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Abstract 
 
Regionalization of an agricultural area by dividing it into different clusters is an important strategy in the precision agriculture 
scope. Multivariate and spatial data are common in the design of these divisions. This paper sought to characterize regional 
differences in the area under study through different subsets of variables formed by soil physical-chemical variables and vegetative 
indices, in an agricultural area for four soybean harvest years in the period from 2013/2014 to 2016/2017. To such end, three 
subsets were generated comprised by these variables, which presented spatial dependence and were grouped according to their 
characteristics. By means of decision trees, it was identified which of these variables exerted the most influence on subdivision of 
the area. The multivariate and non-parametric spatial clustering technique was used to generate the clusters. Finally, by means of 
maps and boxplots, the spatial relationships between these variables and soybean productivity were evaluated. There was variation 
across the harvest years in relation to the subset of variables that determined the best design of the different clusters. The regional 
differences determined by the different variables used in the study showed no relationship with soybean productivity, which 
presented spatial homogeneity in its data for the harvest years evaluated. This approach is recommended when there is high 
spatial variability of factors that exert impacts on productivity, advising on using both soil physical-chemical variables and the 
vegetative indices to explain the causes of soybean productivity spatial variability. 
 
Keywords: cluster; decision tree; non-parametric spatial statistics; core-estimator function; vegetative indices; soil physical-
chemical variables. 
Abbreviations: ALL_ subset that contains all the variables; Al_ aluminum; ARVI_ atmospherically resistant vegetation index; ASC_ 
average silhouette coefficient; CCC_ cophenetic correlation coefficient; CFA_ humid subtropical climate; C_ carbon; Ca_ calcium; 
Cindex_ C index; Cu_ copper; CV_ coefficient of variation; DB_ Davies-Bouldin index; DUNN_ Dunn index; EVI2_ enhanced 
vegetation index 2; Fe_ iron; K_ potassium; Mg_ magnesium; Mn_ manganese; NDVI_ normalized difference vegetation index; 
OSAVI_ optimized soil adjusted vegetation index; P_ phosphorus; PC_ subset that contains the soil physical and chemical variables; 
PE_ plant emergence; R4_ full pod stage; R6_ full seed stage; R7_ grain maturation stage; RNE_ relative nugget effect; SAVI_ soil 
adjusted vegetation index; SD_ SD index; SPR_ soil penetration resistance; VI_ subset that contains the vegetative indices; WDRI_ 
wide dynamic range vegetation index; Zn_ zinc. 
 
Introduction 
 
Farmers face the challenge of increasing crop yields without 
expanding the planted area and, to such end, they seek 
technological advances to improve what they know about 
each crop, allowing for efficient use of inputs 
(Deiss et al., 2020). A number of research studies highlight 
the importance of investigating the relationship between the 
soil variables and crop yields in order to improve 
management of the planted area (Malvezi et al., 2019; 
Deus et al., 2020). The soil is a dynamic and complex system 
that undergoes the influence of various physical and 
chemical processes (Marinkovid et al., 2018) and, 
consequently, its variability is affected by factors such as its 
own characteristics or the management and use practices to 
which it is subjected (Gülser et al., 2016; Santos Jr. et al., 
2021). Some studies show that soil variables such as texture, 
structure, nutrient contents and pH, among others, can 
present considerable variations within the same rural 

