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Abstract 
 
Evapotranspiration (ET) estimation is essential for adequate management of water resources. The main ways to quantify ET are 
based on the use of field sensors, class A tanks, Bowen's ratio method, turbulent vortex correlation analysis, use of lysimeters, and 
through Remote Sensing (RS), which allows estimating biophysical parameters based on satellite images. The objective of the 
research was to determine the effective evapotranspiration (ETe) of cotton plantations irrigated with a centre pivot, using the 
Surface Energy Balance Algorithm for Land (SEBAL), Mapping Evapotranspiration at High Resolution and with Internalized 
Calibration (METRIC) and Simple Algorithm for Evapotranspiration Retrieving (SAFER) methods. Comparisons were made for three 
agricultural years, using the R², RMSE, MAE, MBE and R statistics. The best performances in the crops were obtained with the 
SEBAL vs. SAFER models, which presented mean values of 0.54, -0.30 and 0.31 mm d

-1
 in RMSE, MBE and MAE, respectively. The 

data obtained by all three models can be applied to estimate ETe in irrigated cotton plantations and, consequently, their results can 
assist in irrigation management and in crop treatments.  
 
Keywords: irrigation, water demand, transpiration, energy balance. 
Abbreviations: SEBAL_Surface Energy Balance Algorithm for Land; METRIC_Mapping Evapotranspiration at High Resolution and 
with Internalized Calibration; SAFER_Simple Algorithm for Evapotranspiration Retrieving; TSM_Two-Source Models our Two-Layer 
Models; TMEF_A Two-Source Model for Estimating Evaporative Fraction; WSITSEBM_Wind Speed-Independent Two-Source Energy 
Balance Model; LE_Latent Heat Flux. 
 
Introduction 
 
It is estimated that 70% of water use in agriculture is for 
irrigation (FAO, 2021) and sustainable use of this resource 
has become a global concern, considering, in addition to the 
increased demand, the reduction in the water available due 
to climatic, vegetation and soil factors. In this context, 
numerous studies have been carried out with the objective 
of obtaining accurate evapotranspiration (ET) data, 
considering that they allow detecting water stress in crops, 
which is essential to optimize irrigation systems so that they 
use less water (Pradipta et al., 2022) and to evaluate the 
hydrological cycle dynamics. 
ET corresponds to the sum of water loss by the plant 
(transpiration) and by the surface (evaporation) and can be 
defined in four ways: 1) reference evapotranspiration (ET0); 
2) effective evapotranspiration (ETe); 3) oasis 
evapotranspiration (ETo); and 4) crop evapotranspiration 
(ETc). This latter depends on the crop coefficient (Kc), which 
varies predominantly according to the specific 
characteristics of each crop, phenological state and soil 

moisture (Allen et al., 1998). ET can be quantified by: 1) data 
obtained through stations; 2) making use of pan 
evaporation; 3) using the Bowen ratio method; 4) turbulent 
vortex correlation analysis; 5) using lysimeters; and 6) using 
Remote Sensing (RS) data based on the Earth's surface 
temperature (LTS or Ts) (Mkhwanazi et al., 2015; Jensen and 
Allen, 2016). 
Due to practical application and reduced cost, by using RS it 
is possible to perform ET estimates from energy balance 
models, in which evaporation is calculated as a residual 
(Jensen and Allen, 2016). The models to estimate ET can be 
classified according to the number of sources (Single Source 
Models - SSMs and Two-Source Models - TSMs). 
SSMs generally use the Earth's surface temperature as a 
proxy for aerodynamic temperature (Tao) to calculate 
sensible heat flux (H). Examples of these types of widely 
used models include Surface Energy Balance Algorithm for 
Land (SEBAL) (Bastiaanssen et al., 1998), Mapping 
Evapotranspiration at High Resolution and with Internalized 
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Calibration (METRIC) (Allen et al., 2007) and Simple 
Algorithm for Evapotranspiration Retrieving (SAFER) 
(Teixeira and Hernandez, 2012). 
TSMs calculate estimates of sensible and latent heat fluxes 
from the soil and canopy components of vegetated surfaces. 
The components of the latent heat flux can be converted 
into evaporation (E), transpiration (T) and, when combined, 
into evapotranspiration (ET) (Colaizzi et al., 2014; Sun, 2016). 
Examples of these types of models include the Two-Source 
Models our Two-Layer Models (TSMs) (Norman et al., 1995), 
Two-Source Model for Estimating Evaporative 
Fraction (TMEF) (Sun, 2016) and Wind Speed-Independent 
Two-Source Energy Balance Model (WSITSEBM) (Wang et al., 
2020). The disadvantage of TSMs is linked to their 
complexity; however, what has been a real impediment to 
their more widespread use is the scarcity of E or T 
measurements, which limits most of the TSEB model studies 
to only considering latent heat flux (LE) or ET (Colaizzi et al., 
2002). 
Despite this, SSMs have provided satisfactory energy flux 
estimates for heterogeneous surfaces, in addition to being 
applied in various weather and vegetation conditions 
(Barker et al., 2018; Yang et al., 2022) and for requiring few 
surface meteorological data, which makes them useful for 
places where these data are limited (Mkhwanazi et al. 2015). 
Among the SSMs that have been used for application in 
agricultural areas, SEBAL can be highlighted, which has been 
tested in more than 30 countries with acceptable precision 
varying from 85% to 95% in daily and seasonal scales 
(Bastiaanssen et al., 2000). 
Considering the diversity of RS models for ET estimation, 
studies seeking to compare them are essential to determine 
which are more efficient in determining crop, soil and 
weather conditions. Thus, this research aims at determining 
the effective evapotranspiration (ETe) of cotton plantations 
irrigated by a centre pivot system, using three different 
models: SEBAL, METRIC and SAFER, where, due to the 
reliability obtained from the literature, the SEBAL model was 
considered as the standard. 
 
