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Abstract 
 
The two most important abiotic factors affecting potato productivity in many areas of the world and especially in the dry African 
tropics are drought and high temperature. The situation is worsened by global warming. High temperature and drought reduce not 
only yields but also quality of potatoes. The effects of drought depend on the genotype, timing, duration and severity of the stress; 
plant emergence and tuberization are two critical periods when water stress most affects the final tuber yield. The susceptibility of 
potato crops to high temperature largely depends on genotype, development stage and stress duration; tuber initiation and bulking 
are critical stages. High temperature, particularly high night temperature, is reported to delay tuber induction, prolong tuber 
setting, and delay the onset of rapid tuber growth. The optimum soil temperature range for tuber initiation and tuber growth is 15–
20 

0
C, and the colder the soil temperature, the more rapid the initiation of tubers and the greater the number of tubers formed. At 

high temperature more photoassimilates are partitioned to the vegetative parts than tubers resulting in acceleration of haulm 
growth and inhibition of tuber initiation and growth. In tropical Africa, potato production is moving to the dry mid and low altitudes 
due to high population pressure in the moist highlands. In these dry areas, potato production is facing the double tragedy of high 
temperature and water stress. This has led to low yields and poor quality since there is no available commercial potato variety 
which is tolerant to high temperature and water stress. Breeding for heat and drought tolerance in potatoes is hard because in 
most cases, especially in dry tropics, these two conditions occur concurrently. In addition, the two traits are polygenic with low 
inheritance making conventional breeding difficult; more progress could be achieved through molecular breeding and/or genetic 
engineering. 
 
Keywords: Drought, Heat, Potatoes, Tolerance, Tropical Africa. 
 
Introduction 
 
Potato (Solanum tuberosum L. 2n=4x=48) is the third most 
important food crop  in terms of human consumption after 
rice and wheat (FAO, 2008, 2013; CIP, 2014); more than a 
billion people worldwide eat potato (CIP, 2014). The total 
world production was estimated at 388.2 million tonnes in 
2017 grown on about 19.3 million ha (FAO, 2019). The total 
production was valued at around USD 92 billion, making it 
one of the most profitable crops for the farmer, just behind 
rice and maize (FAOSTAT, 2019). Potato is grown in more 
than 158 countries worldwide (FAO, 2019) from latitudes 65

0
 

N to 50
0
 S (Acquaah, 2007) and can grow from sea level up 

to 4 700 metres above sea level; from Southern Chile to 
Greenland (CIP, 2014). More than half of global potato 
production comes from developing countries, where it is 
cultivated in marginal areas prone to environmental 
anomalies such as heat, drought, and salinity (Scott and 
Suarez, 2012). Potato is grown successfully in tropical and 
subtropical climates, with about 100 potato growing 
countries being located within the tropics and sub-tropical 
regions. 
 

The primary center of genetic variability of cultivated 
potatoes is located in the Andean mountains of Peru and 
Bolivia. Here in the Titicaca plateau, 10 to 20

0
 south and 

3,000 to 4,600 meters above sea level, potato has been 
cultivated for over 2,400 years (Acquaah 2007; Sleper and 
Poehlman 2006). The secondary center of diversity of 
cultivated potatoes is in southern South America, 
particularly in Chile (Bukasov 1966). From here is spread to 
Europe, then Northern America and Africa (Hijmans 2001; 
Acquaah 2007; Sleper and Poehlman 2006).  Potato was 
introduced into the tropical and subtropical Africa by the 
white settlers who grew it in the cool highlands. The 
principal areas of potato cultivation are concentrated in 
zones of the world with cool to medium temperatures 
during the growing season. These conditions are met both at 
low elevations in medium to high latitude countries as well 
as at high elevations in many tropical countries (Haverkort, 
1989; Haverkort and Verhagen, 2008); in the tropics at 
latitudes below 20