property (Rosemary et al., 2017; Behera et al., 2018; 
Metwally et al., 2019; Mwendwa et al., 2022). This variability 
can become a challenge for agricultural production, as it can 
affect distribution of the nutrients, water retention and 
oxygen availability, exerting a direct influence on plant 
growth and, consequently, on productivity (Sanchez et al., 
2011; Nyéki et al., 2022). In addition to the analysis of the 
spatial patterns of the soil physical-chemical variables, 
analyzing the vegetative indices also allows us to monitor 
the changes in the growth environments of a crop and, thus, 
assess the vegetation response pattern to the various factors 
that affect the crop, assisting in management of this area 
(Rodriguez et al., 2006; Cordeiro et al., 2017). Therefore, it is 
crucial to understand this variability to maximize 
productivity and ensure sustainability of the agricultural 
production system (Oliveira et al., 2018; Vian et al., 2016). 
Precision agriculture is a management practice that takes 
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into account spatial variability to improve the efficacy of 
agricultural production (Cherubin et al., 2022). Applying 
techniques associated with precision agriculture allows 
acquiring more detailed information, which assists in more 
efficient decision-making in relation to crop management 
(Dalchiavon et al., 2017). Among the techniques used in 
precision agriculture are those related to machine learning, 
namely: clustering techniques and classification techniques, 
such as decision trees (Liakos et al., 2018). The clustering 
techniques allow for a more precise identification of areas 
with similar characteristics, assisting in understanding 
patterns that may not be easily seen (Priya and 
Venkateswari, 2018). This tool groups the areas into 
different clusters, allowing for a detailed analysis of the 
relationship between the different variables being worked 
on, which assists in identifying areas with specific problems 
(Gavioli et al., 2019). In turn, the classification techniques, 
such as decision trees, allow identifying the most important 
variables within a set, which can be useful to reveal spatial 
homogeneity patterns and to identify spatial relationships 
between the different variables (Zheng et al., 2009; Burdett 
and Wellen, 2022). 
Consequently, this paper sought to delimit subregions in the 
area under study that presented regional differences 
through different data subsets and, thus, to identify the 
variables that most contributed to regionalization of this 
area and whether this regionalization was in accordance 
with soybean productivity spatial distribution. This 
knowledge allows us to better understand the relationships 
of spatial distributions between the different variables 
analyzed and that can be related to plant development and 
final productivity. 
 
Results 
 
Analysis and choice of the best cluster 
Tables 1 and 2 present the fit metrics of the clusters for each 
subset tested in each harvest year. Thus, for the 2013/2014 
and 2014/2015 harvest years and, according to the following 
indices (ASC, DUNN, DB and CCC) and (ASC, SD and DB) 
(Table 1), respectively, the subset that presented the best 
result was the one considering all the variables (ALL). The 
results of the (Cindex, DUNN and CCC) and (SD, DB and CCC) 
indices (Table 2) indicate that, for the 2015/2016 and 
2016/2017 harvest years, respectively, the subset chosen in 
both years was the one comprised only by the soil physical-
chemical (PC) variables. 
By means of these same metrics, it is noticed that the 
optimum number of clusters in the study area was two in all 
the harvest years evaluated. For the 2013/2014 and 
2014/2015 harvest years, this number of clusters is indicated 
by the ASC, SD and DB indices evaluated for the subset 
comprised by all the variables (ALL), respectively. For the 
2015/2016 harvest year, the indices that indicate this 
number of divisions as the best for the area under study are 
ASC, C, SD, DUNN and DB, evaluated for the subset 
consisting of the soil physical-chemical (PC) variables. For 
the 2016/2017 harvest year, the indices that indicate this 
number of clusters are ASC, SD, DUNN and DB, also 
evaluated for the subset comprised only by the soil physical-
chemical (PC) variables (Tables 1 and 2). 
The subgroups chosen according to the indices proposed 
were formed by all the variables (ALL) for the first two 
harvest years (2013/2014 and 2014/2015) and by the 
physical-chemical variables for the last two (2015/2016 and 

2016/2017). Thus, in general, it is noticed that there was not 
a specific set of variables that stood out in terms of defining 
the clusters; in other words, the subset that best grouped 
the data varied according to the harvest year. 
For each harvest year, the sampling maps described with 
their respective clusters (Figure 1) are divided into CLUSTER1 
and CLUSTER2. In these maps, it is observed that, for the 
2013/2014, 2014/2015 and 2016/2017 harvest years, a 
smaller region (CLUSTER2) was formed in the Southwest 
region of the map, as well as another larger 
region (CLUSTER1), occupying the rest of the area. For the 
2015/2016 harvest year, partition of the area was different, 
with the map divided between North (CLUSTER2) and 
South (CLUSTER1). 
 
