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Abstract 
 
Mating design represents "rules" for arranging different controlled crossings; a mating design is a procedure of producing 
progenies. This review describes mating designs commonly used in plant breeding. Biparental is the simplest design in which a 
number of P plants are paired off to give ½P families; the parents are mated only once in pairs. The design is simple and it provides 
information needed to determine if significant genetic variation is present in a population for a long term selection program.  A 
polycross is a mating arrangement for interpollinating a group of cultivars or clones using natural hybridization in an isolated 
crossing block. The design is often used for generating synthetic cultivars. The North Carolina (NC) mating designs permit 
determination and/or estimation of variance components (additive and dominance components) by using the information from 
half-sib (HS) families. The experimental material of North Carolina designs I, II and III is developed from F2 generation as a base 
material. The design III (NCIII) involves backcrossing the F2 plants to the two parental inbred lines from which the F2 were derived. 
The NCIII design was extended to include a third tester. This third tester is the F1 from the two parental inbred lines; in this 
extended form, this design is known as the triple test cross (TTC).  Line x Tester mating design uses inbred lines as the base 
population. The design is useful in deciding the relative ability of a number of female and male inbreds to produce desirable hybrid 
combinations. When the same parents are used as females and males in breeding, the mating design is called diallel. Parents used 
range from inbred lines to broad genetic base varieties to clones. The design is the most commonly used in crop plants to estimate 
GCA and SCA and variances.   
Generally, it should be noted that is not the mating design per se, but the breeder who breeds a new cultivar. Consequently, proper 
choice and use of a mating design will provide the most valuable information for breeding. 
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Introduction 
 
Mating design represents "rules" for arranging different 
controlled crossings; a mating design is a procedure of 
producing progenies (Klein et al., 1973). Selecting the kinds 
of mating techniques and arrangements depends upon: 1) 
the predominant type of pollination (self or cross); 2) type of 
crossing used (artificial or natural); 3) type of pollen 
dissemination (wind or insect); 4) unique features, such as 
cytoplasmic or genetic sterility; 5) purpose of project 
(breeding or genetic); and 6) size of population required 
(Stuber, 2004). The breeder influences the outcome of a 
mating by the choice of the parents, the control over the 
frequency with which each parent is involved in mating, and 
the number of offspring per mating, among other ways 
(Acquaah, 2007). Mating designs are used to generate 
genetic pedigrees, genetic information, and materials that 
can be used in a breeding program (Jenkins, 1934); they are 
also used in estimating information on general combining 
ability (GCA) and specific combining ability (SCA).  
 
In general, the objectives of mating designs are to provide 
information for evaluating parents (GCA and SCA), provide 
estimates of genetic parameters, provide estimates of 

genetic gains, and provide a base population for selection 
(Klein et al., 1973). General combining ability is the average 
performance of a parental line in hybrid combinations and 
SCA is the contribution of an inbred line to hybrid 
performance in a cross with a specified inbred line, in 
relation to its contributions in crosses with an array of 
specified inbred lines (Sleper and Poehlman, 2006) 
Mating designs offer different hierarchical structures such as 
half-, full-sib family, and individuals within family in the 
progeny population (Lindgren and Matheson, 1986). In 
evaluating mating designs with respect to estimation, the 
sampling variance of the genetic variances is used 
(Nasoetion et al., 1967; Namkoong and Roberds 1974; 
Pepper 1983). In general, for a given number of parents, the 
mating design that includes the larger number of crossings 
will produce the smaller sampling variance. For example, 
Klein et al. (1973) indicated that it would take at least 400 
families to estimate heritability with a standard error less 
than 0.1. 
The mating designs have been classified into one, two, 
three, and four factor designs according to the number of 
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factors, parents, and the modalities of combination of these 
factors (Cockerham, 1963; Table 1).  
The simplest are one way mating designs corresponding to 
independent families, for example half-sibs or S1 families. 
They allow for estimation of genetic variance among 
families, but not the components of genetic variance, unless 
only additivity is present (Griffings, 1956b). Two way mating 
designs require related crosses among plants thereby 
allowing cov HS and cov FS or GCA and SCA variances to be 
estimated. The two-way mating designs (North Carolina 
design I, North Carolina Design II and diallel) are based on 
the development of related single crosses among plants. 
They differ according to the origin and crossing modalities of 
plants used as males and females. Two way mating designs 
will allow estimation of general and specific combing ability 
and variances and thus of just two covariances, among half-
and fullsibs. They are useful for estimating genetic variance 
components if only two, generally σ

2
A

 
and

 
σ

2
D

 
explain a major 

part of the total genotypic variance.   
Three-way mating designs, for example triallel, requiring the 
development of related three-way crosses, allow for the 
estimation of at least three parameters. Four-way mating 
designs, for example quadriallel, which are mating designs 
based on the development of related double crosses, allow 
at least four variance components to be estimated (LeClerg, 
1966). For effective genetic analyses, components of 
variance of a design are translated into covariances of 
relatives, which are readily interpretable into components of 
genotypic variance (Klein et al., 1973). In most cases, 
estimates of variance components obtained through 
translation of covariance of relatives refer to the population 
from which the mating individuals were sampled. This 
population is termed as a “reference population”, both for 
the genotype and environments. It is in terms of variances of 
the reference population that various procedures and 
designs are interpreted and/or assessed for purposes of 
decision making (Kang and Namkoong 1988).  
 In this review, the following mating designs commonly used 
in plant breeding are described: Biparental mating (paired 
crossing); Polycross mating; North Carolina Designs I, II, and 
III; Line x Tester mating design;  Topcross and  Diallel mating 
(full, half, smart, partial and disconnected).  
 
Biparental mating (BPIs) (or paired crosses) 
 
It is the simplest design in which a number of P plants are 
paired off at random to give ½P families. The parents are 
mated only once in pairs. The P parents generate ½ P full-sib 
families (Mather and Jinks, 1982).  
 
1 x 2 
3 x 4 
5 x 6 
7 x 8 
… x … 
 
COVFS=1/2 VA+1/4VD+… 
 
The progeny are tested and the observed variation 
partitioned by a straight forward analysis of variance into 
between and within families. If m plants per progeny family 
are evaluated, the variation within (w) and between (b) 
families may be analysed as shown in table 2. 
 

Where σ
2

b is the covariance of full-sibs, which equals to ½VA 
+ ¼VD + VEC =1/m (MS1-MS2) while σ

2
W is equal to ½VA + ¾VD 

+ VEW = MS2. The design is simple and it provides information 
needed to determine if significant genetic variation is 
present in a population for a long term selection program. 
However, no information is available for the type of genetic 
variation.  It is unable to yield sufficient information to 
estimate all the parameters required by the model. Only two 
statistics are available for estimating VA, VD, VEC and VEW. This 
is because the progeny from this design are either full-sibs or 
unrelated.  
This design provides good information for full-sib family 
performance and estimates of some genetic parameters. It 
provides information on maximum unrelatedness, it is 
simple to implement, and it is a low cost design. However, it 
is not good for estimating genetic gains from VA and it is not 
optimum for selection (Klein et al., 1973).  An F test is used 
to determine if the variation among crosses is significantly 
different from zero and an intraclass correlation is can be 
computed. 
 
