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Abstract 
 
Assessing forest stands is crucial for managing and planning the use of these resources. Forest inventory is the instrument that 
provides information about the stand situation, which can be costly and time consuming. In order to facilitate and reduce the time 
spent obtaining these data, the main objective of this work was to evaluate the accuracy of volume and biomass estimates per unit 
area with data from remote sensing. Forty sample units were allocated and georeferenced, in which all trees with diameter at 
breast height (DBH) ≥ 5 cm were inventoried. Sequentially, the cubage was performed in order to obtain individual biomass, 
volume, and adjustment of the individual models. With data from georeferenced images of the study area, the vegetation indices 
MSAVI (Modified Soil-Adjusted Vegetation Index) and NDVI (Normalized Difference Vegetation Index) were obtained. The volume 
and biomass estimation using remote sensing variables were carried out through the adjustment of sigmoidal models by regression 
analysis, which used a combination of the average values of the vegetation indices and the basal area of the plot/hectares as an 
independent variable. The fit statistics and the accuracy of the tested models presented consistent results to estimate forest 
production. The results showwd that indices derived from remote sensing techniques associated with forest variables information 
could accurately estimate the volume and biomass of Eucalyptus spp. plantations. 
 
Keywords: vegetation indices, forest stands, biomass. 
Abbreviations: DBH_diameter at breast height, MSAVI_Modified Soil-Adjusted Vegetation Index, NDVI_Normalized Difference 
Vegetation Index. 
 
Introduction 
 
The genus Eucalyptus spp. has rapid growth, extensive 
distribution and meets the demands of a wide range of 
markets (Ferraz Filho et al., 2014; Fumes et al., 2017; 
Hernández-Ramos et al., 2017). The selection of the species 
depends mainly on the climate and the physical and 
chemical characteristics of the soil, as well as the destination 
of the wood produced (Gonçalves et al., 2017; Marcatti et 
al., 2017). 
In addition to productivity, forest plantations have great 
potential to store carbon through the production of biomass 
(Pan et al., 2013; Fontoura et al., 2017). Different types of 
forests store different amounts of carbon in terms of their 
succession stage, yield, age, management regime and 
species composition (Ribeiro et al., 2015; Du et al., 2015). 
Traditionally the quantification of biomass and volume of 
wood is realized through forest inventories. In general, the 
realization of a forest inventory is a very laborious, time-
consuming process and sometimes some remote areas are 
difficult to reach (Timothy et al., 2016). Understanding 
biophysical parameters of forests such as volume and 
biomass are the main purpose of forest inventories. This 
includes critical information about the spatial and temporal 
distribution of forests (Miura et al., 2010). 
Contemporary forest management in forest stands or native 
forests requires spatially continuous and multitemporal 

information retrieval with comparable scenarios, providing a 
basis for the successful implementation of sustainable and 
continuous long-term tree management (Pasher and King, 
2010, Huang et al., 2018). 
In the last decades, remote sensing has played a crucial role 
in forest monitoring and management, disaster 
management and agricultural applications (White et al., 
2016; Mendes et al., 2018), providing an alternative that is 
low cost, environmentally friendly and fast to monitoring the 
vegetation (Zhang et al., 2018; Vrieling et al., 2018). 
Remote sensing includes techniques that use satellite 
images, allows the observation of the area of interest as a 
whole. In a consistent way, repetitive systematic of the 
forest growth, allows characterization and differences of 
growth and productivity of the area. (Ponzini et al., 2015; 
Huang et al., 2018). In this scenario, its use offers new 
possibilities: it broadens the reach to the areas, helps and 
improves the estimates obtained in the field (Leyk et al., 
2002; Oliveira et al., 2014) and makes the process of 
obtaining data easier and less onerous (Miguel et al., 2015). 
The use of satellite images for the forestry and agriculture 
areas requires sufficient spatial and temporal resolutions to 
enable in-field monitoring (Kross et al., 2015). 
For the management and feasible quantification of forest 
resources, promotion of strategies to be used in decision 
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making is vital. To employ remote sensing techniques, it is 
necessary that the data obtained be able to predict 
parameters such as volume of way and population density of 
(Günlü et al., 2012).  
It is important to promote the development of new 
techniques to integrate field and remote sensing data. This 
will improve efficiency of estimation of biophysical 
parameters of forest stands, while at the same time 
shortens the time of surveys. Therefore, with the need to 
optimize the estimates of dendrometric variables for forest 
stand growth and production in a faster and more efficient 
way, this study aimed to adjust and select equations to 
integrate remote sensing data with field information. This 
will help consistent estimations of volume and biomass from 
Eucalyptus spp. plantations. 
 