Results and discussion 
 
Meteorological conditions 
Figure S1 presents the monthly mean values of 
temperature (Tm), extraterrestrial solar radiation (Ra), wind 
speed (WS), relative humidity (RH) in the air, reference 
evapotranspiration (ET0) and rainfall. The Tm and RH of the 
air remained close over all three years, with variations in Tm 
lower than 1°C across the years. In the case of RH, the 
variations were lower than 1%. With regard to the mean 
values, 23.58ºC and 68.9% were verified for Tm and RH, 
respectively, which are very close to the historical mean of 
the region. Tm presented a mean of 24.5ºC in the two initial 
months, for the three years, period in which cotton was 
planted in the field and, according to Walne et al. (2020), 
this is close to the values recommended for successful 
germination. 
WS presented a variation considered large between 2018 
and 2020 with mean values of 0.32 and 1.1      , 
respectively (Figure S1C). The cotton crop lasted a mean of 
181 days and, in the study area, the sowing window 
normally starts in the first half of June and ends in early July. 
It is important to highlight that rainfall is higher between 
February and March, with a reduction in its volume since 
May (Figure S1F), extending until the end of September. 

Entry parameters of the models 
The comparison between all three surface energy balance 
models (SEBAL, METRIC and SAFER) is presented below. The 
input parameters (Digital Elevation Model [DEM], Surface 
albedo [Sa], Normalized Difference Vegetation Index [NDVI] 
and Surface temperature [Ts]) are described: 
The altitude that was generated based on DEM is an 
important variable to assess and identify variability in the 
relief, which in turn influences Ts; therefore, the METRIC and 
SEBAL algorithms use this parameter to adjust that variable. 
The regions between pivots P5 and P12 present the highest 
altitudes according to the spatial map and to the boxplot, 
and pivot P8 had the highest altitude when compared to the 
others (Figure S2). 
The ratio between incident and reflected short-wave 
radiation is called reflection coefficient or Sa, which can be 
thought of as the Earth's reflectivity, that is, the amount of 
incoming sunlight that is reflected back into space (Acker et 
al., 2014). Considered as a first-order determinant of energy 
flow, which can be influenced by factors such as humidity 
and temperature (Small, 2006), it is employed in the SEB 
models providing surface reflectance information for the 
calculation of net radiation. 
Sa presented a mean value of 0.15 for all methods and years 
studied, and SAFER had a lower value when compared to 
METRIC and SEBAL (Figure S3). Time distribution of Sa is 
increasing, closely following development of the crop, and 
the highest values can be observed since April for all 
methods; however, it was not possible to notice large 
variations between the pivots in the spatial comparison. P4 
presented the highest Sa across all three methods and 
agricultural years (2018, 2019 and 2020), together with P7, 
P8, P9 and P10 (Figure S3). 
Where this vegetation index is used to describe the general 
effect of vegetation on the surface flows and, therefore, its 
application is in estimating soil heat flux (G) and roughness 
length (Zom) in the SEBAL and METRIC models (Bastiaanssen 
et al., 1998; Allen et al., 2007). NDVI is a key RS indicator 
related to land cover and soil moisture, and the long-wave 
radiation emitted is directly proportional to T0 (Teixeira et 
al., 2012). 
NDVI has a peculiar characteristic for all the images 
evaluated: a low value > 0.37 corresponding to the months 
of January, February and the end of June (it corresponds to 
physiological stage I and beginning of stage II, and end of 
stage IV) and with expressive growth with progress of 
cotton's physiological development, reaching its highest 
value (0.89) (it corresponds to physiological stage III) 
(Figure S4). The NDVI equation is standard; thus, the NDVI 
images generated by the SEBAL algorithm were applied in 
SAFER; therefore, the NDVI maps are identical to each other. 
Ts is a source of conductive, convective and radiant energy 
transfer, as well as a direct measure of the thermal 
environment on the surface (Pianalto and Yool, 2017). Using 
RS, the Ts values are calculated from satellite image 
information regarding thermal radiance (Sánchez-Aparicio et 
al., 2020), they can be applied to investigate time and spatial 
changes in land use/cover (Jensen, 2000), and their 
relationship with reflectance can provide information about 
the surface properties (for example: composition, emissivity) 
and also about the processes (for example: 
evapotranspiration, latent and sensible heat flux), which are 
the main determinants of surface energy balance (Small, 
2006; Allen et al., 2011). 
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Table 1. Sowing date (SD), harvest date (HD), cycle length in days (Cycle) and variety (Va) for 2018, 2019 and 2020, with cotton 
plantations. 