Polycross Mating Design 
 
A polycross is a mating arrangement for interpollinating a 
group of cultivars or clones using natural hybridization in an 
isolated crossing block (Klein et al., 1973). The term 
polycross means progeny from a line that was subjected to 
out-crossing with other selected lines growing within the 
same nursery. This design is for intermating a group of 
cultivars by natural crossing in an isolated block. If an 
isolation block is not available, hand-crossing is required and 
the entries must be planted to facilitate the required 
interpollinations. The mating design is often used for 
generating synthetic cultivars and may be used for 
recombining selected entries or families in recurrent 
selection programs. Progeny from each entry have a 
common parent in the polycross design. Thus, half-sib 
families are generated and these are frequently used for 
evaluating general combining abilities. The polycross mating 
design is most suited to species that are obligate cross-
pollinators such as forage grasses and legumes, sugarcane, 
sweet potatoes, and in particular those that can be 
propagated vegetatively and where the resultant clones can 
be maintained for several years (Frandsen and Frandsen, 
1948). Because the purpose of the polycross is to provide an 
equal opportunity for each entry to be crossed with every 
other entry, the field layout is the critical feature of the 
design. It is critical that the entries be equally represented 
and randomly arranged in the crossing block. If the entries 
are 10 or less, the Latin square design is appropriate because 
it gives chance for an entry to be randomly allocated to each 
column and each row, thus giving them an equal chance of 
mating with each other (Figure 1).  With more than 10 
entries, a randomized complete block design (RCBD), with 
adequate replications, is usually preferred to the Latin 
square. When the seed is harvested, equal quantities from 
each replication of each entry are bulked (Klein et al., 1973; 
Stuber, 2004). The ideal requirements are hard to meet in 
practice because of several problems placing the system in 
jeopardy of deviating from random mating. Problems 
include entries flowering at different times and non-random 
pollen dispersal (Acquaah, 2007). Because there is a 
possibility of entries flowering at different times, it is usually 
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necessary to stagger planting dates for annual crops so that 
flowering occurs simultaneously in order to ensure mating at 
the same time. However, prior knowledge on the flowering 
behaviour of the entries involved is required. The polycross 
is often used for generating synthetic cultivars, and may be 
used for recombining selected entries or families in 
recurrent selection programs. If s off-springs from each of n 
mother plants are progeny tested, the resultant variation is 
partitioned into within and between maternal groups. A 
family structure can no longer be recognised because each 
maternal group results from matings with an unspecified 
and unknown number of different males. Although the 
ANOVA resembles that for paired crosses, its precise form 
differs because individuals within maternal groups have one 
parent in common and are normally half-sibs (Table 3). 
 

North Carolina Mating Designs 
 

The North Carolina mating designs are multipurpose as they 
permit determination and/or estimation of the variance 
components (i.e., additive and dominance components) by 
using the information from half-sib (HS) families i.e. sets of 
progeny which have either the same father but different 
mothers or vice versa. The North Carolina Mating Designs 
comprise of North Carolina Mating Design I,  Design II, and 
Design III (Stuber, 2004; Acquaah, 2007).  In all cases, the 
base population for genetic studies is the F2 generation from 
which the parents are assumed to be randomly drawn and 
are not a selected sample. If the F2 generation is developed 
from two true breeding homozygous lines, then the 
assumption regarding gene frequencies is satisfied.  
Additionally, it is assumed that the progenies are raised in a 
completely randomized experimental design, although at 
times blocking may be necessary for convenient 
experimental and data management. Furthermore, field 
arrangement of experimental material is an important 
aspect because large numbers of progenies are raised for 
purposes of getting reliable estimates of components of 
genotypic variances. Major differences between choice of 
the experimental designs  for this kind and other agronomic 
experiments are that the quantities of interest are variances 
rather than means. Replications-in-blocks designs ought to 
be suitable when blocking of genetic material is necessary in 
order to control the environmental variability. However, the 
mating design must be such that it permits the sets of 
progenies to be randomly assigned to the blocks in a way 
that will allow an independent estimate of variances of 
interest from analysis of each block (LeClerg, 1966). The 
assumptions needed for valid genetic interpretation of NC I, 
II, III experiments are (1) random choice of individuals mated 
for production of experimental progenies (2) random 
distribution of genotypes relative to variation in 
environments (3) no non-genetic maternal effect (4) regular 
diploid behaviour at meiosis (5) no multiple alleles (6) no 
linkage except where equilibrium between coupling and 
repulsion phase exist (7) no epistasis, and  (8) for estimating 
degree of dominance, gene frequencies of 0.5  at all loci 
when segregation occurs (except for design III)(LeClerg, 
1966). 
 

North Carolina Design I (Nested mating or Hierarchical 
Design) 
 
This is a nested type of mating design in which each member 
of a group of parents used as males is mated to a different 
group of parents used as females  thus generating full-sib 

families nested within a half-sib family. No female parent is 
involved in more than one mating (Klein et al., 1973). As 
such the females are nested within males and each cross 
generates one family (Figure 2).  
 
COVHSM=1/4 VA 
V female/male = COVFS –COVHSM 
=1/2 VA+1/4VD –1/4 VA 
=1/4 VA +1/4 VD 
The females are grown within isolation plots surrounded by 
the pollinating male. The test materials for North Carolina 
design I (NC I) originate from matings among F2 plants from 
a cross of two inbred lines. The m pollen plants (males) are 
each mated to n seed plants (female) with the limitation that 
a female plant is used in one mating only. There are s sets of 
matings with a different selection of males in each set. The 
progeny of the s x m x n matings make up the material for 
future experimentation. Full-sibs with the same mother and 
father plants are within families; half-sibs with the same 
mother or father are across families (Acquaah, 2007).  
The design is commonly used to estimate additive and 
dominance variances as well as for the evaluation of full-sib 
and half-sib recurrent selection; it provides information on 
parents and full-sib families (Comstock and Robinson, 1952; 
Stuber, 2004; Acquaah, 2007). The design requires sufficient 
seeds for replicated evaluation trials and hence it is not of 
practical application in breeding species that are not capable 
of producing large amounts of seeds. It is applicable to both 
self and cross pollinated species that meet this criterion. The 
design is low cost although it is not efficient for selection 
(LeClerg, 1966). It can be used in self-pollinated crops with 
multiple flowers (Le Clerg, 1966).  
 
Evaluation of Variance Components 
 
The model for this design for one environment is  
Yijk=µ +mi+fij+rk+eijk 
Where μ is the overall mean, mi is the effect of the i

th
 male, 

fij is the effect of the j
th

 female mated to the i
th

 male, rk is the 
replication effect, and eijk is the environmental error. 
Because the mating design is nested, expected mean 
squares are obtained by a hierarchical type of design. Also, 
because of the genetic structure of the mating design, 
expected mean squares can be expressed in the more useful 
covariance of relatives.  
The “F test” is usually used to test the significance of 
variance components. Skeleton analysis of variance is given 
in table 4.  
 
σ

2
e  is the error variance and comprises of intra plot 

environmental variance and genetic variance among 
individuals of same progeny. 
σ

2
p is the variance of plot effects 

σ
2

m  is the variance of progeny of different males 
mated to different females. 
σ

2
f  is the variance of progeny families of different 

females 
The model so developed is known as a “random effects 
model” because it is the population from which individuals 
are chosen that is considered for inferences. In this model, it 
is assumed that the sets, replications in sets, males in sets 
and females in males in sets are randomly distributed with 
zero mean and variances σ

2
s, σ

2
r, σ

2
m, and σ

2
f respectively. 

Errors are also assumed to be distributed with zero mean 
but variance σ

2
e. 
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Table 1. Classification of mating designs. A, B, C, D represent groups of parents from the same population (same letter) or from 
different populations (different letter). A/B means a hierarchical (NC I) and (AB) means a factorial (NC II) crossing. 

Number of 
factors 

 Mating designs  Number of covariances 
among relatives 

2 (AA) Diallel (A/B)  NCI (AB) NC II 2 
3 (A(AA)triallel 

(A(AB) 
(A(BB) 

(A/B/C) 
(A/B/C) 
(A/(BC) 

(A(BC) 
(A(B/C) 

3 to 7 

4 (A(A(AA) 
(A(A(AA) 
(A(B(AA) 
(B(A(AA) 
(B(B(AA) 
(B(A(BA) 
(C(B(AA) 
(C(A(BA) 
(A(C(BA) 

(A(A(BC) 
(A(B(CD) 
(A/B/(CD) 
(A/B(CD) 
(A(A(B/C) 
(A(B(C/D) 
(A(B/C/D) 
(A/B/C/D) 

(AA)(AA) quadriallel 
(AA)(AB) 
(AA)(BB) 
(AB)(AB) 
(AA)(BC) 
(AB)(AC) 
(AB)(CD) 
(AA)(B/C) 
(AB)(C/D) 
(A/B)(C/D) 

4 to 15 

Source: Cockerham, 1963. 
 
 
 
 
 
 
 
 
 
Figure 1. Polycross field nursery arrangement showing two Latin squares for 5 genotypes. 
(Comstock and Robinson, 1952). 
 
 
         Table 2. Outline of ANOVA table for a Biparental mating (paired crosses) design. 

