reisolated” B. bassiana strain PPRI 7598. Control seeds were 
soaked in sterile distilled water with 0.01% Break Thru

®
 

surfactant for 18-24 hours. During the soaking period, seeds 
were maintained on an orbital shaker at room temperature 
(Dhingra and Sinclair, 1995). Inoculated and control seeds 
were later dried on sterile paper towels in a laminar flow 
hood for three hours prior to planting. Inoculated and 
control seeds were planted in sterilised 295 ml plastic pots 
containing sterile soil (pH[KCl] = 4.8, P = 5.0 mg/kg, K = 125.0 
mg/kg, Ca = 600 mg/kg, Mg = 203 mg/kg, Acid saturation = 
4.2%), heat-treated at 91 ±1°C for 4 hrs. Plants were grown 
and maintained under glasshouse conditions of 22 ±3ºC, 70 
±4% relative humidity (RH) and natural light. 
 
Insect material 
 
Colonies of D. noxia biotype RWASA1 were reared in the 
ARC-Small Grain insectary unit. An aphid colony was 
established by infesting clean wheat seedlings (cultivar 
Tugela) at four-leaf growth stage (Hatting and Wraight, 
2007); the populations were then reared in gauze cages in a 
glasshouse at 22 ±3ºC, 40 ±4% RH and natural light. Aphids 
were monitored until they reached the adult stage prior to 
use in bioassays.  
 

Fungal isolates 
 
The B. bassiana fungal isolate, PPRI 7598, was cultured on B. 
bassiana selective medium amended with 0.55g/L dodine 
(guanidine) and 0.005g/L chlortetracycline (Sigma – Aldrich, 
Germany) (Chase et al., 1986). Fungal cultures were 
incubated in full darkness at 25 ±1ºC and 60 ±10% RH. 
Conidia were harvested from 14 day-old cultures using a 
sterile scalpel and suspended in a sterile aliquot of distilled 
water with 0.01% Break Thru

®
 surfactant (Polyether-

polymethylsiloxane-copolymer surfactant; Goldschmidt 
Chemical Corporation, USA). Suspension concentrations 
were adjusted to 1 x 10

8
 conidia ml

-1
 using a Nikon Optiphot 

light microscope (Nikon, Japan) and improved Neubauer 
Haemocytometer (Neubauer, Germany).  
 
Fungal strain inoculation and re-isolation from insects and 
plants 
 
The B. bassiana fungal strain PPRI 7598 was inoculated 
(passaged) through the target insect (D. noxia, via topical 
inoculation; Inglis et al., 2012) and wheat (T. aestivum, 
cultivar Tugela) via seed imbibition with a conidial 
suspension containing 1 x 10

8
 conidia ml

-1 
using the protocol 

of Akello and Sikora (2012). The fungus was re-isolated from 
the two hosts and designated as insect- and plant-derived 
isolates, “IN” and “PL”, respectively. 
 
Treatments 
 
Endophytic establishment through seed treatment with 
“IN” versus “PL” recovered isolates in five South African 
wheat cultivars 
 
 The purpose of this experiment was to establish B. bassiana 
isolates as endophytes in South African wheat cultivars, 
thereby comparing endophytic potential of the insect- 
versus plant- derived isolates. The experiment was arranged 
as a completely randomised design with five replicates. The 
treatment design was a split-split plot. The main plot 
treatments were the cultivars and first subplot was the 
fungal strains (from the insect and plant derived sources). 
The second subplot was plant parts (root, stem or leaf). 
Segments from plant parts (roots, stems and leaves) were 
excised and surface sterilised according to the method of 
Bills (1996) and plated on B. bassiana-selective medium 
based on Sabouraud dextrose agar amended with 1 % yeast 
extract (SDAY) (SDA Biolab, Merck, Longmeadow, 
Modderfontein, South Africa), containing 0.55 g/L dodine 
(guanidine) and 5 mg/L chlortetracycline antibiotic (Chase et 
al., 1986). A total of 270 treated plant sections (9 segments 
from 3 plant parts x 5 cultivars x 2 observation times) were 
included in the trial. Four independent trials were 
conducted, at least seven days apart (total of 13 500 plants). 
Plates with surface sterilised plant sections were incubated 
at 25 ±2ºC for 7-10 days and evaluated in comparison with 
the controls.  
 