Pivot 2018 2019 2020 

Va SD HD Cycle Va SD HD Cycle Va SD HD Cycle 

P1 - - - - FM 975 Jan/09 Jul/10 182 - - - - 

P2 - - - - - - - - 

P3 FM 983 Jan/02 May/08 185 - - - - - - - - 

P4 - - - - FM 975 Jan/09 Jul/10 182 - - - - 

P5 FM 975 Jan/02 May/08 185 FM 975 Jan/01 May/07 177 

P6 - - - - 

P7 FM 975 Jan/02 May/08 185 - - - - - - - - 

P8 Jan/05 May/04 180 - - - - - - - - 

P9 - - - - - - - - FM 975 Jan/01 May/07 177 

P10 - - - - - - - - 

P11 - - - - - - - - - - - - 

P12 TMG 47 Jan/02 May/08 185 - - - - - - - - 

- Cotton was not planted. 
 

 
Fig 1. Effective evapotranspiration comparisons: ETSEBAL (mm d

-1
) vs ETMETRIC (mm d

-1
) and ETSEBAL (mm d

-1
) vs ETSAFER (mm d

-1
), for 

2018. The dotted black lines represent the 1:1 line and the coloured dotted lines represent the linear regressions. P: Centre Pivot. 
**Significance of the regression at p-value<0.001.  
 
 

 
Fig 2. Effective evapotranspiration comparisons: ETSEBAL (mm d

-1
) vs ETMETRIC (mm d

-1
) and ETSEBAL (mm d

-1
) vs ETSAFER (mm d

-1
), for 

2019. The dotted black lines represent the 1:1 line and the coloured dotted lines represent the linear regressions. P: Centre Pivot. 
**Significance of the regression at p-value<0.001. 
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Fig 3. Effective evapotranspiration comparisons: ETSEBAL (mm d

-1
) vs ETMETRIC (mm d

-1
) and ETSEBAL (mm d

-1
) vs ETSAFER (mm d

-1
), for 

2020. The dotted black lines represent the 1:1 line and the coloured dotted lines represent the linear regressions. P: Centre Pivot. 
**Significance of the regression at p-value<0.001. 
 

 
Fig 4. Commercial farm location map. 

 

 
Fig 5. Images selected for evapotranspiration estimation: in blue, the date corresponding to each image; and in black, the Julian 
Day. 
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In this context, Ts is an important tool as input data for ET 
calculation, as it describes the surface condition and the 
partition of available energy in H and LE (Kustas and 
Norman, 1996). Therefore, the spatial and time distribution 
of Ts for all three methods (SEBAL, METRIC and SAFER) and 
agricultural years (2018, 2019 and 2020) can be seen in 
Figure S8. The highest Ts values are normally observed at the 
beginning and at the end of cotton cropping, when there is 
bare soil or low incidence of vegetation cover, due to the 
crop's senescence stage. In addition to that, it is possible to 
notice that, in 2019, Ts was relatively higher than in the 
other periods studied (Figure S5). 
SAFER presented the lowest Ts values when compared to the 
METRIC and SEBAL methods; this is because, due to being an 
empirical equation, its calibration was adjusted for the 
semiarid region. Another important condition is that Ts 
affects the available energy, acting on the long-wave 
radiation balance, with lower values under irrigation 
conditions than in the drier areas around the irrigated 
plots (Teixeira et al., 2017). 
The lowest Ts values were observed in 2018, with the highest 
values recorded in the initial stages, which corresponds to 
the month of January and with a reduction between the 
period from April to early June (Figure S5). This low variation 
is a consequence of total soil coverage by the crop, of the 
low variation in the weather conditions over the three years, 
and of the low variation in the cropping system and 
irrigation management (Venancio et al., 2020). 
The SEBAL model presented the highest ET in 2020, with a 
mean value of 4.24 mm d