0
 N or S, the crop can only be grown at 

elevations of at least 2,000 masl. Potato production is the 
greatest in the temperate zones where mean yields of 20 
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ton/ha and above are reported. The high yields per unit area 
in these countries may be to a large extent caused by the 
favourable climate, i.e. moderate temperatures and long 
days with moderate light intensities. Consequently, most of 
potato breeding work was conducted in the temperate 
climates of Europe and North America as well at the 
International Potato Center (CIP) in Peru. From Peru, 
advanced potato clones were evaluated for adaptability in 
Africa and Asia by the CIP regional offices; successful clones 
were released in these countries. Potato performs best 
under cool climates and is generally adversely affected by 
high temperatures (Borah and Milthorpe, 1962; Hawkes, 
1978). Potatoes require a cool growing season with an 
average daily temperature of 15-18

0
C; temperatures above 

21
0
C have adverse effects of growth (Kabira et al., 2006). 

Optimal tuber yield for most commercial potato varieties is 
produced when potato plants are grown at average day 
temperatures between 14 and 22

0
C (Van Dam et al., 1996). 

The susceptibility of potato crops to high temperature 
largely depends on genotype (Tang et al., 2018), 
development stage and stress duration (Ahn et al., 2004); 
tuber initiation and bulking are the most critical stages 
(Struik, 2007; Ghosh et al., 2000). In potato plants, minimum 
night temperature plays a crucial role during tuberization 
which is reduced at night temperatures above 20

0
C with 

complete inhibition at above 25
0
C. High night temperatures 

are more deleterious to the formation of tubers than day 
temperature. High temperature can disturb the relationship 
balance between source and sink, delay the process of tuber 
formation and bulking, and finally result in tuber deformities 
and necrosis (Levy and Veilleux 2007). At high night 
temperature, more of assimilated carbon is partitioned to 
vegetative parts while at lower night temperature most of 
the assimilated carbon is partitioned to the tubers (Wolf et 
al., 1990). Delayed tuberization has been linked to the high 
temperature-induced inhibition of tuberization signal StSP6A 
(an orthologue of Arabidopsis flowering locus (FT) (Navarro 
et al., 2011) at elevated temperatures (Ewing 1981; Hancock 
et al., 2014). The limits and optimal temperature for the 
growth of the above-ground parts of the potato plant and 
for the tubers are different; research has shown that haulm 
growth is fastest in the temperature range of 20–25

0
C 

whereas the optimum soil temperature range for tuber 
initiation and tuber growth is 15–20

0
C (Marinus and 

Bodlaender, 1975; Struik et al., 1989a; Struik et al., 1989b; 
Van Dam et al., 1996);  the colder the soil temperature, the 
more rapid the initiation of tubers and the greater the 
number of tubers formed. Optimum soil and air 
temperatures lead to a good balance between vine and 
tuber growth (Griffin et al. 1993). The highest tuber yields 
can be gained at moderate temperatures, about 21

0
C during 

the day and 18
0
C at night (Kim and Lee, 2019). Soil 

temperature higher than 18
0
C causes tuber yield losses 

when combined with high ambient air temperature 
(Monneveux et al., 2014); tuber growth is inhibited at 
temperatures above 25

0
C and growth of above-ground parts 

is limited when temperatures reach above 39
0
C (Donnelly et 

al., 2007). Potato is also sensitive to drought mainly due the 
crop’s shallow root system and the low capacity of 
recuperation after a period of water stress (Iwama and 
Yamaguchi, 2006).  Potatoes have sparse and shallow root 
system (Kashyap and Panda, 2003; Onder et al., 2005) with a 
depth ranging from 0.5 to 1.0 m (Vos and Groenwold, 1989).  
About 85% of the total root length is concentrated in the 