Results and discussion 
 
Adjustment and selection of mathematical models for 
estimating the volume and biomass of individual trees 
 
For volume estimation, three models presented adjusted 
coefficients of determination (adjusted R²) higher than 0.99 
and standard errors of the estimate in percentage (Syx%)  
less than 6% (Table 1). The Schumacher and Hall model 
presented the lowest absolute and relative errors and higher 
R², corroborates as one of the widely diffused models. The 
results of Syx% are compatible with the results found by 
Pelissari et al., (2011), Hernández-Ramos et al. (2017), and 
Tewari and Singh (2018). 
The Figure 1 shows the dispersion of estimated value by 
observed value, the dispersion of residuals and the 
distribution in error classes obtained for the adjustments of 
equations for volume estimation. 
For the estimation of biomass, the three models presented 
satisfactory values for the adjusted R² and Syx% (Table 1). 
However, there is a slight loss of precision when compared 
with the statistics of volume. This is an expected result, since 
in the biomass estimation there was an additional 
independent variable which was density. For the biomass 
adjustment the Schumacher-Hall model resulted in better 
statistics. 
As can be seen in Figure 2c, the dispersion error classes of  
Schumacher-Hall model has the tendency to overestimate 
the biomass variable. 
The "t" test for paired means showed that the adjusted 
Schumacher-Hall model was efficient and significant in the 
estimation of volume and biomass. Therefore, there was no 
significant difference between the estimated and observed 
variables, a conclusion obtained from the "P" values 
obtained for all models, when compared considering a level 
of significance of 5%, according to Table 2. 
The Schumacher and Hall model is widely used in the 
forestry sector, since in most adjustment cases (volume and 
biomass) it presents satisfactory estimates with low errors. 
This fact was verified in the present study. The choice of this 
model is in agreement with that obtained by Cecília et al. 
(2014), Santana et al. (2017), Freitas and Andrade (2017) and  
Santiago-García et al. (2017) 
 

Forest inventory 
 
After selecting the best adjusted equations, the individual 
volumes and biomasses of all the trees were estimated in 
their respective plots and, subsequently, these values were 
extrapolated per hectare. 
The coefficient of variation (CV%) of both estimated 
variables (volume and biomass) were around 17%, which 
indicates a moderate stocking heterogeneity (Gomes and 
Garcia, 2002). The CV% makes inference of dispersion 
around of the average, although it is in a dimensionless 
scale. 
The volume of wood had an average of 330.35 m³/ha, 
standard deviation of 57.35 m³/ha absolute sampling error 
of 17.19 m³/ha, when analyzed in percentage 5.20%. These 
mean values of volume production for eucalyptus stands are 
within the standard observed in other studies in Brazil, 
where the volume per hectare is between 245 and 385 m³/ 
ha (Castro et al., 2013; Oliveira et al., 2014; Souza et al., 
2017). 
The average biomass value was 173.41 t/ha, standard 
deviation of the average of 31.14 t/ha with absolute 
sampling error of 9.34 t/ha, when analyzed in percentage of 
5.38%. For the calculation of both variables a 5% significance 
level was considered according to Table 3. 
 