-1
 across the pivots, with pivot P09 

reaching 5.32 mm d
-1

. 
Figures 1, 2 and 3 present the comparisons made between 
the ET estimation methods (ETSEBAL [mm d

-1
] vs 

ETMETRIC [mm d
-1

] and ETSEBAL [mm d
-1

] vs ETSAFER [mm d
-1

]) for 
all three agricultural years; and, for validation of the models, 
coefficient of determination (R²), Root Mean Square 
Error (RMSE), Mean Bias Error (MBE) and Mean Absolute 
Error (MAE) were used between the comparisons 
performed. 
The scatter plots show that there is certain degree of 
linearity between the comparisons, and the SEBAL vs 
METRIC comparison presented the best data dispersions. 
According to Singh and Senay (2016), who studied different 
methods for estimating ETc, good linearity was found across 
the methods, and it was indicated that all models captured 
the spatial variability of the instantaneous ET and of the 
evaporative fraction. 
The R² coefficient varied from 0.1 to 0.8 with a mean of 0.6 
across all centre pivots and for all three years, and the SEBAL 
vs METRIC comparisons presented the highest agreement in 
their results, whereas the comparisons made between 
SEBAL and SAFER for the three agricultural years presented 
mean values of 0.54, -0.30 and 0.31 mm d

-1
 in RMSE, MBE 

and MAE respectively (Figures 1, 2 and 3). The studies by 
Filgueiras et al. (2019) noticed that the mean difference 
between the ETa-SEBAL and ETa-EEFLUX products was 
0.20 mm. 
The highest ET values were observed in the SEBAL and 
METRIC methods; this is because the temperature retrieved 
by both methods is higher when compared to SAFER (Figure 
S5). This same result is observed by Silva et al. (2019), where 
they compared METRIC with SAFER obtaining the same 
result and asserted that the ETa maximum value, sum and 
interval by METRIC were higher than in SAFER because the 

surface temperature retrieved by SAFER was always higher 
than that of METRIC, generating lower ETa values. 
The best results across the models evaluated were found in 
2018: the SEBAL vs METRIC comparison presented mean 
values of 0.14, 0.14 and 0.15 mm d

-1
 in 2018 for RMSE, MBE 

and MAE; however, mean values of 1.61, -1.60 and 
1.60 mm d

-1
 were observed in 2020, respectively (Figures 1 

and 3). The study by Singh and Senay (2016) found values of 
0.92, 0.89 and 0.93 mm d

-1
 for MAE, MBE and RMSE, 

respectively, for the METRIC model; in addition to reporting 
that there is some degree of linear relationship between the 
models tested, emphasizing this tendency for the 
relationship between METRIC and SEBAL. 
SEBAL was developed in the late 1990s, it is considered a 
worldwide renowned method, and has already been tested 
in various weather conditions; thus, the comparisons made 
between METRIC and SAFER found that METRIC presented 
better data adequacy when compared to the SEBAL standard 
method. This is due to the methodological structure, as 
METRIC was designed based on SEBAL's pioneering energy 
balance process, in which the temperature gradient close to 
the surface is an indexed function of the radiometric surface 
temperature, thus eliminating the needs for an absolutely 
precise surface temperature and for measuring air 
temperature. Both consider that the latent heat flux varies 
linearly between the hot and cold pixels, which is based on 
the logic of the temperature difference between the soil 
surface and the air (Senay et al., 2007). 
 
Materials and Methods 
 
Study area 
The study was conducted in a commercial farm located in 
the municipality of São Desidério, western region of the 
state of Bahia, using data from 12 centre pivots (totalling 
1,524 ha

-1
) located in a rectangle and delimited by the 

12°54'9.80"W/45°29'56.75"S coordinate pair, with a mean 
altitude of 741 m (Figure 4). According to Köppen's 
classification, the region's climate is of the Aw type, tropical 
with rainy summers and dry winters, with annual rainfall 
varying from 1,000 to 1,300 mm and concentrated between 
October and April (Alvares et al., 2013). 
 