Source Degree of freedom MS Expected mean squares comp. 
of variance 

Between families (½n) – 1 MS1 σ
2
w + mσ

2
b 

Within families ½n(m – 1) MS2 σ
2
w 

Total (nm/2)-1   

n and m refer to the number of parents sampled and plants within each cross, respectively. Source: Acquaah, 2007. 
 

  ♂ 

  1 2 3 

 
 
♀ 

A X   

B X   

C X   

D  X  

E  X  

F  X  

G   X 

H   X 

I   X 

     

Figure 2.  North Carolina mating design I (Comstock and Robinson, 1952) 
           
     
      Table 3. Format ANOVA table for Polycross mating design. 

Source df Expected mean squares 

Component of variance Covariance of relatives 

Between maternal groups n-1 σ
2

WM + s σ
2

BM + σ
2

e σ
2

WM + s(Cov HS) 
Within maternal groups n(σ-1) σ

2
WM  + + σ

2
e σ

2
EW + VG – Cov HS 

Residual  σ
2

e  

       Source: LeClerg, 1966. 
 

E D C B A 

D E A C B 

C A B D E 

B C E A D 

A B D E C 

b) Rep 2  

A B C D E 

 B C D E A 

C D E A B 

D E A B C 

E A B C D 

a) Rep 1 
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   ♂    

  1 2 3 4 5 

 A X X X X X 
 B X X X X X 
♀ C X X X X X 
 D X X X X X 
 E X X X X X 

Figure 3. North Carolina design II (Comstock and Robinson, 1952) 
 
            Table 4. Format of the ANOVA table for North Carolina design I. 

Source df MS Expected MS 

Sets (s-1)   
Replications in sets s(r-1)   
Males in sets s(m-1) M1 σ

2
e + kσ

2
p +rkσ

2
f + rkfσ

2
m 

Females in males in sets sm(f-1) M2 σ
2

e + kσ
2

p + rkσ
2

f 
Reps x Females s(mf-1)(r-1) M3 σ

2
e + kσ

2
p 

Residual smfr(k-1) M4 σ
2

e 

Total smfrk-1   

                 Source: Comstock and Robinson, 1952. 
 

 
Figure 4. Mating scheme for top cross mating design (Acquaah, 2007). 

 
      Table 5. Format of the ANOVA table for North Carolina Design II. 

Source Df Expected  MS 

Sets s-1  
Replications in sets S(r-1)  
Between males S(m-1) σ

2
W + rσ

2
m xf +rfσ

2
m 

Between females S(f-1) σ
2

W + rσ
2

m xf +rmσ
2

f 
Males x females s(m-1) (f-1) σ

2
W + rσ

2
m xf  

Plots within replications S(mf-1)(r-1) σ
2

W  

Total Srmf-1  

       Source: Le Clerg, 1966. 
 

   ♂    

  1 2 3 4 5 

 1 X X X X X 

♀ 2 X X X X X 

 3 X X X X X 

 4 X X X X X 

 5 X X X X X 

Figure 5. A full diallel (Kempthorne, 1957) 
 

A   x  Tester               TCA 

B   x  Tester               TCB 

 

i    x  Tester              TCi 

 

n   x Tester               TCn 
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       Table 6. Format of the ANOVA table for the North Carolina design III. 

Source Df MS Ems 

Replications (r-1)   
Parents/Testers (T) 1 MST σ

2
W + rσ

2
Tm + mrk

2
T 

F2 (m) m-1 MSm σ
2

W + 2rσ
2

m 
T x M m-1 MSTm σ

2
W + rσ

2
Tm 

Within FS families (r-1)(2m-1) MSW σ
2

W 

Total 2mr-1   

         Source: Comstock and Robinson, 1952. 
 

  1 2 3 4 5 

 1 . X X X X 

 2  . X X X 

♀ 3   . X X 

 4    . X 

 5     . 

Figure 6. A half diallel (Kempthorne, 1957) 
 
        Table 7. Orthogonal comparisons in a Triple Testcross. 

Comparison L1i L2i L3i Divisor 

(i) +1 +1 +1 3 
(ii) +1 +1 -2 6 
(iii) +1 -1 0 2 

           Source: LeClerg, 1966. 
       

    ♂    

  1 2 3 4 5 6 

 1 . X . X . X 

 2  . X . X . 

♀ 3   . X . . 

 4    . . . 

 5     . . 

 6      . 

Figure 7. A smart diallel (Kempthorne, 1957) 
 
Table 8. Triple testcross. Derivation of the means and variances 
Means     

Genotype A+A+ A+A- A-A- Mean  
Frequency  ¼ ½ ¼  
L1n – Mean genotypic value A ½(a+d) d ½(a+d) 
L2n – Mean genotypic value D ½(-a+d) -a ½(-a+d) 
L3n – Mean genotypic value ½(a+d) ½d ½(-a+d) ½d 
Orthogonal comparisons     

(i) ⅓∑(L1i + L2i + L3i) ½(a+d) ½d ½(-a+d) ½d 
(ii) [2L3i – (L1i + L3i)] 0 0 0 0 
(iii) ½∑(L1i -  L2i) ½(a+d) ½a ½(a+d) ½a 

Variances     
Variance of ⅓∑(L1i + L2i + L3i) = ¼[½(a+d)]2 + ½(½d)2 + ¼[½(-a+d)]2 – (½d)2 = ⅛a2 
Variance of ½∑(L1i -  L2i) = ¼[½(a-d)]2 + ½(½a)2 + ¼[½(a+d)]2 - (½a)2 = ⅛d2 
Variance within L1 0 ¼(a-d)2 0  
Variance within L2 0 ¼(a+d)2 0  
Mean variance within L1 and L2 families = ½[⅛(a-d)2 + ⅛(a+d)2] = ⅛a2 + ⅛d2 

Source: LeClerg, 1966 
    ♂     

  1 2 3 4 5 . n 

 1 . x x x . . . 

 2 . . x x x . . 
♀ 3 . . . x x x . 

 4 . . . . x x x 

 5 x . . . . x x 

 . x x . . . . x 

 n x x x . . . . 

Fig 8. A partial diallel (Kempthorne, 1957). 
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Table 9. Format of ANOVA table for a triple cross design 

Item  Df Expected mean squares 

Sums  L1i + L2i + L3i n - 1   σ
2

w + 3σ
2

RS + 3mrσ
2

S 
 L1i + L2i n -1  σ

2
w + 2σ

2
RS + 2mrσ

2
S 

Differences  L1i -  L2i n – 1 σ
2

w + 2σ
2

RD + 3mrσ
2

D 
Sums x replicates L1i + L2i + L3i (n - 1) (r - 1) σ

2
w + 3σ

2
RS  

 L1i + L2i (n - 1) (r - 1) σ
2

w + 2σ
2

RS  
Difference x replicate   (n - 1) (r - 1) σ

2
w + 3σ

2
RD  

Within families  2nr(m – 1) σ
2

w  

Source: LeClerg, 1966. 
 
                             Diallel 1 
 

     ♂        

  1 2 3 4 5 6 7 8 9 10  

 1 . X X X X       
 2  . X X X       
♀ 3 

4 
  . X 

. 
X 
X 

      

 5     .       

 6      . X X X X  
 7       . X X X  
 8        . X X Diallel 2 
 9         . X  
 10          .  

Figure 9. A disconnected half diallel (Kempthorne, 1957) 
 
 
Table 10. Format of ANOVA table for the Line x Tester mating design 

Source df M.S
. 

Expected mean square 

Random model Fixed model 

Replications (r-1)    
Lines (m-1) M1 σ

2
e + rvsca +rfvgca(m) σ

2
e +  rf(1/m-1)Σig

2
i 

Testers (f-1) M2 σ
2

e + rvsca + rmvgca(f) σ
2

e + rm(1/f-1)Σjg
2

j 
Lines x testers (m-1)(f-1) M3 σ

2
e + rvsca σ

2
e +r{1/(m-1)(f-1)} ΣiΣjs

2
ij 

Residual (error) (r-1)(mf-1) M4 σ
2

e σ
2

e 

Source: Kempthorne, 1957. 
 
Table 11. Format of ANOVA table when diallel progeny (a genotypes) are planted in b blocks having c plants in each of the ab plots. 