Correlation between vegetation variables and vegetation 
indices 
 
As shown in Table 4, there is a high correlation between the 
independent variable basal area and the dependent 
variables, while there is a low correlation between the 
independent spectral variables NDVI and MSAVI with 
volume and biomass. The correlations between stand 
variables and vegetation indices were low, but their values 
were significant (p <0.05). 
It is also observed that the correlations values between the 
variables of the stands (volume, biomass and basal area) and 
vegetation indices (MSAVI and NDVI) were very similar. The 
volume presented a slightly higher correlation when 
compared to the basal area and biomass. The variable basal 
area was highly correlated with the volume and biomass 
variables. Furthermore, although its correlation with 
vegetation indices was low significant, but we decided to use 
this variable in combination with vegetation indices to 
generate regression models to estimate the variables of 
interest volume and biomass. Thus, the use of the height 
variable was dispensed, since obtaining the height variable 
in the field implies a time consuming and costly process. 
The use of the basal area, which is derived from the 
diameter of the trees (Ponzoni et al., 2012) with a predictive 
variable per unit area, is justified by its high correlation with 
volume and biomass. In addition, this variable is intrinsically 
associated with the degree of utilization or growth factors 
and production of a given site, besides being easily 
determined (Husch et al., 1982). 
Therefore, the combination of the variable basal area with 
vegetation indices related to radiation reflection by 
vegetation can  be  a  viable  alternative to estimate biomass  
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Table 1. Statistical results of model adjustment to estimate volume and biomass per individual using the variables DBH and height. 

Volume 

Model β0 β1 β2 β3 Syx Syx% Adjusted R²  

Schumacher-Hall 0.00005 1.949 0.989 
 

0.011 5.020 0.997 
Meyer 0.060 -0.020 0.001 0.001 0.012 5.320 0.992 
Spurr 0.004 0.000     0.011 5.070 0.993 

Biomass 

Model β0 β1 β2 β3 Syx Syx% Adjusted  R² 

Schumacher-Hall 0.013 2.154 1.006  11.052 9.59 0.990 
Meyer 59.986 -16.411 0.828 0.298 11.198 9.71 0.978 
Spurr -4.369 0.021     11.161 9.68 0.978 

 
 

 
Fig 1. Dispersion of estimated value by observed value (a), dispersion of residuals (b) and distribution in error classes (c) obtained 
for the equation adjustments for volume estimation of the Schumacher-Hall model. 
 
Table 2. Results obtained by the t-test of paired means applied to validate the fit of the models that estimated volume and biomass 
at the individual level. Performed with values of the 06 trees not used in the adjustment. 

Model 
Volume Biomass 

Pcalc Pα 0.05 Situation Pcalc Pα 0.05 Situation 

Schumacher-Hall 0.38 0.05 ns 0.87 0.05 ns 
             In what: Pcalc is a value of P (T <= t) bi-caudal; Pα 0.05 is the reference value; ns is not significant. 

 

 
Fig 2. Dispersion of estimated value by observed value (a), dispersion of residuals (b) and distribution in error classes (c) obtained 
for the adjustment of equations for estimation of biomass of the Schumacher-Hall model. 
 
Table 3. Estimates of stand parameters obtained by forest inventory using Schumacher-Hall equation adjusted for volume and 
biomass estimation. 

  Volume Unit Biomass Unit 

Average 330.35 m³/ha 173.41 t/ha 
Variance 3289.34 (m³/ha)² 969.9 (t/ha)² 
Standard deviation 57.35 m³/ha 31.14 t/ha 
CV (%) 17.36 % 17.96 % 
Variance of the average 72.24 (m³/ha)² 21.3 (t/ha)² 
Standard error of average 8.50 m³/ha 4.62 t/ha 
Absolute sample error 17.19 m³/ha 9.34 t/ha 
Sample relative error 5.20 % 5.38 % 
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Fig 3. Dispersion of estimated value by observed value (a), dispersion of residuals (b) and distribution in error classes (c) obtained 
for adjustments of the Gompertz model to estimate volume in m³ per hectare (m³ / ha) using vegetation indices and basal area. 
 