Profile of the different clusters by harvest year 
Considering the decision tree (Figure 2) prepared for the 
2013/2014 harvest year, using the (ALL) subset that 
generated the clusters, it is generally observed that 
CLUSTER1 presented the highest values for the ARVI 
vegetative index for 09/13/2013, 12/18/2013 and 
01/19/2014, which respectively correspond to the plant 
emergence (PE), full seed (R6) and beginning of grain 
maturation (R7) stages; in other words, this cluster 
presented higher values in all three vegetative periods 
evaluated, which correspond to the initial and final phases of 
the soybean vegetative cycle (Figure 2). In turn, CLUSTER2 
presented slightly higher values for moisture in the layer 
from 0 to 10 cm deep and in copper (Cu) content in the 
soil (Figure 2). 
In relation to the 2014/2015 harvest year, the clusters were 
generated considering the subset in which all the study 
variables were included. According to the decision tree 
(Figure 3), CLUSTER1 presents higher values for the SAVI 
index calculated for 12/05/2014 as its main characteristic, 
corresponding to the full pod stage (R4). Also according to 
the decision tree, there are places within this cluster where 
high values were observed for the SAVI index in the R4 stage 
and low values for the NDVI index in the R6 stage (full seed), 
with this region located at the Northwest of the area 
according to the maps (Figure 3). In turn, CLUSTER2 is 
characterized by slightly higher values for SPR in the layers 
between 20 and 30 cm deep and for calcium (Ca) content in 
the soil. 
Also for the 2014/2015 harvest year, although not identified 
by the decision tree, the plant emergence (PE) stage also 
presented a relevant difference between the clusters, 
according to the analysis of the boxplots and maps for this 
variable, where CLUSTER1 presented higher values than 
CLUSTER2 (Figure 4). In general, the indices presented 
similar results; however, the maps generated by NDVI and 
SAVI showed more evident differences between the clusters. 
The 2015/2016 harvest year was the one that most 
differentiated itself from the others analyzed, in relation to 
the formation of clusters. The subgroup that best divided 
the study area was comprised by the soil physical-chemical 
variables. Thus, when analyzing the decision tree generated 
for this harvest year, it is observed that the variables that 
exerted the most influence on differentiation of the clusters 
were carbon (C) and copper (Cu) content (Figure 5). As its 
main characteristic, CLUSTER1 presents carbon content 
values greater than or equal to          , representing the 
highest values for this variable in the entire 
plantation (Figure 5). In the regions within this cluster, 
where the carbon (C) content value is below          , 
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regions with low values for copper (Cu) and high values for 
iron (Fe) and zinc (Zn) content are also found (Figure 5). In 
turn, CLUSTER2 is characterized for having slightly lower 
values for carbon (C) content and higher ones for copper 
(Cu) content, with the highest concentration of this latter 
variable in the plantation (Figure 5). 
Also for the 2015/2016 harvest year, among all the soil 
physical variables, moisture and density in the layers 
between 0 and 10 cm and between 10 and 20 cm deep, 
respectively, were the ones that presented the highest 
differentiation between the clusters formed (Figure 6), with 
the region comprised by CLUSTER1 showing low values for 
both variables. Even so, these differences are not so large, 
with most of the maps presenting intermediate 
values (Figure 6). 
In the clusters generated for the 2016/2017 harvest year, 
the soil physical-chemical variables were also used. As its 
main characteristic, CLUSTER1 has lower SPR values in the 
layers from 0 to 10 cm deep, with values below 2.437 kPa 
(Figure 7). It is also possible to notice that, in the places 
within this same cluster, where the value of this variable is 
above 2.437 kPa, those for phosphorus (P) content in the soil 
were above           , while carbon (C) content in the 
soil was above           (Figure 7). CLUSTER2 is 
characterized by having higher values for SPR in the layers 
between 0 and 10 cm of soil depth and lower ones for 
phosphorus (P) content and density in the layer between 11 
and 20 cm deep (Figure 7). 
 
Soybean productivity analysis by harvest year 
In this study, it was observed that the regional differences 
generated by the different data subsets in the area under 
study exerted little influence on productivity during the 
2013/2014, 2014/2015 and 2016/2017 harvest years. In 
other words, when analyzing the boxplots and maps for 
these variables (Figure 8), no significant difference was 
observed in productivity in relation to the clusters formed. In 
all three cases, the different clusters presented intermediate 
values in relation to productivity. The 2015/2016 harvest 
year was the one that presented the highest difference 
among the clusters in relation to yield, according to the 
boxplot and the thematic map. It is observed that the 
productivity values in CLUSTER2 are lower than in CLUSTER1, 
which characterizes CLUSTER2 as a less productive region in 
relation to the total area. 
In the thematic maps it is also possible to notice certain 
homogeneity in distribution of the values for all four harvest 
years under study. This fact is also made evident when the 
descriptive statistics for each harvest year is verified 
(Table 3). According to this table, in all harvest years, the 
coefficients of variation were in the ranges considered low 
(< 10%) or average (10% < CV < 20%) according to the 
criteria proposed by Pimentel-Gomes (2009); in other words, 
these results also point to the little variation of the values of 
this variable in the field, also representing an indication of 
this homogeneity.  
 