Source Df MS Expected mean squares 

Model I (fixed effect) Model II (random effect) 

Replications (b-1) Mb σ
2

e + ac{1/(b-1)}Σkb
2

k σ
2

e + cσ
2

bv +acσ
2

b 
Genotypes (a-1) Mv σ

2
e + bc {1/(b-1)}Σiv

2
i σ

2
e + cσ

2
bv + bcσ

2
v 

Genotype x 
Replications 

(a-1)(b-1) Mbv σ
2

e+c{1/(a-1)(b-1)}ΣiΣjΣk(bv)
2

ijk σ
2

e + c σ
2

bv 

Error ab(c-1) Me σ
2

e σ
2

e 

Source: LeClerg, 1966. 
 
Table 12. Analysis of variance of n parents and their n(n-1)/2 variety crosses for variety and heterosis effects (GEAN II) model 

                                                                                                                   MS 

Source df SS Gardner-Eberhart Diallel 

Replications r-1    
Entries [n(n+1)/2]-1 S’2 M’2 M2 
Varieties (vi) n-1 S’21= (B’G)1-CF M’21  
 Heterosis (hij) n(n-1)/2 S’22=(B’G)4-(B’G)1 M’22  

Average (ℎ̅) 1 S’221= (B’G)2-(B’G)1 M’221 M22 

Variety (hi) n-1 S’222= (B’G)3-(B’G)2 M’222  
Specific (sij) n(n-3)/2 S’223=(B’G)4-(B’G)3 M’223 M232 
Error (r-1){[n(n+1)/2]-1} S’1 M1 M1 

Total [rn(n+1)/2]-1    

Gardner and Eberhart, 1966. 
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Table 13. Format for ANOVA table for partial diallel analysis 

Source df Expected MS 

Replication r-1  
Crosses (ns/2)-1 σ

2 + 
rσ

2
c 

Gca n-1 σ
2

 e+ r σ
2

 sca +[rs(n-2)/(n-1)] σ
2

gca 
Sca n[(s/2)-1] σ

2
 e + r σ

2
 sca 

Error (r-1)[(ns/2) -1] σ
2

 e 

Total (rns/2)-1  

Source: Griffing, 1956a. 
 
Significance of mean square for males suggests significant 
differences among the progeny families of different males 
(because of the genetic differences among the males). 
Because the progeny families of a given male are half-sibs, 
the mean squares for males measure variance of half-sib 
progeny families. The variance of half-sibs is also the 
covariance of half-sibs, this is equal to ¼ σ

2
A (Falconer and 

Mackay, 1996). Therefore, the significance of the mean 
square for males provides a direct test of significance of 
additive genetic variance. On the other hand, when mean 
square for females in males is significant, it implies that 
there are significant genetic differences among the plants 
randomly chosen as the seed parents. Because the 
experimental material produced by the North Carolina 
design I is a biparental progeny, total heritable variation of 
the experimental material is ½ σ

2
A + ¼ σ

2
D, which is the 

covariance of full-sib when several loci are taken into 
consideration (Dabholkar, 1992). Therefore, the heritable 
variation of progenies of the females can be obtained as the 
difference between the total variation of the experimental 
material and the expectation of heritable variation of males 
(¼ σ

2
A). Thus, 

σ
2

f = (½ σ
2

A + ¼ σ
2

D) – ¼ σ
2

A 

      = ¼ σ
2

A + ¼ σ
2

D 
North Carolina design I is most widely used in animal studies. 
In plants, it has been extensively used in maize breeding for 
estimating genetic variances (Acquaah, 2007). 
 
North Carolina Design II (Factorial mating design) 
 
This is a modification of NC design I.  However, design II has 
greater precision, it is more applicable to self-pollinated 
crops, and has a direct estimate of the level of dominance. In 
NC design II, each member of a group of males is mated to 
each member of a group of females (Comstock and 
Robinson, 1952). The number of entries tested is f x m, 
where f is the number of females and m is the number of 
males. It is therefore a rectangular mating design, unless f = 
m. In this design, every progeny family has half-sib 
relationships through both a common male and a common 
female (Stuber, 2004; Figure 3). 
COVHSM=1/4 VA 
COVHSF=1/4 VA 
V female x male = COVFS –COVHSM -COVHSF 
= 1/4 VD 
Reciprocal crosses may be carried out to analyse maternal 
effects. The factorial design is the most important in 
practical plant breeding programs for selection for testcross 
performance. The factorial design requires that each female 
must be able to be mated with several males (no  
incompatibilities), there should be synchrony in the time of 
flowering between the male and female group of plants, and 
that genetically identical (mother) plants are available 
(clones, inbred lines, double haploid lines) if the number of 
female inflorescences per plant is limited (LeClerg, 1966; 

Namkoong and Roberds, 1974). The design provides good 
information on parents and full-sib families, provides 
estimates of both additive and dominance effects, and 
provides estimates of genetic gains from both VA and VD.  
The North Carolina design II is used to evaluate inbred lines 
for general combining ability and specific combining ability 
and to estimate genetic variances. The design is suitably 
employed in the estimation of average degree of dominance 
of multi-flowered crop species like cotton, tobacco, 
sorghum, and linseed. The design is well-suited to multiple-
flowered plants because each plant can be used repeatedly 
as both male and female. Blocking is used in this design to 
allow all the mating involving a single group of males to a 
single group of females to be kept intact as a unit. For 
example, if 6 plants are chosen as male parents and mated 
to 6 plants selected as females, there will be 36 biparental 
progeny families. In contrast to North Carolina Design I, both 
paternal and maternal half-sibs are produced in North 
Carolina Design II. The variation is therefore divided into two 
parts; between full-sib families and within full-sib families. 
The variation between families is further divided into 
components due to differences among males, that due to 
differences among females and that due to male x female 
interaction. Consequently, the North Carolina Design II is 
factorial with respect to the male and female effects. As for 
NCI the experimental materials originates from matings 
among F2 plants from a cross of two inbred lines (LeClerg, 
1966).  
Field arrangement of North Carolina design II is similar to 
that for North Carolina Design I. Because we have two sets 
of parents, we have two independent estimates of GCA. The 
expectations of males and females for design II are 
equivalent to GCA, and the male x female source is 
equivalent to SCA of the diallel analysis.  Design II is widely 
used in maize breeding. Appropriate F-tests can be made to 
test for the difference among males, among females, and for 
the interaction of males and females. The structure of 
analysis of variance for k plants of each progeny family (pf) 
raised in each of the r “plots”, with observations recorded 
on plant basis is given in Table 5.  
 
Where σ

2
W = ½ VA + ¾ VD + VEW 

σ
2

mxf  = ¼ VD + VEC, σ
2

M = ¼VA, σ
2

F = ¼VA 
σ

2
m xf is progeny variance arising from interaction of 

genotypes of male and female parents. 
The mean squares for males and females give separate and 
independent estimates of the additive component of 
variation. Furthermore the interaction mean square 
between male and females yields an estimate of the non-
additive genetic variance VD. Should this item be significant 
then it serves as for testing the difference between both 
males and females (Acquaah, 2007). 
This mating design generates sufficient information to allow 
all the parameters to be estimated because of the 
relatedness among the progeny families; thus: 
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VA = 2(σ
2

M + σ
2

F) 
VD = 4(σ

2
MF – VEC) 

VEW = σ
2

W - [(σ
2

M + σ
2

F) + 3(σ
2

MF – VEC)]  

If individual plant randomisation has been used, VEC = 0; 
alternatively it can be estimated directly from a replicated 
experiment. Because every male is mated to each female, 
NCII is a factorial design, similar to a two way ANOVA in 
which the variation can be partitioned into differences 
between males and females and the interaction between 
them. Assessment of GCA of the parents can be done from 
the average performance of the progeny, and measure the 
SCA of each individual cross (LeClerg, 1966).  
The genetic model for NCII is as follows: 
Yijk= μ + mi+fj+(mxf)ij + eijk 

Where,  
Yijk= k

th
 observation on ixj

th 
progeny 

μ= the general mean,  
mi=the effect of the i

th
 male 

fj=effect of the j
th

 female 
(mxf)ij=is the interaction effect 
eijk= the error associated with each observation. 
 