                   Table 4. Correlation coefficients between basal area, volume, biomass and vegetation indexes. 

  
Basal area 
(m²/ha) 

Biomass 
(t/ha) 

Volume 
(m³/ha) 

NDVI MSAVI 

Basal area (m²/ha) 1 
    

Biomass (t/ha) 0.977* 1 
   

Volume (m³/ha) 0.982* 0.998* 1 
  

NDVI 0.35* -0.32* -0.39* 1 
 

MSAVI 0.34* 0.34* 0.41* 0.968* 1 

* Significant at 95% probability. 
 

 
Fig 4. Dispersion of estimated value by observed value (a), dispersion of residuals (b) and distribution in error classes (c) obtained 
for adjustments of the Gompertz model for estimating biomass in kg per hectare (kg/ha) using vegetation indices. 
 
Table 5. Statistical results of model adjustment to estimate volume (m³/ha) and biomass (kg/ha) from vegetation indices (MSAVI 
and NDVI). 

Volume 

Model α β γ R² adjusted Syx (m³/ha) Syx (%) 

Ratkowsky 455.8 0.9588 0.0066 0.916 24.69 7.44 
Gompertz 482.17 0.3951 0.0047 0.916 24.67 7.43 
Logistic 1055.5 873.75 -0.718 0.915 24.73 7.45 

Biomass 

Model α β γ R² adjusted Syx (kg/ha) Syx (%) 

Ratkowsky 241.66 1.002 0.0067 0.907 14.10 8.08 
Gompertz 256.26 0.4226 0.0047 0.907 14.10 8.08 
Logistic 558.86 863.67 -0.736 0.906 14.14 8.10 

Where R² is the coefficient of determination; Syx is the standard error of the estimate; Syx% is the standard error of the es timate in percentage and α, β and γ are the 
adjusted coefficients of the models. 

 
Table 6. Results obtained by the t-test of paired means applied for validation of adjustment of models that estimated volume and 
biomass level of settlement. Done with the 07 parcels not used in the adjustment. 

Model 
Volume Biomass 
Pcalc Pα 95% Situation Pcalc Pα 95% Situation 

Ratkowsky 0.42 0.05 ns 0.3 0.05 ns 
Gompertz 0.45 0.05 ns 0.32 0.05 ns 
Logistic 0.50 0.05 ns 0.35 0.05 ns 

      Where: Calculated P is bi-caudal P (T <= t) value; Pα 95% is the reference value; ns is not significant. 
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Table 7. Comparative values between statistics obtained by traditional inventory and the application of the adjusted Gompertz 
model. 

  Volume Biomass 

  Inventory 
Gompertz 
model 

Unit Inventory  
Gompertz 
Model 

Unit 

Average 330.35 331.44 m³/ha 173.41 174.24 t/ha 
Variance 3289.34 2717.88 (m³/ha)² 969.9 791.61 (t/ha)² 
Standard deviation 57.35 52.13 m³/ha 31.14 28.14 t/ha 
CV (%) 17.36 15.73 % 17.96 16.15 % 
Variance of the average 72.24 59.69 (m³/ha)² 21.3 17.38 (t/ha)² 
Standard error of average 8.50 7.73 m³/ha 4.62 4.17 t/ha 
Absolute sample error 17.19 15.63 m³/ha 9.34 8.43 t/ha 
Sample relative error 5.20 4.71 % 5.38 4.84 % 

 
 
       Table 8. Mathematical models adjusted for volume and biomass estimation using biophysical parameters. 

Autor Model 

Meyer 𝑌 =  𝛽0 +  𝛽1 . 𝐷𝑏ℎ + 𝛽2. 𝐷𝑏ℎ² + 𝛽3 ∗ 𝐷𝑏ℎ. 𝐻𝑡 +  ԑ 
Schumacher-Hall 𝑌 = 𝛽0. 𝐷𝑏ℎ𝛽1. 𝐻𝑡𝛽2 + ԑ  
Spurr 𝑌 =  𝛽0 + 𝛽1. 𝐷𝑏ℎ². 𝐻𝑡 + ԑ 

            In what β's are the coefficients to be adjusted; Dbh is the diameter at breast height; Ht is the total height; ԑ is the error associated with the model. 