upper 0.3 m of soil (Opena and Porter, 1999). Due to this, 
potato extracts less of the available water from the soil 
compared to other crops (Weisz et al., 1994). These 
ecological constraints to potato production partIy explains 
why this food crop has not attained the dominant role that 
major cereals have enjoyed in the tropics. Given the fast 
expanding population in the tropics, crops with high yielding 
potential could become increasingly important as a 
supplement if not a complete substitute to the staple grains. 
Potato is a prime candidate for this subsidiary role as it has 
high yield potential and yields more food on less land than 
any other major food crop. With a yield potential of more 
than 51,000 calories/ha per day in a short growing season, 
its productivity in terms of energy produced is the highest of 
all major arable crops, almost double that of wheat and rice 
(Sanginga, 2015). Potato’s short cropping cycle of three to 
four months is well-suited to the double cropping seasons in 
the tropical African highlands, particularly in rain-fed 
systems; this is a significant advantage over grains which 
take six to nine months to mature. A hectare of potatoes 
could provide up to four times the calories of a grain crop 
and up to 85% of the plant is edible human food, compared 
to around 50% in cereals.  Moreover, potato is nutritionally 
better balanced (Burlingame et al., 2009) contributing 
protein, vitamin C, zinc, and iron to the diet. The ‘nutritional 
productivity’ of potato is especially high: for every cubic 
meter of water applied, 5,600 calories of dietary energy are 
produced, compared to 3,860 in maize, 2,300 in wheat, and 
only 2,000 in rice. For the same cubic meter of water, potato 
yields 150 g of protein which is double that of wheat and 
maize, and 540 mg of calcium, double that of wheat and four 
times that of rice (Sanginga, 2015; Renault and Wallender, 
2000). Potatoes also contain vitamins and minerals as well as 
important phytochemicals, many of which have antioxidant 
properties. These qualities make potato an important food 
security and cash crop for smallholder farmers with limited 
options as is the case in tropical Africa. For potato to create 
a significant impact on agriculture and industry in the African 
tropics, its range of adaptation should be widened to cover 
the vast hot and dry lowland areas. Because heat and 
drought stress occur concurrently in the dry African tropics, 
development of potato varieties with combined heat and 
drought tolerance could play an important role in expanding 
potato production in these areas. This review looks at the 
effects of heat and drought stress on potato and how this 
affects potato production in the dry African tropics.   
 
Potato production in tropical Africa 
 
In Africa, potatoes are grown under a wide range of 
conditions; from irrigated commercial farms in Egypt and 
South Africa to intensively cultivated tropical highland zones 
of Eastern and Central Africa, where it is mainly a small 
farmer's crop grown under rainfed conditions. Potato 
production is important in North Africa because of a huge 
export market to Europe. Potato is also grown under 
irrigation in Harmattan season in the Sahel Zones in West 
Africa (Sanginga, 2015). The 10 major potato producers in 
Africa are Algeria, Egypt, South Africa, Morocco, Tanzania, 
Kenya, Nigeria, Malawi, Ethiopia and Rwanda in that order 
(FAO, 2019). The hilly, fertile terrain of East, Central, West, 
and Southern Africa is home to more than seven million 
smallholder potato farmer households (Sanginga, 2015). 
High altitudes, a temperate climate and generally 
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dependable rains make for near ideal growing conditions for 
potato. Potato is the fastest growing food crop in Sub-
Saharan Africa (SSA). In SSA, 52% of the area harvested and 
45% of the potato production is in East and Central Africa 
(Scott et al., 2013). Most potatoes are grown under rainfed 
conditions in the highlands of Sudan, Ethiopia, Kenya, 
Uganda, Congo, Rwanda, Burundi, Madagascar and 
Cameroon (Haverkort and Verhagen 2008). However, potato 
production in SSA is generally far behind that of other 
countries and regions in the world although potatoes are an 
important food and cash crop in this region (Witte, 2013). 
Potato yields in SSA range from 6 to 10 ton/ha, far below 
attainable yields of 25–35 ton/ha. Demand for potato is 
increasing in SSA and the trend is to increase the area under 
production (Sanginga 2015). In tropical Africa, potato is 
grown in the highlands at altitudes between 1500 and 3500 
meters above sea level. However, the high population 
growth in the tropical African highlands is forcing the local 
small scale farmers to move to the hot and dry lowlands. 
Most of these small-scale farmers have retained the 
traditional land-use practices that evolved in the moister 
and therefore more productive highlands where they grew 
potato. However, the high temperatures and limited 
moisture in the lowlands areas may result in low yield and 
poor quality potatoes.  
 