Effect of three inoculation techniques on five plant growth 
parameters  
 
Wheat cultivars were inoculated with B. bassiana best 
performing isolate (insect-derived isolate) from the previous 
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assay, employing three different inoculation techniques, viz. 
seed imbibition, soil drenching and leaf spraying. A volume 
of 5 ml of a 1 x 10

8
 conidia ml

-1
 suspension was administered 

in each pot for two inoculation techniques (except for seed 
imbibition). Seed imbibition was performed as in the 
previous assay on 1125 treated plants (75 pots x 3 plants per 
pot x 5 cultivars) and 1125 control plants (imbibition of 
water plus 0.01% Break-Thru

®
, only). Another batch of 150 

pots (75 treatment + 75 control) was also included in the soil 
drenching treatment. The desired conidia ml

-1
 suspension 

was spread directly onto the soil around the stem-base of 
three 14-day old seedlings (approximately 1.7 ml per 
seedling) soaking the roots in each pot, using a 5 ml stepper 
syringe (Socorex™ 411 Stepper). For leaf spraying, leaves of 
1125 plants (14-day old) were sprayed to a point of run-off 
(Rondot and Reineke, 2018) with the same suspension 
concentration as above using a hand-held atomizer. Control 
plants (1125) were sprayed with water plus 0.01% Break-
thru

®
, only. Prior to spraying, stem bases and the soil 

surfaces of treated pots were covered with aluminum foil to 
prevent inoculation of these areas (Posada et al., 2007). 
Plants were maintained under glasshouse conditions at 25 
±2 ºC, 40 ±5% RH and natural light for 42-45 days. All plants 
were evaluated for five plant growth parameters: shoot 
height, root length, fresh shoot biomass, fresh root biomass 
and dry shoot biomass. Three independent trials were 
conducted at least seven days apart. The experimental 
design was organized as completely randomized with five 
replicates, while the treatment design was a split-plot with a 
two factorial design as the main plot. The two factors were 
cultivars with five levels and inoculation techniques with 
three levels. The subplot factor was fungal strains with two 
levels (fungus-treated and control).  
 
Virulence of Beauveria bassiana PPRI 7598 to RWA 
following passage and re-isolation from an insect (“IN”) 
versus plant (“PL”) host  
 
Bioassays were performed with B. bassiana 7598IN and -PL 
according to the assay methodology of Hatting and Wraight 
(2007). Treatments included the two B. bassiana isolates (at 
1 x 10

8
 conidia ml

-1
) and a chemical standard, Aphox

®
 WG 

(active: pirimicarb), at a concentration of 0.5 g/L. Age-
related adult apterae aphids (biotype RWASA1) were 
sourced from the ARC-Small Grain insectary with 5 replicate 
groups of 20 aphids each (100 aphids) allocated to each 
treatment (x3) and control (total 400 aphids). Control aphids 
were sprayed with sterile water containing 0.01% Break-
Thru

®
 surfactant, only. All treatments and control were 

sprayed with 5 ml aliquots inside a Burgerjon precision spray 
tower (Burgerjon, 1956). During spraying, a Petri dish 
containing 1.5% water agar was placed adjacent to the 
aphids on the same radial dimension to quantify the actual 
number of conidia deposited per mm

2
. As per protocol, 

inoculated aphids were maintained on wheat seedlings 
(cultivar Tugela; 4-leaf stage) under glasshouse conditions at 
25 ±2 ºC, 40 ±5% RH and natural light for 7 days post-
inoculation.   
Mortality was assessed daily for the duration of the assay 
and all dead aphids collected and placed on 1.5% water agar 
and incubated at 22 ±3ºC in total darkness to facilitate the 
development of mycosis (external sporulation on cadavers). 
Three independent series of assays were conducted seven 

days apart.  
 
Statistical analyses  
 
Mortality data were corrected according to the Schneider 
Orelli formula. The homogeneity of four trial variances were 
verified by Levene’s test (Levene, 1960). The normality of 
the standardized residuals was confirmed using Shapiro-Wilk 
test (Shapiro and Wilk, 1965). The data of the combined 
trials were subjected to analysis of variance (ANOVA) using 
General Linear Models Procedure (PROC GLM) of SAS 
software (Version 9.4; SAS Institute Inc, Cary, USA).  
Observations over days were combined in a split-plot 
analysis of variance with day as sub-plot factor (Little and 
Hills , 1978). A combined ANOVA for the cumulative 
mortality over 7 days was performed. Fisher’s protected 
least significant difference (LSD) was calculated at the 5% 
level to compare treatment means (Ott and Longnecker, 
2001). A probability level of 5% was considered significant 
for all tests. 
 
Conclusion 
 
All five South African wheat cultivars tested were amenable 
to B. bassiana endophytic establishment, with levels ranging 
from 21% (cultivar Elands) to 34% (cultivar Baviaans). Similar 
to other published reports, endophytic B. bassiana also 
promoted overall plant growth in our study. Considering five 
growth parameters, B. bassiana-treated plants 
outperformed control plants by 71%, on average. 
Pathogenicity of B. bassiana to RWA was retained following 
passaging and re-isolation from a wheat host plant, 
supporting the notion of incorporating B. bassiana-
endophytism as IPM component. Futher studies on the 
interaction of host plant resistance and B. bassiana-
endophytism are warranted, especially in light of new RWA 
biotype development. Whether naturally present or 
artificially induced, B. bassiana-endophytism appears 
beneficial within a wheat cropping system.  
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