 
 

Table 9. Adjusted models for volume and biomass estimation from remote sensing variables. 

Model Equation 

Gompertz 𝑦 = 𝛼𝑒−𝑒𝛽−𝛾𝑥
 

Ratkowsky 𝑦 =
𝛼

(1 + 𝑒𝛽−𝛾𝑥)
 

Logistic 
𝑦 =  

𝛼

(1 + (
𝑥
𝛽

)𝛾)
 

                                               Where y is the variable of interest (volume or biomass); x is the independent variable (x = G.MSAVI.NDVI); α, β and γ are the coefficients to be adjusted. 

 
and volume with precision, using less expensive techniques, 
without the need of variables difficult to obtain in the field, 
such as the case of height. It is also worth mentioning that 
the low correlation between the vegetation indices and the 
settlement variables is due to the spatial resolution of the 
image used, which was 25 cm. Such resolution captures 
variations caused by shadow. 
Chen et al. (2004) worked with IKONOS satellite images with 
different resolutions (30 m, 10 m and 4 m) and verified that 
images of higher spatial resolutions have lower correlations 
with vegetation due to the greater influence of shadows in 
their data. Thus, variations in the correlation values between 
vegetation indices and field variables can be a result of the 
spatial resolution of the images used or, according to 
Ponzoni (2001), the effect of the atmosphere and the soil 
must also be considered. 
Almeida et al. (2014) used Landsat 5 TM images in the 
“Caatinga” area and verified that the variable basal area 
(m².ha-1) had no significant correlation with any variable 
derived from remote sensing. 
Reis et al. (2018) used the vegetation indices MSAVI and 
NDVI to predict volume and observed a good correlation 
between these indices and the volume variable (NDVI = 0.49 
and MSAVI = 0.45). Berra et al. (2012) worked with the NDVI 

index for volume estimation in eucalyptus stands and 
obtained a high correlation between the index and the 
volume variable (NDVI = 0.79). 
The variations of the correlations between the indices and 
field variables may be due to the spatial resolution of the 
images. Ponzoni (2001), explained that it might be due to 
the nature of the satellite images, which are captured by a 
remote sensor, and can be influenced by other factors, such 
as atmosphere and soil. 
 
Adjustment of models for volume and biomass estimation 
at stands level using vegetation indices and basal area 
 