Meteorological, crop and irrigation management data 
Surface meteorological data are important to assist in 
calibration of the models and in ETe calculation, estimated 
through satellite images from the ETM+ and OLI sensors. In 
this way, data regarding air temperature (Tm, °C), wind speed 
at a height of 2 m (WS, m s

-1
), solar radiation (Ra, MJ m

2
 day

-

1
), relative humidity (RH, %) and rainfall (R, mm) were used, 

obtained by means of an automatic weather station, located 
close to the centre pivots (Figure 4). It was then possible to 
calculate reference evapotranspiration (ET0) through the 
Pemman-Monteith method (PM-FAO 56) (Allen et al., 1998). 
The centre pivots studied are cultivated with cotton, with 
acquisition of data referring to sowing date (SD), harvest 
date (HD), cycle length in days (Cycle) and cotton variety 
used (Va) (Table 1). 
 
Orbital images 
Data obtained by satellites Landsat 7 (Enhanced Thematic 
Mapper Plus [ETM+] spectral sensor, for multispectral bands 
with 30 m spatial resolution) and Landstat 8 (Operational 
Land Imager [OLI] and Thermal Infrared Sensor [TIRS] 
spectral sensors, with spatial resolution for the thermal 
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bands at 30 and 100 m, respectively) were used, with the 
scene located in orbit 220, point 69, between 2018 and 
2020. Time resolution is 16 days and the images are 
available free of charge (Pardo-Pascual et al., 2018). The 
images with no clouds over the study area obtained for each 
agricultural year are presented in Figure 5. 
 
Methods to estimate effective evapotranspiration (ETe) 
Three models belonging to the SSM class were used to 
estimate ETc, namely: SEBAL, METRIC and SAFER. In the 
selection of the three models for the study, SEBAL was 
determined as a reference; currently considered as one of 
the most reliable algorithms for estimating ET, it is one of 
the most promising approaches for local and regional 
estimation with minimal soil data (Liou and Kar, 2014), is 
widely accepted and validated to obtain 
evapotranspiration (ET) data in agricultural 
areas (Bastiaanssen et al., 1998), and has already been 
tested in more than 30 countries around the world with 
precision varying from 85% to 95% on daily and seasonal 
scales (Bastiaanssen, 2000; Bastiaanssen et al., 2005). 
 
Standard model - Surface Energy Balance Algorithm for Land 
(SEBAL) 
SEBAL is an image processing model to estimate 
evapotranspiration (ET) as a residual of the surface energy 
balance. This model was developed in the Netherlands by 
Bastiaanssen et al. (1998), with the proposal of estimating 
the spatial variation of most of the empirically essential 
hydrometeorological parameters. Requiring only field 
information on short-wave atmospheric transmittance, 
surface temperature and vegetation height, in addition to 
not involving numerical simulation models, it calculates the 
fluxes regardless of the land cover and it can ultimately deal 
with thermal infrared images in resolutions from a few 
meters to a few kilometres (Bastiaanssen, 1998). SEBAL uses 
surface temperature (T0), hemispheric surface reflectance 
(r0) and the Normalized Difference Vegetation Index (NDVI), 
as well as their interrelationships, to infer surface fluxes for 
a wide spectrum of soil types. A simplified form of the SEBAL 
algorithm can be seen in Equations 1, 2 and 3. 
             
                     
                  

(1) 
(2) 
(3) 

Where λET: latent heat flux (W/m²); Rn: net radiation 
resulting from the sum of all incoming and outgoing short-
wave and long-wave radiation on the surface; G: sensitive 
heat flux conducted to the soil; H: sensitive heat flux 
conducted to the air; ETinst: instantaneous ET (mm h

-1
); 

3,600: second-to-hour conversion; ET24: 24-hour 
evapotranspiration; ETrF: reference ET fraction; and 
ETr_24: daily ETr. 
In their structure, the SEBAL and METRIC models use the 
surface temperature (dT) that is indexed to the radiometric 
surface temperature (Allen et al., 2007). Therefore, Ts uses a 
simple linear relationship: dT = a + bTs (where a and b are 
correlation coefficients of manually-selected hot and cold 
pixels in the image) (Bhattarai et al., 2016). A hot pixel is 
selected from a dry and empty agricultural field, where ET is 
assumed to be 0 while a cold pixel is selected from a well-
irrigated crop surface with full coverage, where ET is 
assumed to be close to a maximum rate (Bastiaanssen et al., 
2005). One of the advantages of this model is that it requires 
few soil-based meteorological data, which makes it useful 

for places where these data would be limited (Mkhwanazi et 
al., 2015). 
Mapping Evapotranspiration at High Resolution and with 
Internalized Calibration (METRIC) model  
METRIC is based on the SEBAL model, using the same dT 
estimation technique, thus eliminating the needs for an 
absolutely precise aerodynamic surface temperature and for 
air temperature measurements to estimate sensitive heat 
flux on the surface (Allen et al., 2007). In addition to that, 
the energy balance based within a scene is calibrated under 
two extreme conditions (dry and wet) using locally available 
meteorological data (Liou and Kar, 2014). For these extreme 
conditions, ET in the cold (wet) pixel is considered 5% higher 
than ETr. Thus, it allows for some H partition for a cold pixel 
(Hcold = Rn – G - 1.05λETr and dT ≠ 0) (Bhattarai et al., 2016). 
A simplified demonstration of METRIC can be seen in 
Equations 4, 5 and 6, in which the same concept applied by 
the SEBAL model occurs in its processes; however, the 
positive point of this model is that it provides relatively more 
precise ET estimates in images with higher resolutions when 
compared to more general models, in addition to 
considering the impacts of regional advection. 
                      