Discussion 
 
The results obtained showed that there is variation across 
the harvest years regarding the definition of which subset 
presented the best adjustments to group the locations and, 
consequently, to define the different clusters. Therefore, 
there is no specific subset that stands out from the others to 
generate these clusters. This result was already expected 

due to the fact that many of the variables used in the paper, 
such as the soil chemical variables, are not considered 
temporally stable (Gavioli et al., 2016). Therefore, it is to be 
expected that the subset that best divides the area will also 
vary according to the years. 
Analyzed together with the thematic maps and the boxplots 
of the values corresponding to the variables in each group, 
the decision tree was able to identify the existence of 
differences in the study area, which is important to identify 
different behavior patterns in the plants that may come to 
influence productivity. 
In relation to the clusters generated in this study, it is 
verified that the vegetative indices and the soil physical 
variables were the variables with the greatest contribution 
to differentiating the area and generating clusters for the 
2013/2014 and 2014/2015 harvest years. According to 
Alvino et al. (2020), it is possible to establish relationships 
between the vegetative indices and the characteristics of the 
crops observed in the field and, thus, to interpret vegetative 
vigor of the crops and guide management decisions. In 
general, CLUSTER1 presented greater vegetative vigor in 
almost all phenological stages evaluated, and the plat 
emergence (PE) stage (Figures 2, 3 and 4) was the one that 
most stood out in terms of differentiation of the clusters 
generated for both harvest years, indicating a smaller 
vegetation cover area in this region during these periods or 
late development of the CLUSTER2 plants in relation to 
CLUSTER1. 
The main characteristics that distinguish both regions 
delimited for the 2013/2014 harvest year are essentially 
given by slightly higher values for soil moisture in the layer 
between 0 and 10 cm deep and lower vegetative vigor, 
mainly in the plant emergence (PE) stage for CLUSTER2. In 
other words, at first sight, there seems to be an association 
between moisture and soybean development. According to 
Collares et al. (2006), moisture controls soil aeration, 
temperature and mechanical strength, which in turn 
regulate root growth and functionality, reflecting in growth 
and productivity. High soil moisture values can cause a 
decrease in aeration, which is not considered beneficial for 
plant development and may exert effects on productivity 
(Grable and Siemer, 1968). 
The 2014/2015 harvest year is characterized by having 
higher SPR values and lower vegetative indices in the early 
stages of CLUSTER2 soybean development. The values for 
SPR may have influenced initial soybean development since, 
according to Freddi et al. (2006), SPR exerts a significant 
influence on plant development, mainly affecting the roots 
in their initial period, when they are very susceptible to 
compacted soil layers. 
However, productivity for these two harvest years presented 
a small difference between the clusters generated (Figure 8). 
In other words, the differences found between the delimited 
regions did not influence productivity in general. 
In turn, the soil physical-chemical variables were the most 
important for the generation of clusters in the last two 
harvest years studied (2015/2016 and 2016/2017). However, 
there was variation across the harvest years in relation to 
which soil physical-chemical variables were more relevant in 
differentiating the study area. 
For the 2015/2016 harvest year, the most important soil 
chemical elements for the differentiation of clusters were 
carbon (C) and copper (Cu) contents. Distribution of these 
elements on the map (Figure 8) is similar to the one 
corresponding to productivity (Figure 11) when compared in  
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Table 1. Evaluation of group formation using cluster fit metrics. Values in bold represent the best results for each index, relative to the various 
subsets under study. 