The three models adjusted by regression analysis for volume 
and biomass estimation from the combination of vegetation 
indices (eq.6), MSAVI and NDVI, and basal area presented 
satisfactory and very similar statistics (Table 5) 
Berra et al. (2012) used Landsat satellite images and the 
NDVI vegetation index. They obtained an equation that 
explains 61% of the variability of the wood volume in 
eucalyptus species (adjusted R² = 0.61) and with a standard 
error of the estimate in percentage of 25.40%. These 
authors also concluded that models using vegetation indices 
were better than those using only individual spectral bands. 
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Miguel et al. (2015) used basal area and vegetation indices 
to estimate volume and biomass in a “Cerrado” fragment in 
the state of Tocatins. They obtained a R² of 0.96 and 0.91 for 
volume and biomass, respectively, as well as Syx% of 11.92% 
and 22.76%. Thus, this study presented Syx% lower than 
those observed in above mentioned studies. This could be 
due to the nature of the forests that constitute the object of 
interest. They developed equations for native forest, which 
are naturally heterogeneous, while this study deals with a 
homogeneous forest stand. 
When using the vegetation indices and basal area to 
estimate the volume of the independent stand of the 
models, all had similar statistical behavior. This same 
behavior was verified in the graphical distribution of the 
residuals (Figure 3). After evaluating the criteria of fit and 
precision and the graphic of residuals, we observed that all 
the models were very similar and applicable. 
For biomass estimation, as well as in volume estimation, all 
models present values of similar adjustment and precision 
statistics as can be observed in (Table 5), with slight loss of 
precision. Such loss was expected, since biomass is a more 
complex variable to be estimated than the volume, due to 
the existence of density. 
Regarding biomass (Figure 4), the dispersion of biomass was 
estimated and biomass observed from the Gompertz model, 
where its data was more compact around the trend line 
compared to the other models. In terms of distribution in 
error classes, the models generated different graphs among 
themselves, but with the similarity of having most 
observations in the interval (0 - 10). In terms of residual 
dispersion, the three adjusted models had their residuals 
distributed homogeneously. The Gompertz model had its 
data slightly higher when compared to the other models. On 
the other hand, the Logistic model presented more 
dispersed observations. Subsequently, the validation of the 
best model adjustments for the volume and biomass was 
performed by the "t" test for paired data, where the 
estimates of the 07 control plots were not used in the 
adjustment of the applied models. The results showed that 
all models presented a P (T <= t) value greater than 0.05 
(Table 6). Therefore, there is no statistical differences 
between the values predicted by the models, with the values 
estimated by the traditional models. 
All the adjustment and precision criteria presented 
satisfactory results, and the equations did not present 
skewed errors when validated by the "t" Test. Therefore, we 
concluded that all of them can be used. However, due to its 
wide application in several studies involving modeling in 
forest stands (Sarmento et al., 2006, Machado and 
Calegario, 2007; Santos et al., 2017), the equation derived 
from the Gompertz model was selected for estimates of the 
volume and biomass for subsequent comparison with the 
forest inventory at stand level. 
 
Comparison between estimates of volume and biomass 
obtained by traditional forest inventory with the results of 
the estimates derived from remote sensing with basal area 
 
Based on Gompertz model we used the combination of the 
vegetation indexes with the basal area for volume and 
biomass estimation when used for the 40 demarcated plots 
in the field. Then, we calculated the estimators and 
inventory statistics. An average volume of 331.44 m³.ha-1 

and a relative sample error of 4.71% and average biomass of 
174.24 t.ha-1 and a relative sample error of 4.84% (Table 7) 
were obtained. On the other hand, analysis of estimators 
and statistics from the traditional inventory showed the 
averages of 330.35 m³.ha-1 and 173.41 tons.ha-1 for volume 
and biomass, respectively, with percentage sample errors of 
5.20% and 5.38% (Table 7). 
The statistics show the use of vegetation indices associated 
with field information, which can be used with precision in 
the estimation of biophysical parameters of forest stand. 
Processing of traditional inventory and the inventory with 
information derived from aerial images associated with the 
basal area have shown averages per unit area. We observed 
the following for the volume (330.35 m³ / ha and 331.44 m³ 
/ ha, respectively), and biomass (173.41 t / ha, 174.24 t / ha, 
respectively), with error rates of ± 5.20% and 4.71% for 
volume, and for biomass errors ± 5.38% and 4.84%, 
respectively (Table 7). It is worth mentioning that for the 
estimates of volume and biomass per unit area, using the 
combination of vegetation indices with basal area, a slight 
decrease in the sampling error of the inventory, as well as 
the absence of the height variable were observed. These 
results are of great value, since they allow the direct 
estimation of field variables per unit area, and consequently 
less costs. However, the application of the technique will be 
valid if there is initial data collection from the field, since 
estimates of biophysical parameters of forests using 
vegetation indices are based on the knowledge of the area 
of study with its intrinsic characteristics. This care is due to 
the fact that although plantations of the genus Eucalyptus 
sp. may be similar in their biophysical variables, the spectral 
behavior may be very different because of the inherent 
properties of the species, making the remote sensing of 
forest canopy a complex activity (Galeana-Pizaña et al., 
2014; Reis et al., 2018). Thus, the addition of field variables, 
such as the basal area, which presents high correction with 
production data (Husch et al., 1982) in the models, 
guarantees improvements in the estimators and 
consequently more accurate estimates. 
 