North Carolina Mating Design III  
 
The design III was developed by Comstock and Robinson 
(1948). This specific design was made with the purpose to 
estimate the average level of dominance of genes affecting a 
trait. However, it also provides good estimates of σ

2
A and σ

2
D 

for F2 populations assuming absence of linkage and epistasis. 
The advantage of this design over designs I and II is that the 
estimation of dominance is not subjected to any assumption 
regarding allele frequencies. The North Carolina Mating 
Design III (NCIII) involves backcrossing the F2 plants to the 
two parental inbred lines from which the F2 were derived. 
The F2 plants are used as male parents while the two 
parental inbred lines serve as testers, against which the F2 

are assessed. However, being the progenitors of the F2, the 
parental inbred lines are very special testers because the F2 
is segregating at all the loci for which the testers differ but 
for no other loci. The F2 plants serve as pollen parents, the 
number of inbred plants crossed to each F2 should be large 
enough to ensure sufficient seed for field evaluations. 
Design III is used infrequently and primarily to estimate the 
average dominance of genes. Estimates of genetic 
parameters tend to be more biased from epistasis in this 
design than in Designs I and II.  Design III is by far the most 
powerful of the North Carolina mating designs, with design I 
being the least powerful (Acquaah, 2007). The NC III was 
made even more powerful by the modifications made by 
Kearsey and Jinks (1968) that adds a third tester (not just the 
two inbreds). The modification is called the triple testcross 
and is capable of testing for non-allelic (epistatic) 
interactions, which the other designs cannot, and also 
capable of estimating additive and dominance variance 
(LeClerg, 1966). 
The ANOVA for NCIII would be similar to that of NCII, if it 
was not for the two testers that are not a random sample 
from a population, but are particular lines i.e. the 
grandparents of the F2. Hence the item “testers” in the 
ANOVA is treated as a statistically fixed effect. An example is 
an experiment in which n F2 individuals are all crossed to the 
two testers and that r full sib progeny are raised from the 
resulting 2n families in a completely randomized design. If 
these full sibs are scored for some trait, then the mean of r 
sibs from the cross between the i

th
 F2 with P1 and P2 can be 

presented as L1i and L2i respectively. The format for the 
analysis of variance for the North Carolina Mating Design III 
is presented in table 6.  
Mean square expectations to focus on in design III are the 
components of variance among males (σ

2
m) and the one for 

the interaction of males and inbred parents (σ
2

tm). Because 
the testers are fixed, the interaction item (T x M) and the 
main effect (M) are both tested against the basic error as the 
expected mean squares (ems) show. The genetic 
components of the σ

2
m of the analysis can be derived by 

recalling that when we have a 2 x m table, the sums of 
squares for the analysis of variance is computed from the 
sums and differences of the paired observations. The same 
approach is used when deriving the expected mean squares 
(Comstock and Robinson, 1952; LeClerg, 1966). Direct F tests 
are possible for σ

2
Tm  and σ

2
m with the error term but they do 

not give us knowledge of the genetic structure of the 
progenies and how they relate to components of variance.  
 
Triple Testcross 
 
The NCIII design was extended by Kearsey and Jinks (1968) 
to include a third tester (L3). This third tester is the F1 from 
the original parents L1 X L2. In this extended form, this design 
is known as the triple test cross (TTC) (LeClerg, 1966). The 
inclusion of the third tester increases the power of this 
design considerably because it provides a sensitive and 
unambiguous test for non-allelic interactions. Both in its 
original form and extended form, NC design III has a general 
utility for investigating any population, irrespective of gene 
frequency or mating system. In a triple test cross a random 
sample of n individuals from the population under 
investigation is crossed to the same three testers L1, L2 and 
L3, to give 3n progeny families. as shown in table 7.  
       
The analysis of this design may be divided into two parts; the 
first part provides a test for epistasis, the second assesses 
the significance and provides estimates of the additive and 
dominance components of variation. Using a single gene 
model A

+
..A

-
, segregating in an F2 population, the analysis is 

shown in table 8.  
 
From table 8, the first comparison (if only two parental 
testers are used) detects additive, the second epistatic and 
third dominance variations. The difference [2L3i – (L1i + L3i)] is 
computed for all n individuals sampled in the population, the 
additive and dominance components cancel, leaving only 
epistatic terms as shown in table 8. This applies for number 
of loci and interactions of any complexity (Kearsey and Jinks, 
1968). For any base population 2L3i – L1i – L2i is not expected 
to differ significantly from zero in the absence of epistasis. 
The variance of this difference over all n individuals should 
not therefore be significantly greater than the experimental 
error if non-allelic interactions are absent. From table 7, the 
heritable variance of ⅓∑(L1i + L2i + L3i) or ½∑(L1i + L2i) = ⅛a

2
, 

which upon summation over all loci gives ⅛∑a
2
. Likewise, the 

heritable variance of ½∑(L1i - L2i), the last comparison, is 
⅛∑d

2
 after summation. The analysis, with r replicates and m 

individuals per family per replicate, can be set out as shown 
in table 9. 
 
Where the variance within families 
σ

2
w = ⅛∑a

2
 + ⅛∑d

2 + 
VEW 

σ
2

s = ⅛∑a
2 

σ
2

D = ⅛∑d
2
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σ
2

RS = σ
2

RD = VEC’ from which 
VEW = σ

2
w - σ

2
s - σ

2
D 

If the analysis is conducted on progeny means, the 
expectations of mean squares, together with the sum of 
squares within families, should be divided by m, the number 
of plants per family per replicate. Otherwise the 
expectations as shown apply. When extended to populations 
of unknown allelic frequencies, σ

2
S and σ

2
D still yield 

estimates of the genetical, as opposed to the statistical, 
components of variation. 
The immediate advantages of this design are two: 

 It gives a precise test of significance for non-allelic 
interactions 

 In the absence of such interactions both the 
additive and dominance components of variation are 
estimated with comparable precision, a property shared 
with no other mating design.  
 
Line x Tester Mating Design 
 
The Line x Tester mating design is a modification of NC II.  
The Line x Tester mating design uses inbred lines as the base 
population.  Randomly chosen m inbreds are used as males 
(referred to as lines) and mated to each of the randomly 
selected f inbreds, used as females (designated as testers), 
to generate mf progeny families which are usually F1 hybrids. 
This mating design permits mating all the m inbred lines to 
all the f testers; therefore, it is not restricted to the multi-
flowered crop species (Comstock and Robinson, 1952; 
LeClerg, 1966).  
This mating design is useful in deciding the relative ability of 
a number of female and male inbreds to produce desirable 
hybrid combinations. Consequently, line x tester designs 
permit evaluation of general combining abilities (GCA) of 
lines crossed to a set of testers as well as the general 
combining abilities of the latter; crossing of m lines to f 
testers produces mf hybrids, which provide information 
about the general combining ability effects of m + f 
genotypes and specific combining ability effects of mf 
crosses. Additionally, line x tester design provides 
information regarding the usefulness of male and female 
inbreds as parents for hybridization to generate segregating 
populations which are expected to give prodigious 
selections. In crops like wheat, maize and cotton, where 
emasculation and pollination are not difficult, line x tester 
design could be employed to screen a large number of 
genotypes for their combining ability (Kempthorne, 1957). 
Line x Tester mating design usually assumes a fixed effects 
model; however, the initial mating design proposed by 
Kempthorne (1957) is based on random effects model. The 
field arrangement of experimental material, comprising of 
mf progeny families, is usually a randomized block design 
with r replications. The analysis of variance outline for the 
line x tester mating design is presented in table 10.  
 
Where r = number of replications 
          m = number of male parents (lines) 
           f = number of females (testers) 
   Vgca = Covariance half-sibs 
    Vsca = Cov. Full-sibs – 2 Cov. Half-sibs 
The various Mean Squares (MS) are calculated as:  
Individuals within each of the mf progeny families are full-
sibs. Heritable variation of the mf progeny families is, 
therefore, covariance of full-sibs. i.e. ½ σ

2
A + ¼ σ

2
D, if non-

allelic interaction is assumed to be absent. Since each line is 

crossed to all testers, progeny families belonging to each line 
are half-sibs. Variation of lines is therefore, covariance of 
half-sibs, i.e. ¼ σ

2
A. Similarly, variation of progeny families of 

different testers is covariance of half-sibs, i.e. ¼ σ
2

A. 
Therefore, the variation attributable to lines x testers is 
gotten as a difference. Thus, 
½ σ

2
A+ ¼ σ

2
D - ¼ σ

2
A - ¼ σ

2
A = ¼ σ

2
D 

Significance of mean square for line x testers provides a 
direct test of significance of dominance variance. 
Significance of σ

2
A is provided by significance of lines and 

testers mean squares.  
 