Africa is the most tropical of all continents; it is the only 
continent that straddles the equator and incorporates both 
the Tropic of Cancer and Capricorn. Rainfall is the most 
significant climatic factor in Africa; this is because most crop 
production activities are rain-fed. Temperature is high 
throughout the continent because of the continent’s 
location relative to Equator and the range of temperature is 
quite small. In warm tropical areas, the negative effect of 
water stress is exacerbated by high temperature. These 
conditions are worsened by the global climate change. The 
main repercussions of climate change are a rise in 
temperature, an increase in CO2 concentration in the air, an 
altered precipitation pattern, frequent frost and snow fall in 
high altitudes (IPCC, 2007; 2014). The global daily mean 
temperature is expected to increase by 1.0– 3.7

0
C by the 

end of the 21
st

 century (IPCC, 2013). It has been observed 
that the increase in minimum temperature during the night 
has been greater than the increase in maximum 
temperature during the day thereby reducing diurnal 
temperature range (DTR) on a global scale (Easterling et al., 
1997; Harris et al., 2014). Reduced DTR has been shown to 
affect crop growth and development (Benoit et al., 1986; Yin 
et al., 1996; Bahuguna and Jagadish, 2015). Climate change 
is projected to increase median temperature by 1.4–5.5

0
C 

and median precipitation by −2 to 20% by the end of the 21
st

 
century (Adhikari et al., 2015). According to IPCC (2007), 
crop productivity is projected to increase slightly at mid to 
high latitudes for local mean temperature increases by up to 
1 to 3

0
C depending on the crop, and then decrease beyond 

that in some regions. At lower latitudes, especially in 
seasonally dry and tropical regions, crop productivity is 
projected to decrease for even small local temperature 
increases (1 to 2

0
C).  While the anticipated increase in the 

atmospheric CO2 level may enhance yield potential in certain 
crop species (Deryng et al., 2016) the yield losses due to high 
temperature and water deficit may surpass the benefit 
achieved by any increase in CO2 (Lobell and Gourdji, 2012). 
Moreover, the sub-optimal growth conditions are occurring 

at a time of predicted 30% increase in the world population 
by 2050 (UNDESA, 2011) thereby increasing food demand. It 
is estimated that by 2050, food and agriculture systems will 
need to produce 50% more food to feed the projected global 
population of close to 10 billion (FAO, 2017).  Climate 
change will affect both food quantity and quality; protein 
content of crops may be reduced considerably in major 
staple crops such as barley (14.6%), rice (7.6%), and potatoes 
(6.4%) (FAO, 2017). Due to climate change, Africa will very 
likely (with > 90% probability) experience warming in greater 
measure than the global average in all seasons (Lobell and 
Burke, 2010). Temperature in Africa is projected to rise 
faster than the rest of the world, which could exceed 2