  CROP YEAR 2013/2014 CROP YEAR 2014/2015 

  SUBSET SUBSET 

INDEX CLUSTER ALL VI PC ALL VI PC 

 4 0.139 0.132 0.095 0.14 0.13 0.03 

ASC 3 0.158 0.156 0.088 0.13 0.15 0.04 

 2 0.249 0.205 0.079 0.25 0.20 0.09 

 4 0.714 0.726 0.640 0.22 0.60 0.50 

Cindex 3 0.710 0.714 0.643 0.48 0.59 0.52 

 2 0.639 0.596 0.659 0.46 0.51 0.52 

 4 9.466 7.161 2.155 3.40 8.77 12.5 

SD 3 4.582 3.805 2.678 3.15 5.14 10.9 

 2 4.190 3.400 3.426 2.30 3.82 7.47 

 4 0.898 0.884 0.709 0.63 0.91 0.87 

DUNN 3 0.886 0.861 0.705 0.62 0.88 0.87 

 2 0.773 0.741 0.696 0.62 0.78 0.85 

 4 1.861 1.604 1.266 1.02 1.90 3.05 

DB 3 1.026 0.948 1.484 1.12 1.19 2.79 

 2 0.704 0.915 1.917 0.75 0.91 1.69 

CCC - 0.86 0.78 0.77 0.81 0.83 0.73 
ASC: Average Silhouette Coefficient; Cindex: C index; SD: Standard Deviation index; CCC: Cophenetic Correlation Coefficient; DUNN: Dunn index; DB: Davies-Bouldin index; VI: vegetative 
index; PC: soil physicochemical variables; Nº CLUSTER: number of clusters formed within the study area. 

 

 
Fig 1. Maps with their sampling points according to their respective cluster and percentage of occupation of each cluster for the 
2013/2014, 2014/2015, 2015/2016 and 2016/2017 crop years, CLUSTER1: cluster 1; CLUSTER2: cluster 2. 
 

Table 2. Evaluation of group formation using cluster fit metrics. Values in bold represent the best results for each index, relative to the various 
subsets under study. 

  CROP YEAR 2015/2016 CROP YEAR 2016/2017 

  SUBSET SUBSET 

INDEX CLUSTER ALL VI PC ALL VI PC 

 4 0.05 0.07 0.06 0.21 0.06 0.13 

ASC 3 0.06 0.10 0.05 0.24 0.07 0.13 

 2 0.25 0.15 0.09 0.28 0.39 0.27 

 4 0.53 0.54 0.39 0.51 0.56 0.52 

Cindex 3 0.52 0.55 0.56 0.50 0.58 0.47 

 2 0.42 0.43 0.55 0.41 0.40 0.49 

 4 5.64 4.92 4.87 3.66 4.92 3.83 

SD 3 4.54 3.33 6.22 2.50 4.26 3.28 

 2 3.45 3.11 4.41 2.37 2.53 2.33 

 4 0.37 0.55 0.80 0.65 0.40 0.77 

DUNN 3 0.35 0.53 0.78 0.62 0.37 0.72 

 2 0.52 0.42 0.82 0.49 0.66 0.81 

 4 1.50 1.34 1.75 0.97 1.30 1.10 

DB 3 1.43 0.87 2.10 0.78 1.21 0.98 

 2 0.89 0.92 1.66 0.83 0.73 0.67 

CCC - 0.61 0.51 0.78 0.74 0.65 0.88 
ASC: Average Silhouette Coefficient; Cindex: C index; SD: Standard Deviation index; CCC: Cophenetic Correlation Coefficient; DUNN: Dunn index; DB: Davies-Bouldin index; VI: vegetative 
index; PC: soil physicochemical variables; Nº CLUSTER: number of clusters formed within the study area. 
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Fig 2. Decision tree for the subset formed by all variables (crop year 2013/2014), Boxplot and thematic maps with the attributes 
indicated by the tree as those that most contributed to the generation of clusters. The line on the map indicates the division 
between the clusters. 
 

Table 3. Descriptive statistics of productivity data 

 2013/2014 2014/2015 2015/2016 2016/2017 

Minimum 2.90 1.87 2.14 1.58 

Maximum 5.76 3.18 2.82 4.21 

Average 4.22 2.37 2.44 3.12 

Standard deviation 0.58 0.27 0.18 0.53 

CV 13.74% 11.55% 7.57% 17% 

CV: Coefficient of variation 
 

 
Fig 3. Decision tree for the subset formed by all attributes (crop year 2014/2015), Boxplot and thematic maps with the attributes 
indicated by the tree as the that most contributed to the generation of clusters. The line on the map indicates the division between 
the clusters. 



575 
 

 
 
Fig 4. Boxplot and thematic maps generated for the NDVI and SAVI index for the plant emergence stage (VE) (crop year 2014/2015). 
The line on the map indicates the division between the clusters. 
 