Materials and methods 
 
Plant materials 
 
The plant material used was clones of Eucalyptus urophylla 
S. T. Blake x Eucalyptus grandis Hill ex-Maiden with seven 
years of age set in a 3m x 2m spacing. 
 
Study area 
 
The study was conducted in Brasília, Brazil. The stand 
occupied a total area of 25 hectares and the soil that 
predominates in the region is the type Red-Yellow Latosol, 
low in nutrients and high in aluminum (EMBRAPA, 2013). In 
terms of climate, the site is classified as Aw, according to 
Köppen classification, with maximum temperature of 28.5° C 
and minimum 12 ° C, average annual precipitation of 1,600 
mm (Fiedler et al., 2004). 
 
Methodology 
 
The work was divided into two stages. The first stage 
involved the forest inventory of the stand, the cubage of the 
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selected trees and the selection of samples (leaves, stem 
and branches) of these trees for quantification of biomass. 
The second step consisted of obtaining data derived from 
remote sensing, from which adjusting equations for volume 
and biomass estimation was done. Sequentially, the data 
obtained from the traditional inventory were used to 
validate the estimates made from the data derived from the 
images. 
 
Forest inventory 
 
The forest inventory of the stands was based on the random 
allocation of 40 sampling units with dimensions 10 m x 10 m 
(100 m²). In each plot, the DBH (diameter at breast height of 
1.30 m from the ground) was measured from all living trees 
using dendrometric tape. The inclusion criterion was DBH ≥ 
5.00 cm. The total height (Ht) of the trees was also 
measured using a Suunto hypsometer. Trees were 
sequentially enumerated in each plot using aluminum tags, 
totaling 569 sampled trees. The population parameter 
estimates were calculated according to Pellico Netto; Brena, 
1997. 
 
Cubage 
 
For rigorous cubing, 39 trees belonging to different classes 
of diameters were selected in an area close to the sample 
units. These were felled at 10 cm from the ground using  
chainsaws, and their initial diameter measured at this point. 
The diameters of the subsequent sections were measured at 
0.50 m, 1.30 m, thereafter 1 by 1 meter until the tip. Using 
the Smalian method, the volume of each section was 
calculated by the arithmetic mean of the sectional areas of 
its ends by their length. To calculate the tip volume, 1/3 of 
the area of the last section was used for the sections 
according to equation 1: 

Eq. (1)  𝑉𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑔𝑛+𝑔𝑛+1

2
∗ 𝐿 

Where: Vsection is the volume of the section; gn is the area 
of section n; gn + 1 is the area of section n + 1; L is the length 
of the section. 
 
Quantification of biomass 
 
All the cubed trees were sectioned and their compartments 
(leaves, stem and branches) weighed separately with an 
electronic platform scale with capacity for 300 kg with a 
precision of ± 0.5 kg. Samples of the compartments of all the 
trees with variable mass of 50 to 300 g were collected and 
taken to the laboratory. Their green mass was measured 
with an analytical balance with a precision of 0.01 g. 
Afterwards, they were submitted to a constant temperature 
of 103 ± 2 ° C for the woody material and 75 ± 2 ° C for the 
leaves (Smith, 1954), until reaching the constant weight for 
later determination of the dry mass. 
The relationship coefficient for biomass estimation was 
calculated (Soares et al., 2006), according to equation 2: 

Eq. (2)  Cr =
Ms

Mu
 

Where Cr = ratio coefficient; Ms = dry mass (g or kg); Mu = 
wet mass (g or kg). 
 

The coefficient generated was used to estimate the dry 
biomass of all the trees that were sectioned and had their 
compartments weighed in the field, using equation 3: 
Eq. (3)  Boc = cr ∗ Puc 
Where Boc = dry biomass compartment (kg or ton); Cr = ratio 
coefficient; Puc = wet weight compartment (kg or ton). 
 