0
C by 

mid-21
st 

century and 4
0
C by the end of 21

st 
century (Niang et 

al., 2014). In tropical climates, excess solar radiation and 
high temperatures are often the most restrictive factors 
which affect crop development and yield. In SSA, many crops 
will be more affected by water stress, caused by increased 
evapotranspiration and variability in rainfall, rather than 
heat stress (Adhikari et al., 2015). As such, rainfed farming in 
SSA is typically limited to 3–6 months during the rainy 
season and the crop yields are subjected to weather- driven 
fluctuations (Burney and Naylor, 2012). The impact of heat 
and drought stresses on potato production will increase over 
the next decades due to climate change and the expansion 
of potato cultivation into hot and dry conditions (Hijmanns, 
2003). Effects of global warming on potato production have 
been predicted to decrease yields by 10–19% in 2010-39, 
and by 18–32% in the 2050s; this is the time when more 
food is needed to feed the world’s growing population 
(Hijmans, 2003; Hancock et al., 2014). For several countries, 
particularly in tropical Africa, potato yield declines are 
expected to reach upto 20–30% (InfoResources, 2008). Due 
to drought, it is estimated that potential potato yield will 
decrease by 18 to 32% between 2040 and 2069 (Hijmans, 
2003). In addition, it is estimated that the average global 
potato yield could be increased by at least 50% if water 
supply to the crop could be optimised. Climate change is 
projected to increase temperature and precipitation 
variability in East Africa. Consequently, potato yield in most 
of East African countries (except Rwanda) will decrease due 
to heat and water stress (Adhikari et al., 2015).  Haverkort et 
al. (2013) predicted that the positive effects of elevated CO2 
on water use efficiency and crop yield were more than 
adequate to compensate for the negative effects of 
increased temperatures and reduced water availability in 
2050s. Similarly, IFPRI (Tenge et al. 2012 ) using the IMPACT 
model, predicted up to a 100% increase in potato yield and a 
50% increase in cultivation area in Rwanda in 2050 
compared to 2010; the authors predicted doubling or 
tripling the potato production by 2050. However, Jarvis et al. 
(2012) projected about 15% reduction in potato yield in 
Africa by 2030. Similarly, Tatsumi et al. (2011) projected a 
17% decline in potato yield in eastern Africa in 2090s 
compared to 1990s. In adapting potato production to 
climate change, breeding is going to play a key role as well as 
adapted seed potato programmes and management of 
quarantine diseases and pests (Haverkort and Verhagen, 
2008).  Identification or development of potato cultivars 
with increased heat (Hijmans et al., 2003) and drought 
tolerance appears to be important to cope with climate 
change especially in the hot and dry African tropics.  
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Effects of heat and drought stress on potato growth and 
development 
 
High temperatures (Midmore, 1983) and drought (Yuan et 
al., 2003) and are some of the major abiotic stresses that 
affect potato production worldwide affecting both yields and 
quality. Heat stress and drought stress, when imposed 
independently on the potato, may have contrasting effects 
on maturation: high temperatures enhance vegetative 
growth and may delay maturation (Bodlaender, 1963; Ivins 
and Milthorpe, 1963), whereas drought inhibits growth and 
enhances maturation (Deblonde and Ledent, 2001; Van 
Loon, 1981). When these stresses occur concomitantly in the 
field, the high temperature commonly associated with 
increased evapotranspiration aggravates the drought stress, 
leading to growth inhibition and enhanced maturation (Levy, 
1986). For the early maturing genotypes which accomplish 
yield accumulation in a relatively short period of time, 
shortening of the growth period by stress was relatively 
small compared with the later maturing cultivars (Levy, 
1986). This is because the later maturing genotypes are 
exposed to the increasing stress constraints for longer 
periods. Consequently, this situation could explain the 
relatively small yield loss of the early maturing genotypes. 
High temperatures delay, impede or even inhibit tuber 
initiation (Minhas et al., 2006). Minimum night temperature 
is very important for potato crop; whether or not potato will 
tuberise depends largely on the minimum night temperature 
and not on the average daily temperature (InfoResources, 
2008). Tuberisation is reduced by night temperature of 20

0
C 

and there may not be any tuberisation at night temperature 
of 25

0
C and above even though potato plants can tolerate 

day temperature of about 35
0
C without much deleterious 

effects (Wolf et al., 1990; InfoResources, 2008). Night 
temperatures above 20

0
C severely depress both tuber 

initiation and bulking and temperatures above 25
0
C 

effectively stop tuber production (Minhas et al., 2001). 
Potato can give good yield even at day temperatures of 30-
35

0
C provided night temperatures are below 18

0
C (Minhas 

and Kumar, 2005). 
The magnitude of drought effects depends on phenological 
timing, duration and severity of the stress (Schafleitner 
2009). Sensitivity of potato to water stress varies with the 
developmental stage of the crop; plant emergence and 
tuberization are two critical periods when water stress most 
affects final tuber yield (Martínez and Moreno, 1992). Water 
shortage during the tuber bulking period decreases yield to a 
larger extent than drought during other growth stages. 
Drought after planting may delay or even inhibit plant 
emergence while insufficient water supply between plant 
emergence and beginning of tuber bulking may lead to slow 
growth rate of the foliage, small leaves and small plants 
(Figure 1).  
 