  [                        ]      
                 

(4) 
(5) 
(6) 

Where ETinst: instantaneous ET (mm h
-1

), LE: latent heat flux 
(W m

-2
); ρw: water density (∼ 1,000 kg m

-3
); λ: vaporization 

latent (Jkg
-1

) representing the heat absorbed when one 
kilogram of water evaporates and is calculated; ETrF, fraction 
of the reference ET (ETr), it is for the 0.5 m height 
standardized alfalfa reference at the time of the image; Ts: 
surface temperature (K). 
This model was implemented in Google's Earth Engine 
Evapotranspiration Flux (EEFlux) platform. The EEFlux 
project was funded by Google Inc., and was supported by 
three institutions: University of Idaho (UI), University of 
Nebraska-Lincoln (UNL) and Desert Research Institute (DRI), 
as well as by the USGS through the Landsat Science Team, 
where each student and employee had complementary 
capacity and carried out work components in coordination 
with the other universities. EEFlux is currently available free 
of charge at https://eeflux-level1.appspot.com/, with a vast 
collection of processed images from Landsat dating back 
from 1984 and with updates every 16 days for the same 
point. In this context, to evaluate the METRIC model 
estimation, the already processed images from EEFlux were 
used, corresponding to the same periods for the other 
methods studied. 
 
Simple Algorithm for Evapotranspiration Retrieving (SAFER) 
model 
The SAFER model was proposed by Teixeira and Hernandez 
(2012), where they evaluated two models based on the 
Penman-Monteith (PM) method. Modelling involved net 
radiation and the soil heat fluxes, the resistance values to 
the water fluxes and interpolated meteorological data. 
When used with satellites and a network of 
agrometeorological stations, both of the simple observation 
models are suitable for river basin scale implementation for 
ET monitoring. The equation to calculate ETe is shown in a 
simplified form by means of Equation 7. 

       [       (
  

      
)] (7) 

Where exp: vaporization latent (Jkg
-1

) representing the heat 
absorbed when one kilogram of water evaporates and is 

https://eeflux-level1.appspot.com/
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calculated as in the equation; a and b are regression 
coefficients; where asf = 1 and bsf = -0.008; T0: surface 
temperature; ∝0: surface albedo; and NDVI: Normalized 
Difference Vegetation Index. 
The NDVI, α0 and T0 images are the only input parameters 
for modelling the ET/ET0 ratio values using SAFER. The values 
for this ratio were then multiplied by the daily ET0 grids to 
estimate the ET values on this large-scale time scale. New 
studies such as Teixeira et al. (2017) and Teixeira (2012) 
were developed for the adaptation of new sensors and 
indices applied to this model; therefore, they must be 
consulted to better understand this model. A number of 
studies developed by Venancio et al. (2020) calibrated the 
model for the corn crop in western Bahia, finding a and b 
coefficients of 0.32 and -0.0013, respectively. 
 
Statistical indicators 
To evaluate the ETe estimations, the Root Mean Square Error 
(RMSE), Mean Bias Error (MBE), Mean Absolute Error (MAE) 
and coefficient of determination (r

2
) indicators were used, 

calculated according to Equations 8 to 11. 
These indices were widely used to validate estimation 
methods such as Costa et al. (2020) and Venancio et 
al. (2020). The Quantum GIS software was used for image 
processing. The statistical analyses were performed in the 
Estatística software (StatSoft, Palo Alto, California, USA). 
 
Conclusion 
 
The ETc data estimated through the METRIC and SAFER 
models are similar to SEBAL and can be reliably applied in 
water resource management and, mainly, when seeking 
estimation methods that consider spatial and time 
variability, as they contribute to improved decision-making 
in irrigation management. The comparisons carried out 
between all three agricultural years presented better 
performance with the SEBAL vs SAFER models, with mean 
values of 0.54, -0.30 and 0.31 mm d

-1
 in RMSE, MBE and 

MAE, respectively. The current study noticed that the data 
obtained by all three models can be applied to estimate ETe 
in irrigated cotton plantations and, consequently, its results 
can assist in irrigation management and in crop treatments. 
It is noted that SEBAL is considered a standard model and 
the study-of-the-art on this method portrays its reliability 
and precision in several papers applied in all continents. The 
METRIC model presents an advantage, as a time series of 
images already processed from the Landsat satellites is 
available for the ETM+ and OLI sensors, which facilitates 
acquisition of reliable data to carry out irrigation 
management. The data can be accessed through the EEFlux 
platform. 
 