 
Fig 5. Decision tree for the physicochemical attributes (crop year 2015/2016), Boxplot and thematic maps with the chemical 
attributes indicated by the tree as those that most contributed to the generation of clusters. The line on the map indicates the 
division between the clusters. 
 
 

 
Fig 6. Boxplot and thematic maps with the physical attributes pointed out by the tree as those that most contributed to the 
generation of clusters. The line on the map indicates the division between the clusters 
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Fig 7. Decision tree for the physicochemical attributes (crop year 2016/2017), boxplot and thematic maps with the attributes 
indicated by the tree as the most contributed to the generation of clusters. The line on the map indicates the division between the 
clusters. 
 

 
Fig 8. Comparative productivity map for all crop years analyzed in the study. The line on the map indicates the division between the 
clusters. 
 
 

  
(a) (b) 
Fig 9. Representation of the plot with the respective numbers of sampling points for the crop years (a) 2013/2014, 
2015/2016 and 2016/2017 and (b) 2014/2015. 
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relation to the clusters formed; in other words, there seems 
to be a relationship between these elements and 
productivity, which was not so evident in the other harvest 
years. 
According to the classification proposed by SEAB (1989), 
carbon (C) content in the soil has concentrations considered 
high (from           to          ) in both clusters, 
although there are areas within CLUSTER1 with 
concentrations considered very high (          ) for that 
variable. In turn, copper (Cu) content in the soil presented 
average concentrations (           ) for both clusters. 
Carbon (C) content in the soil plays an important role in the 
terrestrial ecosystem, being directly associated with soil 
fertility and, therefore, with productive capacity (Guo et al., 
2015). In this study, high availability of this variable was 
verified in both clusters, according to the soybean 
needs (SEAB, 1989). In other words, even with different 
concentrations of this element in the field, this variation 
takes place within the range considered high for soybean, so 
that it is available for full development of this crop and, thus, 
not limiting it. 
In turn, copper (Cu) content in the soil plays a fundamental 
role in the biochemistry and physiology of plants, so that 
lack or low concentration of this element causes a decrease 
in productivity (Malavolta, 2006). As its concentration is 
considered average for both clusters (SEAB, 1989), this 
element is also not a limiting factor for productivity in 
CLUSTER2; in other words, likewise to carbon, the variation 
between the clusters takes place within the limits necessary 
for plant development. Thus, it is verified that the soybean 
productivity variability between both clusters formed for this 
harvest year can be related to other factors not analyzed in 
this study, such as climatic factors, for example, which may 
also be similarly affecting the spatial distribution of carbon 
and copper content. For the 2016/2017 harvest year, the 
main variables responsible for dividing the area into two 
clusters were SPR (0-10 cm) and phosphorus (P) content in 
the soil. According to the results presented, SPR (0-10 cm) 
has higher soil penetration resistance in the layer from 0 to 
10 cm deep in CLUSTER 2 when compared to the rest of the 
area. Changes in soil structure exert effects on SPR, which in 
turn influence root and seedling growth (Botta et al., 2006). 
The SPR increase makes the energy required for root 
development to be higher, in addition to reducing root 
elongation and growth (Lipiec and Hatano, 2003). However, 
although there are differences in the distribution of the 
values corresponding to this variable between the clusters, it 
did not prove to be limiting in relation to productivity, as it 
did not show relevant differences between both clusters 
generated (Figure 8) for this harvest year. This result is in 
agreement with Girardello et al. (2014), which establish that, 
in adequate environmental situations, the relationship 
between SPR and productivity has been low. 
The results obtained show that, according to the 
classification by SEAB (1989), the concentration for the 
phosphorus (P) content variable is considered very high 
(          ) for both clusters. Phosphorus (P) content is 
an essential element for the development of plants, which 
cannot reach their maximum potential without adequate 
nutritional supply of this chemical element (Marschner, 
1995). However, in our case, according to the soybean 
needs, high availability of this element was verified in both 
clusters and even with variations between the different 
regions delimited in this study, which takes place within this 