Effects of heat and drought stress on potato yields and 
quality 
 
Moisture stress can reduce potato yields, produce 
misshapen tubers, negatively affect processing quality and 
increase common scab incidence (Mane et al., 2008). 
Moisture stress results in reduced number (Eiasu et al., 
2007) and size (Schafleitner et al., 2007a) of tubers 
produced. Drought events occurring early in the growing 
season reduce the number of tubers per plant (Haverkort et 

al., 1990). Furthermore, a single, short-term drought event 
during tuber bulking stage can inhibit future bulking of those 
potatoes already set and result in initiation of new tubers. 
This not only decrease potato grade (i.e. tuber size and 
quality) but lowers overall yield. Minhas and Bansal (1991) 
showed that tuber initiation is the most sensitive stage to 
water stress; drought during this period can reduce the 
number of tubers produced per plant (King and Stark, 1997). 
Tuber shape, dry matter and reducing sugars contents can 
be influenced by water stress during the vegetative period. 
Shape defects such as dumb-bell shaped, knobby or pointed 
end tubers can be caused by short periods of moisture stress 
during the tuber bulking stage (MacKerron and Jefferies, 
1988). Secondary growth symptoms and tuber malformation 
could occur when soil moisture is replenished after a 
drought period. Misshapen tubers can also occur due to 
secondary growth which mainly occurs in dry soils when 
temperatures rise (Lugt et al., 1964). Hot and dry conditions 
may also result in poor cooking quality (glassiness) of the 
tubers, jelly end or translucent tuber ends. They also result 
in high content of reducing sugars in tubers which cause 
difficulties during processing. High temperature stimulates 
conversion of starch to reducing sugars that triggers dark 
French fries (Minhas, 2012). High temperatures delay 
tuberization and result in a higher number of smaller tubers 
per plant and low specific gravity which is indicative of low 
dry matter contents (Haverkort, 1988). The average 
temperature during the growing season is the main 
determinant factor for final dry matter concentration at 
harvest: low temperatures lead to high dry matter 
concentrations and vice versa. The main reason that potato 
is not grown in warm areas is that the dry matter 
concentration is too low—lower than 17% is unacceptable 
due to poor storability and processing quality (Haverkort and 
Verhagen, 2008). Haverkort and Harris (1987) found a 
relation between dry matter concentration and altitude-
dependent average temperature during the growing season: 
the dry matter concentration of tubers decreases by 0.446% 
per 

0
C temperature increase with base value of 20% at an 

average daily temperature of 14
0
C. In addition, they found 

that the number of tubers per plant increases by 1.68 tuber 
per 

0
C increase in temperature (base value is 12 tubers, at 

14
0
C daily average temperature). Heat stress also results in 

secondary growth, internal brown spots (IBS), cracks, 
sprouting at harvest, short dormancy period, high 
glycoalkaloid content and high content of sugars in the 
tubers (Levy, 1986, Tai et al., 1994; Levy and Veilleux 2007). 
These disorders are mainly caused by elevated soil 
temperatures during the later stages of tuber growth and 
development (Stevenson et al. 2001; Struik and Ewing 1995). 
 
Breeding potatoes for heat and drought tolerance 
 
Breeding potatoes adapted to hot and dry climates is one of 
the main objectives of modern potato breeding programmes 
(Raymundo et al., 2014). To obtain cultivars adjusted to such 
conditions, wild potato germplasms are often used for the 
introgression of genes encoding heat-tolerance e.g. Solanum 
chacoense which contains genes encoding for heat-tolerance 
(Veilleux et al., 1997).  Introgression of such germplasm 
directly into S. tuberosum would require sexual 
polyploidization or breeding at the diploid level with 
dihaploids of S. tuberosum followed by tetraploidization  
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Fig 1. Effects of moisture stress at different growth stages of potato growth. Source: Obidiegwu et al., 2015 