Topcross mating design 
 
The topcross mating scheme involves the crossing of a 
number of selections, lines, or clones to a common parent 
(tester) which may be a cultivar, an inbred line, a single cross 
etc., where the tester is the same for each mating. Because a 
common tester is used for all crosses, all progeny families 
produced are half-sibs; therefore, topcross mating design 
permits the evaluation of GCA for the group of lines, clones, 
or selections involved in the crosses. The topcross mating 
design is mainly used in cross-pollinated crops such as maize 
where it is commonly an inbred-cultivar cross. Additionally, 
the design is  used for initial evaluations of breeding 
potentials in new maize accessions (Stuber, 20004). The 
mating scheme is illustrated in figure 4. The tester serves as 
the male parent while the lines or clones to be tested serve 
as females. The ratio of number of male rows to female rows 
varies with species;  in maize, a ratio of 1 male row to 2 
female rows is adequate for effective topcrossing. 
Alternating rows may be required in crops such as sugar 
beet whereas two male rows may be adequate to pollinate 
10 to 12 female rows in castor. It may be necessary to delay 
planting dates if the male and female parents differ in days 
to flowering. If wind is a factor in pollen dissemination, 
tester rows should be planted perpendicular to prevailing 
winds. If isolation is not possible, the tester may be planted 
in paired rows with the materials to be evaluated. Hand 
pollinations are made between rows and the tester may be 
used as either the male or the female parent. Replication 
and randomization of the female genotypes may help to 
minimize the effects of inter-crossing among females 
(Stuber, 2004). If there are wide differences in days to 
flowering among the materials under study, synchronization 
of flowering may be difficult to achieve in paired rows. 
However, pollination may be achieved by planting the 
materials to be evaluated in separate blocks according to the 
number of days to flowering (Acquaah, 2007).     
 
Diallel mating design 
 
When the same parents are used as females and males in 
breeding, the mating design is called diallel (Griffing 1956a). 
If properly analysed, it is a very powerful design. The full 
diallel mating design involves crossing of parents in all 
possible combinations including parents and reciprocals 
(Darbeshwar, 2000; Stuber, 2004). This is the kind of mating 
scheme required to achieve Hardy-Weinberg equilibrium in a 
population (Acquaah, 2007). The parents range from inbred 
lines to broad genetic base varieties to clones. The diallel 
mating design has been used and abused more extensively 
than any other for developing breeding populations for 
recurrent selection (Jenkin, 1934; Stuber, 2004).  The diallel 
mating design is the most commonly used in crop plants to 
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estimate GCA,  SCA and variances, and it is also widely used 
for developing breeding populations for recurrent selection 
(Sprague and Tatum, 1942; Acquaah, 2007). The mating 
combinations for a full diallel of n parents is n

2 
crosses which 

includes ½n(n – 1) F1 + ½n(n – 1) reciprocals + n parents. 
With single crosses (i.e. without parents and reciprocals) the 
number is n(n-1)/2 crosses. In practice, a diallel with 
reciprocals is necessary if the character is maternally 
inherited (Acquaah, 2007).  The number of possible crosses 
increases rapidly with an increase in parents e.g. for n=5, the 
number of single crosses is 10; for n=15, it is 105; and for 
n=50, it is 1225 (LeClerg, 1966). Therefore with limited 
facilities available for testing, a diallel cross may only be 
possible for a relatively small number of inbred lines. 
However, if only a small number of lines are included in a full 
diallel, the estimate of the variance of the general combining 
abilities in the whole populations of potentially available 
inbred lines is subject to a large sampling error; in addition, 
many potentially high yielding inbred lines may be left out 
completely untested. In mitigation, methods of design and 
analysis which utilize only part of the possible matings 
(called the partial diallel cross) has been formulated 
(Griffing, 1956a).  
Nursery arrangements for the application of full and partial 
diallel are varied. Because large numbers of crosses are 
made, diallel mating design takes a large amount of space, 
seed, labour and time to conduct. Because all possible pairs 
are contained in one half of a symmetric Latin square layout, 
this layout may be used to address some of the space needs. 
The diallel design requires that each female must be able to 
be mated with several males (no incompatibilities and there 
should be synchrony in the time of flowering), and that 
genetically identical (mother) plants are available (clones, 
inbred lines, double haploid lines) if the number of female 
inflorescences per plant is limited (Comstock and Robinson, 
1952). The diallel mating design provides information on the 
nature and magnitude of genetic parameters, and GCA and 
SCA of parents and their crosses (Griffing, 1956a).  
Cockerham (1963) have discussed analysis of variance with 
diallel mating design for fixed effects model (Model I) 
(where the parents are the genotypes under consideration) 
and for random effects model (Model II) (where the parents 
are a sample of genotypes from a reference population). For 
model I estimation of components of variance is not 
adequate but estimation of GCA and SCA effects is valid. This 
model is very useful for choice of parents (GCA) and/or 
hybrids (SCA). Hybrid seed companies are always searching 
for the best SCA.  
1.1 Analysis of diallel mating design 
Although several strategies for diallelic analysis have been 
proposed, few of them are commonly applied: Griffing 
(1956b) and Gardner and Eberhart (1966) methods are the 
most frequently applied. The main reasons that justify the 
widespread use of the Griffing (1956b) method are its 
generality since the parents can be clones, pure lines, inbred 
lines, or populations of a self-pollinated, cross-pollinated or 
intermediate species, and the ease of analysis and 
interpretation. . Although diallel designs  were originally 
intended for  crosses between homozygous lines, they may 
be applied to crosses between heterozygous clones (Kearsey 
and Pooni, 1996).The linear model for combining abilities for 
the half and full diallel considering 𝑝(𝑝 − 1)𝐹1 𝑠 is written as: 

𝑥𝑖𝑗 = 𝜇 + 𝑔𝑐𝑎𝑖 + 𝑔𝑐𝑎𝑗 + 𝑠𝑐𝑎𝑖𝑗 + 𝑟𝑖𝑗 +  𝑒𝑟𝑟𝑜𝑟 

for observations in the cross 𝑖 × 𝑗, where 
𝑖 = 1, 2,.... ….𝑝 

𝑢 = population mean 
𝑔𝑐𝑎𝑖= general combining ability of the 𝑖 th line or variety 
𝑠𝑐𝑎𝑖𝑗= specific combining ability of the cross 𝑖 × 𝑗 

(𝑠𝑐𝑎𝑖𝑗 = 𝑠𝑐𝑎𝑗𝑖 

𝑟𝑖𝑗= reciprocal effect of the cross 𝑖 × 𝑗 (𝑟𝑖𝑗 = −𝑟𝑗𝑖) 

 
Griffing Approach 
 
The Griffing (1956b)’s approach considers four methods of 
diallel analysis that vary in either omission of parents or the 
reciprocals in the crosses. In each method two steps are 
involved in the analysis of data: The first step involves 
analysis of data for testing the null hypothesis that there are 
no genotypic differences among the F1’s, parents and 
reciprocals. Only when the significant differences among 
these are established, do we proceed to the second step of 
analysis i.e. the combining ability analysis. In method 1 the 
number of progeny families (pf) comprises of all the n