Acknowledgments 
 
To Universidade Estadual do Oeste do Paraná (UNIOESTE), 
Universidade Tecnológica Federal do Paraná (UTFPR) and 
Coordenação de Aperfeiçoamento de Pessoal de Nível 

Superior (CAPES) - Brazil (Funding Code 001) for funding this 
project. 
 
References 
 
Acker J, Williams R, Chiu L, et al (2014) Remote Sensing from 

Satellites☆. In: Reference Module in Earth Systems and 
Environmental Sciences. Elsevier, pp 161–202 

Allen DE, Singh BP, Dalal RC (2011) Soil Health Indicators 
Under Climate Change: A Review of Current Knowledge. In: 
Singh BP, Cowie AL, Chan KY (eds) Soil Health and Climate 
Change, 29th edn. Springer, Verlag Berlin Heidelberg, pp 
25–45 

Allen R, Pereira LS, Raes D, Smith M (1998) FAO Irrigation 
and drainage paper 56. Irrig Drain 300:300 

Allen R, Tasumi M, Morse A, et al (2007) Satellite-Based 
Energy Balance for Mapping Evapotranspiration with 
Internalized Calibration (METRIC)—Model. J Irrig Drain Eng 
133:395–406.  

Alvares CA, Stape JL, Sentelhas PC, et al (2013) Köppen’s 
climate classification map for Brazil. Meteorol Zeitschrift 
22:711–728. 

Barker JB, Neale CMU, Heeren DM, Suyker AE (2018) 
Evaluation of a hybrid reflectance-based crop coefficient 
and energy balance evapotranspiration model for 
irrigation management. Trans ASABE 61:533–548.  

Bastiaanssen WGM (2000) SEBAL-based sensible and latent 
heat fluxes in the irrigated Gediz Basin, Turkey. J Hydrol 
229:87–100. 

Bastiaanssen WGM (1998) Remote Sensing in Water 
Resources Management : The State of the Art, 1

st
 edn. 

International Water Management Institute, Colombo. 
Bastiaanssen WGM, Molden DJ, Makin IW (2000) Remote 

sensing for irrigated agriculture: Examples from research 
and possible applications. Agric Water Manag 46:137–155. 

Bastiaanssen WGM, Noordman EJM, Pelgrum H, et al (2005) 
SEBAL Model with Remotely Sensed Data to Improve 
Water-Resources Management under Actual Field 
Conditions. J Irrig Drain Eng 131:85–93. 

Bastiaanssen WGM, Pelgrum H, Wang J, et al (1998) A 
remote sensing surface energy balance algorithm for land 
(SEBAL): 1. Formulation. J Hydrol 212–213:213–229. 

Bhattarai N, Shaw SB, Quackenbush L, et al (2016) Evaluating 
five remote sensing based single-source surface energy 
balance models for estimating daily evapotranspiration in 
a humid subtropical climate. Int J Appl Earth Obs Geoinf 
49:75–86. 

Colaizzi PD, Agam N, Tolk JA, et al (2014) Two-source energy 
balance model to calculate E, T, and ET: Comparison of 
Priestley-Taylor and Penman-Monteith formulations and 
two time scaling methods. Trans ASABE 57:479–498.  

Colaizzi PD, Agam N, Tolk JA, et al (2002) Advances in a two-
source energy balance model: partitioning of evaporation 
and transpiration for cotton. Trans ASABE 7004:1–29 

Costa J de O, José JV, Wolff W, et al (2020) Spatial variability 
quantification of maize water consumption based on 
Google EEflux tool. Agric Water Manag 232. 

Teixeira AHC, Hernandez FBT (2012) Up scaling guava water 
balance in the Petrolina/Juazeiro growing area, northeast 
Brazil. Acta Hortic 959:193–200. 

FAO F and A organization of the UN (2021) AQUASTAT - 
FAO’s Global Information System on Water and 
Agriculture. In: 2021. 
https://www.fao.org/aquastat/en/overview/methodology
/water-use. Accessed 3 Apr 2022 

     √
∑                               

 
   

 
 (8) 

    
∑                              

 
   

 
 (9) 

    
∑  |                            | 

 
   

 
 (10) 

   (
∑  |               

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ |                                       
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

   

√∑                 
̅̅ ̅̅ ̅̅ ̅̅ ̅̅   ∑                                       

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    
   

 
   

)

 

 (11) 



 

51 
 

Filgueiras R, Mantovani EC, Althoff D, et al (2019) Dynamics 
of actual crop evapotranspiration based in the 
comparative analysis of sebal and metric-eeflux. Irriga 
1:72–80. 