 
 
through sexual polyploidization, somatic hybridization or 
artificial chromosome doubling. There are reports of the 
existence of genetic variability for heat tolerance (Tai et al. 
1994, Menezes et al. 1999), which could be exploited in 
breeding programs. Heat-tolerant accessions of several 
diploid species including S. berthaultii, S. chacoense, S. 
demissum, and S. stoloniferum, among others, have been 
identified for utilization in breeding programs (Reynolds and 
Ewing, 1989). However, wild potato germplasms such as S. 
chacoense which contains genes encoding for heat-tolerance 
(Veilleux et al., 1997) also contain naturally high levels of 
total glycoalkaloids (TGA). Introgressions of such germplasm 
often cause increased levels of total glycoalkaloids (TGA) in 
the potato tubers; high levels of TGA may be toxic to 
humans and cause an undesirable taste (Storey and Davies, 
1992). In addition to high levels of glycoalkaloids in the 
tubers, hybrids with a huge proportion of wild species can 
exhibit other undesirable wild attributes such as a large 
number of small tubers, excessive stolon growth and 
secondary growth among others (Veilleux et al., 1997). 
Previous study showed that TGA-content is controlled by a 
relatively low number of genes and is characterised by a 
relatively high heritability estimate; the minimum number of 
genes controlling TGA-content was estimated to be between 
3 and 7 (Van Dam et al., 1999). Heat tolerance is not 
necessarily correlated with high levels of glycoalkaloid in 
tubers and thus it is possible to find tolerant clones with low 
content of glycoalkaloid when grown under conditions of 
high temperatures (Veilleux et al., 1997). Manuel et al (2017) 
found that broad sense heritability for glycoalkaloid content 
was 0.63 and its correlation with tuber yield was weak, 
r=0.33 and R²=0.11 (P<0.01). Consequently, the high 
heritability and weak correlation will allow for selection of 
clones with high tuber yield and low glycoalkaloid content.  
It has been reported that heat tolerance in potatoes is 
controlled by several genes (Tang et al., 2018; Benites and 

Pinto, 2011; Rickey and Belknap, 1991) thereby making 
selection of tolerant plants in breeding programs rather 
difficult due to genotype-environment interactions while 
other reports indicate that in potatoes, response to 
temperature is oligogenic with low temperature reaction 
being dominant over reaction to high temperature 
(Mendoza and Estrada, 1979). In a typical breeding 
programme, selection for heat tolerance calls for extensive 
field trials and several years of testing a large number of 
potato clones. Despite advances made in breeding heat-
tolerant potatoes, molecular mechanisms governing heat-
tolerance is poorly understood. Multiple loci for heat 
tolerance have been identified in wheat (Paliwal et al., 2012) 
and maize (Messmer et al., 2009) whereas no QTL for heat 
tolerance in potatoes has been reported (Trapero-Mozos et 
al., 2018). Consequently, the first step towards 
understanding the heat-tolerance mechanism in potatoes is 
to identify the key genes involved in it (Gangadhar et al., 
2014). Breeding for heat tolerance should focus on effect of 
high temperatures on tuberization, since potato tuber 
initiation and development are very sensitive to high 
temperatures (Muthoni and Kabira 2015). Since 2004, CIP 
has sought to improve the heat tolerance of its late-blight 
resistant population, B3, by developing the new late blight 
and temperature tolerant ‘LBHT’ population (Gastelo et al. 
2015). The aim was to obtain potato clones with high levels 
of resistance to late blight, with high tuber yield under high 
temperatures, more than 20

0
C at night, low glycoalkaloid 

content and early maturity (90 days), adapted to tropical 
mid-elevation environments. Aspects of heat tolerance that 
are considered important and should be taken into account 
in breeding programmes are: 1) ability of the plants to 
tuberise at night temperature of 22

0
C and above, 2) low 

shoot/root ratio at high night temperature and 3) early 
maturity of the crop (Hijmans, 2003). 
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Recently, researchers have discovered a small RNA (about 19 
nucleotides) that regulate tuber formation depending on 
temperature. The RNA is inactive at low temperatures. 
When temperatures rise, the RNA blocks the formation of 
StSP6A and thus the formation of tubers. The same 
researchers have created potato plants in which the effect of 
the small RNA was deactivated; this resulted in plants that 
continued to produce good quality tubers even at 
temperatures of over 29 degrees during the day or 27 
degrees at night. (University of Erlangen-Nuremberg, 2019). 
 