2
 

progeny families, i.e. the n parents, n(n-1)/2 F1 and n(n-1)/2 
reciprocals; method 2 includes n parents and n(n-1)/2 F1, i.e. 
n(n+1)/2 families; method 3 uses F1 and their reciprocals i.e. 
n(n-1)/2 F1 and n(n-1)/2 reciprocal  to give n(n-1) progeny 
families while method 4 uses F1 only i.e. n(n-1)/2 progeny 
families, to constitute the experimental material. For 
convenience in data management, a randomized block 
design is used for planting the experimental material 
developed from the above-mentioned methods. In using a 
randomized block design, it is assumed that there are ‘a’ 
varieties (i.e. genotypes developed by the diallel crossing 
method), each of which is assigned at random to each of the 
b blocks, and that there are c individuals in each of the ab 
plots. The mathematical model for the ijkl

th 
observation is 

expressed as:  
Yijkl = μ + vij + bk + (bv)ijk + eijkl 
Where μ is the population mean, vij is the effect of i xj

th
 

genotype, bk is the effect of k
th

 block, (bv)ijk is the interaction 
of ij

th
 genotype with k

th
 block, eijkl is the environmental effect 

peculiar to ijkl
th

 observation.  
Regarding combining ability analysis, which does not include 
reciprocals, variety effect vij is expressed in terms of general 
and specific combining ability effects as:   
vij = gi + gj + sij 
However, when reciprocal cross is included, variety effect is 
expressed as: 
vij = gi + gj + sij + rij 
where gi and gj are the general combining ability effects of i

th
 

and j
th

 lines, respectively, sij is the specific combining ability 
effect of ij

th
 cross and rij is the reciprocal effect associated 

with ij
th

 cross.  
In terms of the covariance among relatives, the diallel family 
structure is identical to a NCII, with progeny being related 
either as full or as half-sibs. The main difference between 
them is that in the diallel, where reciprocals are included 
(methods 1 and 3) the same set of parents act as males and 
females (Hill et al., 1998). 
Griffing (1956b) suggested two models for combining ability 
analysis of the experimental progenies developed by the 
four different methods listed above. In model I, variety and 
block effects are regarded as constants; while in model II, 
both variety and block effects are assumed to be random 
variables. If the ‘a’ genotype produced by diallel mating 
according to any of the 4 methods proposed by Griffing 
(1956b) are planted in a randomized block design with b 
blocks such that there are c plants per plot of each progeny 
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family within each block, the format for the analysis of 
variance is presented in table 11. 
For model I, the experimental material is the population 
from which the inferences are to be made. In this model it is 
possible to compare the combining abilities of parents, when 
the parents themselves are used as testers, in addition to 
identifying high performing combinations. Therefore, model 
I aims at estimating combining ability effects of parents and 
their crosses and computing appropriate standard errors for 
differences between the effects. It is assumed that eijkl are 
identical, independent and normally distributed with mean 
zero (μe = 0) and variance, σ

2
e..   Model I implies that parents 

were not randomly chosen or that there was bias in 
choosing parents. Model II on the other hand assumes 
dealing with random samples from some parent population 
and inferences are not drawn about individual lines in the 
sample but about the parameters in the parent population. 
The objective of model II is to estimate genetic and 
environmental components of complex population variance. 
It is assumed that all the effects in this model except μ, are 
normally, independently distributed with mean zero (i.e. μb 
=0, μg = 0, μs = 0, μr = 0) and variance σ

2
θ where θ refers to b 

or g or s or r. The variance components are estimated by 
translating the observed mean squares to their expected 
values. Standard errors for estimates of variance 
components are calculated from variance of appropriate 
mean squares (Kempthorne, 1957; LeClerg, 1966). 
 
The Gardner-Eberhart analysis 
 
Gardner and Eberhart (1966) proposed alternative analysis 
of data from diallel crosses produced from heterogeneous 
parents/populations (“varieties”). Gardner-Eberhart Analysis 
(GEAN) I is resource intensive, requiring the evaluation of 
the n parents, n(n-1)/2 F1 crosses, and inbred progeny of 
parents and crosses. It provides information on additive and 
dominance gene action, heterosis, and inbreeding 
depression (Gardner and Eberhart, 1966). The GEAN II is 
useful in evaluating n populations (varieties) and their n(n-
1)/2 F1 crosses; variation among populations is partitioned 
into populations and mid-parent heterosis (Gardner and 
Eberhart, 1966; Murray et al., 2003). Heterosis is further 
partitioned into average, variety, and specific heterosis, but 
additive and dominance parameters cannot be determined 
in GEAN II because they are confounded with the source of 
variation called labelled “variety” (Murray et al., 2003; Table 
12).  
 
The following models are used to determine the sums of 
squares for the analysis shown in table 12: 
(B’G)1=μ+(1/2)(vj+vj’) 

(B’G)2= μ+(1/2)(vj+vj’) +vℎ̅  

(B’G)3 =μ+(1/2)(vj+vj’) +vℎ̅ +v(hj+hj’) 

(B’G)4=μ+(1/2)(vj+vj’) +vℎ̅ +v(hj+hj’) +vsjj’ 

In each of the models, μ, vj, ℎ̅, hj, and sij indicate the mean,  
variety and heterosis effects.  Because the phenomenon of 
heterosis is important, the analysis maximizes the 
information on variety performance and the expression of 
heterosis of their crosses. Estimates of the variety and 
heterosis effects can be determined for each of the 
constants in the models.  
The GEAN III provides estimates of variety and GCA effects 
from an analysis that contains the following sources of 
variation: parents, parents versus F1 crosses, and F1 crosses. 
GCA effects are estimated in a manner similar to Griffing’s 

method 4, Model I (Murray et al., 2003). Both GEAN II and III 
provide estimates of average heterosis and SCA (Gardner 
and Eberhart, 1966). Murray et al. (2003) pointed that 
formulas for the effects for GEAN II and GEAN III were 
nonintuitive both biologically and genetically and they 
incorporated the number of parents as multipliers. They 
further opined that (i) the variety effects obtained in GEAN 
III were “unconstrained” estimates whereas those from 
GEAN II were constrained estimates because of the 
assumption of no heterosis; and (ii) the results had 
implications for the use and interpretation of such effects. 
 
Some of the commonly used diallel mating designs:  
 
Full diallel  
 
Here each parent is mated with every other parent in the 
population, including selfs and reciprocal. The number of 
progeny families (pf) comprises of all the n

2
 progeny 

families, i.e. the n parents, n(n-1)/2 F1 and n(n-1)/2 
reciprocals (Figure 5) 
 
Half diallel  
  
Each parent is mated with every other parent, excluding 
selfs and reciprocals. The number of progeny families (pf) is 
n(n-1)/2 (Figure 6). 
 
Smart diallel  
 
The parents are sorted based on their breeding values from 
the best to the worst, and most crosses are made among the 
best (Figure 7). 
 
Partial Diallel  
 
The partial diallel design was developed by Kempthorne and 
Curnow (1961). This design is a modification of the diallel 
and its purpose is to increase the number of parents that can 
be included in a diallel mating design. The mechanical 
procedures for developing crosses and the principles of 
analyzing data are similar to those of complete diallel. The 
major difference between partial and complete diallel is the 
number of crosses made among parents. For the diallel, n(n-
1)/2 combinations of crosses are made among n parents 
whereas for the partial diallel less crosses are made. 
Therefore, an important advantage of partial over full diallel 
is the estimation of genetic variances with affixed number of 
resources i.e. greater number of parents. The partial diallel 
has a total of ns/2 crosses, where n is the number of 
parents, s is whole number greater than or equal to 2, and k 
is a whole number (k = (n+1-s)/2). The partial diallel consists 
of selected subsets of full diallels. With a large number of 
inbred lines, it may be necessary to raise only a sample of all 
possible crosses among them. Through partial diallel, a plant 
breeder is not only able to estimate GCA of a large number 
of parental lines but can also make selection among crosses 
from a wide range of parents. General combining ability of 
each line may be estimated with relatively low precision but 
larger genetic gains may result from the more intense 
selection that can be applied to them (Kempthorne and 
Curnow, 1961). In a normal diallel mating, any given line is 
involved in (n-1) crosses. With partial diallels it is possible to 
draw valid inferences from s crosses, sampled from crosses 
where n lines are involved in a diallel mating. The value of s 
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is so chosen that it is less than (n-1). Both s and n should not 
be odd or even at the same time. With n lines, the total 
number of crosses to be analyzed in partial diallel is thus 
ns/2 (Gilbert, 1958) (Figure 8). The ANOVA for partial diallel 
is similar to that of diallel mating design (Table 13). The 
experimental design model, the genetic model, the analysis 
of variance, and the covariances of the relatives of partial 
diallel are the same as for diallel. However, the degrees of 
freedom and coefficient of expected mean squares are 
different because of the sampling of crosses among parents. 
Therefore, in addition to including a greater number of 
parents, the partial diallel also has the advantage of having a 
more even distribution of degrees of freedom for GCA and 
SCA, because more parents are included for a given number 
of crosses. As a consequence, components of variance for 
GCA and SCA are obtained with similar precision while in the 
diallel the degrees of freedom are smaller for the GCA mean 
square in relation to the SCA mean square. Since its 
introduction, the partial diallel has had limited testing 
(Hallauer et al., 2010). For a small number of selected 
parents, the partial diallel will not provide any more 
information than can be obtained from the complete diallel. 
For a larger number of parents, North Carolina design II is 
simper to use than partial diallel. The partial diallel provide 
another alternative, but the design does not seem to have 
potential for extensive use (Hallauer et al., 2010). Partial 
diallels are also used to test single crosses among selected 
inbred lines. Data from partial diallels are used to in best 
linear unbiased prediction (BLUP) and best linear unbiased 
estimation (BLUE) analyses to predict the untested single 
crosses, which are tested in future trials. The partial diallel 
mating design would be a more appropriate mating design, 
in most instances, than the diallel for estimation of genetic 
components of variance with similar accuracy (e.g. GCA and  
SCA) because a greater number of parents can be included, 
for the resources available, to have a better sample that is 
representative of the genetic variation of the population.  
 