Jensen JR (2000) Remote Sensing of the Environment An 
Earth Resource Perspective. University of South Carolina, 
New Jersey 

Jensen ME, Allen R (2016) Evaporation, evapotranspiration, 
and irrigation water requirements 

Kustas WP, Norman JM (1996) Utilisation de la télédétection 
pour le suivi de l’évapotranspiration sur les terres. Hydrol 
Sci J 41:495–516. 

Liou YA, Kar SK (2014) Evapotranspiration estimation with 
remote sensing and various surface energy balance 
algorithms-a review. Energies 7:2821–2849. 

Mkhwanazi M, Chávez JL, Andales AA (2015) SEBAL-A: A 
remote sensing ET algorithm that accounts for advection 
with limited data. Part I: Development and validation. 
Remote Sens 7:15046–15067. 

Norman JM, Kustas WP, Humes KS (1995) Source approach 
for estimating soil and vegetation energy fluxes in 
observations of directional radiometric surface 
temperature. Agric For Meteorol 77:263–293.  

Pardo-Pascual JE, Sánchez-García E, Almonacid-Caballer J, et 
al (2018) Assessing the accuracy of automatically extracted 
shorelines on microtidal beaches from landsat 7, landsat 8 
and sentinel-2 imagery. Remote Sens 10:1–20. 
https://doi.org/10.3390/rs10020326 

Pianalto FS, Yool SR (2017) Sonoran Desert rodent 
abundance response to surface temperature derived from 
remote sensing. J Arid Environ 141:76–85. 

Pradipta A, Soupios P, Kourgialas N, et al (2022) Remote 
Sensing, Geophysics, and Modeling to Support Precision 
Agriculture—Part 2: Irrigation Management. Water 
14:1157. 

Sánchez-Aparicio M, Andrés-Anaya P, Del Pozo S, Lagüela S 
(2020) Retrieving land surface temperature from satellite 
imagery with a novel combined strategy. Remote Sens 12. 

Senay GB, Budde M, Verdin JP, Melesse AM (2007) A 
coupled remote sensing and simplified surface energy 
balance approach to estimate actual evapotranspiration 
from irrigated fields. Sensors 7:979–1000.  

Silva CDOF, Manzione RL, Albuquerque Filho JL (2019) 
Comparison of safer and metric-based actual 
evapotranspiration models in a subtropical area of Brazil. 
IRRIGA 1:48–55.  

Singh RK, Senay GB (2016) Comparison of four different 
energy balance models for estimating EvapoTranspiration 
in the Midwestern United States. Water (Switzerland) 8:1–
19. 

Small C (2006) Comparative analysis of urban reflectance 
and surface temperature. Remote Sens Environ 104:168–
189.  

Sun H (2016) A two-source model for estimating evaporative 
fraction (TMEF) coupling Priestley-Taylor formula and two-
stage trapezoid. Remote Sens 8. 

Teixeira AH de C, Leivas JF, Hernandez FBT, Franco RAM 
(2017) Large-scale radiation and energy balances with 
Landsat 8 images and agrometeorological data in the 
Brazilian semiarid region. J Appl Remote Sens 11:016030. 

Teixeira AH de d. C, Hernandez FBT, Lopes HL (2012) 
Application of Landsat images for quantifying the energy 
balance under conditions of land use changes in the semi-
arid region of Brazil. Remote Sens Agric Ecosyst Hydrol XIV 
8531:85310P. 

Venancio LP, Mantovani EC, Do Amaral CH, et al (2020) 
Evapotranspiration mapping of commercial corn fields in 
brazil using safer algorithm. Sci Agric 78:1–12. 

Walne CH, Alsajri FA, Gajanayake B, et al (2020) In Vitro Seed 
Germination Response of Corn, Cotton, and Soybean to 
Temperature. J Mississippi Acad Sci 65:463–469 

Wang XG, Kang Q, Chen XH, et al (2020) Wind Speed-
Independent Two-Source Energy Balance Model Based on 
a Theoretical Trapezoidal Relationship between Land 
Surface Temperature and Fractional Vegetation Cover for 
Evapotranspiration Estimation. Adv Meteorol 2020: 

Yang L, Li J, Sun Z, et al (2022) Daily actual 
evapotranspiration estimation of different land use types 
based on SEBAL model in the agro-pastoral ecotone of 
northwest China. PLoS One 17: 

 
 
 

 