Drought tolerance is a quantitative trait under complex 
phenotypic and genetic control (McWiliam, 1989). The 
differential response of potato cultivars to water stress 
indicates that there is genetic variability for drought 
tolerance in cultivated potato (Harries 1978; Levy 1983).  In 
addition, wild relatives of the potato have been identified 
that is drought tolerant, but linkage drag, incompatibility 
and different photoperiod requirements have hampered the 
introgression of the drought tolerance traits (Monneveux et 
al., 2013). Drought tolerance is a genetically complex 
polygenic trait with multiple pathways implicated 
(Obidiegwu et al., 2015). The complex phenotypic response 
of potato plants to drought is conditioned by the interactive 
effects of the plant’s genotypic potential, developmental 
stage, and environment. Effective crop improvement for 
drought tolerance will require the pyramiding of many 
disparate characters, with different combinations being 
appropriate for different growing environments. Selection 
efforts in areas which suffer from drought stress has not led 
to the development of highly drought tolerant cultivars due 
to low heritability and interactions with the environment 
(Cattivelli et al., 2008). Moreover, mechanisms which are 
advantageous for surviving severe drought might reduce 
tuber yield under mild drought. Breeding for drought 
tolerance is further complicated by the fact that several 
types of abiotic stress such as high temperatures, high 
irradiance and water deficit can challenge crop plants 
simultaneously. In addition, successful breeding requires 
exact information on effective tolerance traits, their 
heritability and their genotype x environment interaction as 
well as suitable selection tools for the traits of interest. The 
first step in the development of drought tolerant varieties is 
identification of drought tolerant traits that are available; 
this is not an easy task due to the complexity of the drought 
response. Molecular techniques might pose a solution to the 
problem by identifying the drought tolerance genes or QTLs 
and subsequent introgression of these traits by marker 
assisted selection or genetic engineering. However, 
knowledge about genetics of drought tolerance in potato is 
still limited and a few QTLs have been identified related to 
drought tolerance traits (Aksoy et al., 2015). Though many 
stress responsive genes are characterized in potato, 
commercial transgenic potato plants that are tolerant to 
drought have not yet been successful. This may be due to 
the quantitative nature and multiple loci of genes involved in 
plant stress tolerance, it is possible that crop growth and 
yield may not simply be improved through over expression 
of a single gene. The limited success of the physiological and 
molecular breeding approaches until now suggests that a 
careful rethink is needed of the strategies for better 
understanding and breeding for drought tolerance. Studies 
using transcriptome and metabolite analyses showed that S. 
andigena genotypes were more tolerant to drought than the 

S. tuberosum genotypes.  They also reported several 
candidate genes, such as genes involved in osmotic 
adjustment, in changes in carbohydrate metabolism, 
membrane modifications and strengthening of cuticle and in 
cell rescue mechanisms (Schafleitner et al 2007b; Vasquez-
Robinet et al 2008). Although these studies provide insights 
into potato response to water stress at the transcriptional 
level, the genetic regulation of these transcriptional 
responses is largely unknown. 
 
Conclusion 
 
Rain fed production of potatoes by small-scale farmers in the 
hot and dry parts of tropical Africa results in low yields and 
poor quality due to combined effects of high temperature 
and drought. The situation is worsened by the global 
warming. Breeding efforts have been going on to develop 
potato varieties that are drought tolerant and/or heat 
tolerant; there is need to develop potato varieties with 
combined heat and drought tolerance. Conventional 
breeding has not achieved much, more progress could be 
achieved through molecular breeding and/or genetic 
engineering techniques.  
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