Disconnected half diallel 
 
The half-diallel mating is repeated for the second diallel 
group. Sometimes crosses are made between parents from 
two diallels to have connection between two groups (Figure 
9).         
 
Advantages and drawbacks of diallel mating designs  
1. Diallel designs provide good evaluation of parents and 
full-sib families,  
2. They provide estimates of both additive and dominance 
genetic effects,  
3. They provide estimates of genetic gains from both 
additive and non-additive genetic variance,  
4. When the number of parents mated increases, the 
number of crosses increases by 2N, where N is the number 
of parents; the design can be costly.  
5. Using the same parents as males and females make the 
mating design a little bit complicated to analyze. 
 
Discussion and Conclusion 
 
The choice of mating design should be one that detects 
additive genetic variation at the outset of the breeding 
programme with unselected material because non-additive 
effects become prominent as selection continues. This is  
because selected material has greater similarity thereby 

eliminating additive effects (Bernado, 2002; Hill et al., 1998). 
The larger the sample of parents used in a cross,  the closer 
the sample statistic estimates the population value; the BIPs 
use the most parents, in fact 10 times as many as does the 
diallel (Kearsey, 1965). Hill et al., (1998) roughly summarized 
the mating designs in two ways: in terms of coverage of the 
population; BIPs/paired crosses > NC1 > Polycross > NCIII > 
NC II > Diallel in order of decreasing effectiveness. However, 
in terms of amount of information which each mating design 
supplies; full diallel > NC II > NC III > NC I >BIPs. The diallel 
mating design is the most important for estimation of GCA 
and SCA.  
Other considerations in the choice of a mating design are the 
reproductive potential of a species, for example, a diallel 
cross should be considered only if a single cross produces an 
abundant supply of F1 seed. In species where plants do not 
produce sufficient flowers for a single plant to be used as a 
recurrent female parent, the BIPs and NCI techniques are 
eminently suitable because only one female per progeny 
family is required. (Kearsey, 1965). Other practical 
considerations such as cost and labour requirements also 
have to be borne in mind when choosing a mating design. 
For the breeders immediate purpose, the topcross and 
polycross that provide information on GCA and SCA would 
suffice (Hill et al., 1998). 
The study of gene action has been approached in two ways: 
1) through the characterization of the predominant types of 
genetic variance (additive vs. dominant) in populations, 
leading to the development and analysis of mating designs 
including North Carolina mating designs. 2) Generation 
mean analysis is the most prominent approach to determine 
gene action in  species that are difficult to cross and thus the 
variance component approach cannot be used (Lamkey and 
Lee, 1993). Dominance has been used as a measure of 
heterosis if epistatic effects are negligible in the diallel 
analysis (Moreno-Gonzalez and Dudley, 1981). Since 
epistasis is computed after taking out the additive and 
dominance variation, epistasis effects are usually much 
smaller than additive or dominance effects (Moreno-
Gonzalez and Dudley, 1981). 
For estimation of GCA and SCA effects, none of the designs 
supply as much information as the diallel analyses by Griffing 
(1956b) or Gardner and Eberhart (1966). The diallel however 
should be restricted to the production of F1 hybrid cultivars 
(Hill et al., 1998). Hill et al. (1998) emphasized that majority 
of the available designs supply statistical rather than 
genetical estimates of the components of variation. Only the 
triple test cross and Griffing’s methods 1 and 2 of the diallel 
cross, after redefinition of the components, are capable of 
supplying genetical estimates. 
In terms of the statistics obtained, BIP provide the fewest 
statistics (two) and hence allow only two parameters to be 
estimated. This only permits an approximate breakdown of 
the phenotypic variance into a genetic and environmental 
component. However, one can partition the genetic variance 
using the covariance of BIP family means on parental values 
(Kearsey, 1965). The North Carolina designs and the diallel 
all yield three statistics by allowing the between families 
statistics to be subdivided. This allows the genetic and 
environmental components to be separated and the genetic 
component to be broken down into additive and non-
additive components. Furthermore NCII allows one to 
discriminate between maternal and paternal arrays and so 
obtain a measure of maternal effect (Kearsey, 1965).
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Among the NC designs, NCI is the least restricted design for 
analysing all kinds of populations on plants and animals. 
However, it does yield the minimum genetic information and 
does not allow an independent test for the dominance 
effects. North Carolina II is more restrictive in terms of the 
material and cannot be applied to those species that 
produce either one or two progeny per female or are 
difficult to cross. However, it allows independent tests and 
estimates of the additive, dominance and maternal effects. 
The NCIII and TTC designs are more suited for studying the 
genetic control of variation in a cross of two pure lines. The 
designs provide tests and estimates of all major sources of 
phenotypic variation and allow for determination of the 
relative importance of the additive, dominance and epistatic 
effects. These designs are rather costly and are therefore 
restricted to a few species which are highly reproductive and 
easily crossable (Kearsey and Pooni, 1996). 
The diallel design is more effective in measuring the additive 
variation than generation mean analysis of individual 
crosses. This is due to the fact that differences between the 
means of the two parents of each cross are the source of 
additive variation in the generation mean analysis; while 
some portions of the means of all generations and all crosses 
are responsible for additive variation in the diallel analysis 
(Moreno-Gonzalez and Dudley, 1981). The diallel and 
generation mean analysis have had agreeable results in 
showing the major importance of dominance in heterosis for 
grain yield in maize (Moreno-Gonzalez and Dudley, 1981). 
The basic generations also provide an inefficient design for 
obtaining reliable estimates of the components of variances, 
particularly of VD (Kearsey and Pooni, 1996). The diallel is a 
design that is not very suitable for studying variation in a 
segregating population because the parental sample sizes 
are generally too small to be reliable. Its value comes in the 
analysis of crosses between inbred lines. The diallel and the 
NCII both allow the estimation of VA and VD. Nevertheless, 
NCII has two advantages over diallel: First, NCII design can 
be used to estimate genetic variances in one population or 
in the cross between two populations. In contrast, a diallel 
can be used to estimate VA and VD in one population only. 
Secondly, fewer crosses need to be made and evaluated 
with NCII design than with a diallel. For example, if  p 
parents are divided equally into male and female parents, 

i.e., m = f =
1

2
p,  with p =10 parents, a diallel requires 45 

crosses while NCII would only require 25 crosses. The 
degrees of freedom for estimating VA are only slightly less 
with NCII than with a diallel if the total number of parents 
across sets is large. For these reasons, NCII is superior to a 
diallel for estimating VA and VD, despite the wider use of the 
diallel (Bernado, 2002).  
From the ongoing, it must be noted that it is not the mating 
design per se, but rather the breeder who breeds a new 
cultivar. The implication is that the proper choice and use of 
a mating design will provide the most valuable information 
for breeding (Acquaah, 2007). 
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