availability range, therefore not causing any effect on 
productivity. 
It is noted that the regional differences found in the field 
derived from the different sets of variables had little 
agreement with the productivity data, especially for the 
2013/2014, 2014/2015 and 2016/2017 harvest years. This 
low agreement can be associated with the little relationship 
between the variation of the different variables used in this 
paper and the variation in productivity. This absence of 
relationship between different variables and productivity 
can also be seen in some other papers, such as the one 
presented by Stafford et al. (1996), who analyzed the 
relationship between the variation of soil nutrient contents 
and the variation in productivity. In another study, when 
evaluating four case studies related to problems associated 
with the analysis of agricultural data, Wendroth et al. (2001) 
observed that there was no spatial association between the 
productivity maps and the vegetation index and soil index 
maps (which include several soil variables). The 
homogeneity seen in the productivity maps also evidences 
that the variability of the different variables present in the 
different clusters exerted little influence on productivity 
spatial variation. This homogeneity can be related to 
management and handling of the area where the study was 
carried out, as it is a commercial agricultural area with 
technical monitoring for several years. According to 
Kayad et al. (2021), field management and environmental 
factors are the main causes of productivity spatial and time 
variability and, according to Freddi et al. (2006), soil 
management is the main factor for its variability. 
Even though there was no major effect on soybean 
productivity in the harvest years evaluated, it was possible 
to identify regional differences in the study area, mainly 
characterized by vegetative indices and some soil physical-
chemical variables. Understanding these regional differences 
is important to establish appropriate management practices, 
not only in relation to productivity optimization, but also to 
minimize possible environmental damage (Alves et al., 
2013). 
 
Materials and Methods 
 
Study area 
The study was carried out with data collected in a grain 
production commercial agricultural area with 167.35 ha 
(Figure 9a) for the 2013/2014, 2015/2016 and 2016/2017 
harvest years and 124.22 ha (Figure 99b) for the 2014/2015 
harvest year, located in the municipality of Cascavel, state of 
Paraná - Brazil. The mean altitude in this area is 650 m. This 
region has its soil classified as typical dystroferric red oxisol 
(Santos et al., 2018) and presents super-humid mesothermic 
temperate climate, Cfa climate type (Köppen), with a mean 
annual temperature of 21ºC. For 2014/2015, part of the 
study area was used (Figure 9b), as the region to the North 
lacked values for soybean productivity and was disregarded 
from the paper. 
 
Data acquisition 
In order to better understand the methodology proposed, 
the stages that make up this paper were organized according 
to the flowchart described in Supplementary Figure 1. 
Information for the 2013/2014, 2014/2015, 2015/2016 and 
2016/2017 harvest years obtained through field collection 
and remote sensing was used. The sampling grid consisted of 
102 points and followed a sampling plan called “Lattice plus 
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close pairs” (Chipeta et al., 2017) (Figure 9a) with the 
exception of the 2014/2015 harvest year, in which 77 points 
were used (Figure 9b) because the missing points were 
planted with corn that year. From these sampling grids (a) 
and (b) in Figure 9, the following sets of soil variables were 
obtained through field collection: soil penetration 
resistance (SPR), density, soil moisture, soil chemical 
variables - Carbon (C) (g dm

-3
), Phosphorus (P) (mg dm

-3
), 

Potassium (K) (cmolc dm
-3

), potential hydrogen (pH), 
Aluminum (Al) (cmolc dm

-3
), potential acidity (H+Al) 

(cmolc dm
-3

), Calcium (Ca) (cmolc dm
-3

), Copper (Cu) 
(cmolc dm

-3
), Iron (Fe) (cmolc dm

-3
), Magnesium (Mg) 

(cmolc dm
-3

), Manganese (Mn) (cmolc dm
-3

), Zinc (Zn) 
(cmolc dm

-3
) and soybean productivity (t ha

-1
). In addition to 

that, vegetation indices (VIs) were calculated through 
sensors using the images obtained from the Landsat-8 
satellite OLI sensor. The indices used in this study were the 
following: ARVI, NDVI, EVI2, SAVI, OSAVI and WDRVI (Huete, 
1988; Steven, 1988; Gitelson, 2004; Jiang et al., 2008). 
 