Determination of vegetation indices 
 
The determination of vegetation indices was done from an 
aerial image provided by the Federal District Development 
Agency (TERRACAP), obtained in 2017 with an Ultracam XP 
camera that has spatial resolution of 25 cm, as well as 3 
bands in the visible and 1 in the near infrared, characteristic 
that guided the choice of the vegetation indices. The 
vegetation indices calculated were the Modified Soil-
Adjusted Vegetation Index (MSAVI) (Qi et al., 1994) and 
Normalized Difference Vegetation Index (NDVI) (Rouse et al., 
1974) and their formulas as below: 

Eq. (4)  𝑀𝑆𝐴𝑉𝐼 =
(𝑁𝑖𝑟−𝑅𝑒𝑑)∗(1+𝐿)

(𝑁𝑖𝑟+𝑅𝑒𝑑+𝐿)
 

 

Eq. (5)  𝑁𝐷𝑉𝐼 =
𝑁𝑖𝑟−𝑅𝑒𝑑

𝑁𝑖𝑟+𝑅𝑒𝑑
 

Where, Nir is the near-infrared pixel (band 4); Red is the 
pixel where the reflectance occurs in red (band 3) and L is 
the correction factor of the brightness of the soil, for which 
it was adopted 1.2, standard followed by et al. (1994). 
 
Conventional estimation of volume and biomass 
 
Based on the forest inventory data, cubage and biomass 
quantification, three statistical regression models were 
adjusted to estimate the volume and biomass of individual 
trees (Table 8). Out of 39 cubed trees, 33 were randomly 
selected and used for adjustments. The others were used for 
validation. 
 
Volume and biomass estimation using vegetation indices 
 
From the forest inventory data and the remote sensing 
variables, we proceeded with a new adjust of equations to 
estimate volume and biomass per unit area. After attempts 
and combination of several vegetation indices, we reached 
the best result, whose independent variable was calculated 
by:  Eq. (6)                 𝑥 = 𝐺. 𝑀𝑆𝐴𝑉𝐼. 𝑁𝐷𝑉𝐼 
Where, x is the independent variable; G is the basal area in 
m² / ha; MSAVI and NDVI are the average vegetation indices 
of each plot/hectare. The models used in the adjustment are 
set out in Table 9. 
For the adjustment of the models, the data of 33 plots were 
used. The other 7 plots were used to validate the adjusted 
models. Once the models were selected and the volume and 
the biomass of the plot were estimated, the estimates from 
the traditional forest inventory were compared with the 
estimates that used the vegetation index and basal area. 
 
Selecting models and statistical analysis 
 
The selection of the best adjusted models for volume and 
biomass estimation was based on the analysis of the 
adjusted coefficient of determination (R² adjusted), standard 
error of the estimate in percentage (Syx%) and residual 
distribution, calculated by the difference between the 
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observed value (volume or biomass) and the estimated value 
(Draper and Smith, 1998). 
For the adjustment of the models, the data of 33 plots were 
used. The remaining 7 plots were used to validate the 
adjusted models, based on the "t" test of paired means (p 
<0.05). 
Once the models were selected and the volume and biomass 
of the plot were estimated, the estimates from the 
traditional forest inventory were compared with the 
estimates that used the vegetation index and basal area. 
The “P” value was used to evaluate the existence of a 
significant difference between the volume and biomass 
estimates using remote sensing information and using 
traditional inventory data. 
 
Conclusions 
 
Of the models used for estimating volume and individual 
biomass, the Schumacher-Hall equation is the recommended 
one. For the models adjusted per unit area, involving the 
combination of vegetation indices with the basal area, the 
originating equation from the Gompertz model is 
recommended. The adjustment of models that used the 
combination of vegetation indices with basal area was 
accurate and presented results as good as those generated 
by the traditional forest inventory. However, its application 
requires previous field data collection. Nevertheless, when 
adjusted, this procedure is more agile, and therefore less 
costly, since it is not necessary to obtain the variable height. 
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