Geostatistical analysis and selection of variables 
For each harvest year, a geostatistical analysis was carried 
out on each variable, in order to observe the spatial 
dependence behavior and subsequently generate the 
thematic map through ordinary kriging. The parameters of 
the geostatistical models were estimated by the maximum 
likelihood method. The Matérn family theoretical models 
were estimated with model order parameter   equal to 0.5 
(exponential model), 1 and 2 and with     (Gaussian 
model) (Uribe-Opazo et al., 2012). Choice of the best fitted 
model was through cross-validation and Akaike's criterion 
(Faraco et al., 2008). The estimate of an index (RNE) that 
evaluates the spatial dependence degree was also calculated 
(Cambardella et al., 1994). Once the spatial dependence 
degree was known, the variables that presented RNE only 
classified as strong (        ) or average (         
    ) spatial dependence were selected. 
For a more detailed study of the area, the variables with 
spatial dependence (average or strong) were grouped into 
three subsets according to their characteristics: (1

st
 subset) 

containing all the variables (ALL), (2
nd

 subset) vegetative 
indices (VIs); and (3

rd
 subset) soil physical-chemical (PC) 

variables; with the objective of finding out if any of these 
subsets presented better performance in characterizing the 
study area. Subsequently, for each of these subsets, their 
dimensionality was reduced using the MULTISPATI-PCA 
technique (Dray et al., 2008), with which each subset of 
variables was transformed into synthetic variables called 
spatial principal components (SPCs), from which the score 
values for each sampling point were obtained. The number 
of SPCs that represented at least 70% of the total variability 
of the variables was used (Gavioli et al., 2016). 
 
Generation of the dissimilarity matrix and data clustering 
Subsequently, a dissimilarity matrix used to perform the 
clustering was generated. For this, a methodology created 
by Fouedjio (2016) (Supplementary Figure 2) was employed, 
in which a spatial dissimilarity measure was elaborated 
through calculation of non-parametric, univariate and 
crossed experimental semivariances, considering a non-
parametric core-estimator function. With the set of 
estimated values corresponding to the direct and cross 
semivariances, a dissimilarity measure between two 
locations,    and   , denoted by   (     ), was obtained 
according to Supplementary Figure 2 (Theodoridis and 

Koutroumbas, 2009). From this dissimilarity measure, the  , 
    symmetric dissimilarity matrix was generated for all 
sampled locations (Fouedjio, 2016). After obtaining 
dissimilarity matrix  , a cumulative full link algorithm was 
used to perform the clusters, from which interpolated maps 
with 2, 3 and 4 clusters were generated. For each harvest 
year, choice of the subset that presented the best clustering 
results (which best defined the different partitions), as well 
as choice of the optimal number of clusters in the area 
under study, was performed by calculating the following 
measures: cophenetic correlation coefficient (CCC), average 
silhouette coefficient (ASC), Cindex, SD index, Dunn index 
(DUNN) and DB index (Xiao et al., 2017; Mota et al., 2018; 
Halkidi et al., 2000; Rousseeuw, 1987). 
 
Statistical data analysis and classification 
The analysis of the profile corresponding to the different 
clusters and the analysis of the relationship between the 
variables belonging to the subset selected and the clusters 
chosen for each harvest year, as well as the evaluation 
between the variables that most contributed to 
regionalization of the area and productivity, were carried 
out through boxplots, thematic maps (generated by kriging) 
and decision trees (Witten et al., 2011). 
In the decision tree, the clusters generated by the subset 
that best clustered the data were used as dependent 
variable; whereas the explanatory variables corresponded to 
those that were part of the subset chosen to generate these 
divisions in the field. Due to the small number of sample 
points to be used in the decision tree, the sample set 
considered in such tree corresponded to a grid with 
interpolated points (8,244 points for the 2013/2014, 
2015/2016, 2016/2017 harvest years and 5,218 points for 
2014/2015) through ordinary kriging. 
Subsequently, this set was randomly divided into 70%, which 
corresponded to a sample for training, and the other 30% for 
testing. There was also balancing of the clusters formed and 
pruning in the decision trees to generate smaller and easy-
to-interpret trees. The classification was evaluated by 
analyzing the confusion matrix between the elements 
classified and the test and training data (Congalton and 
Green, 1999). 
 
Conclusion 
 
The methodology applied was able to identify regional 
differences caused by the variability of the different 
variables used in the research; however, this variation took 
place within a range not limiting productivity which, in turn, 
showed homogeneity throughout the study area and, 
therefore, few differences between the clusters formed. 
Even so, the fact that local characteristics were identified 
was important to better understand the influence exerted 
by the various factors studied on the field. 
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