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Abstract 
 
Genotype-environment interaction and stability analysis has been important for plant breeders and plays a vital role in identifying 
genotypes that are stable or unstable in a given environment. The experiments in this research were conducted to determine the 
effects of genotype, environment and genotype-environment interaction on grain yield using the AMMI statistical model, and to 
recognize the most stable rice genotypes among ten genotypes in southern Thailand’s provinces of environments in Songkhla, Satun 
and Phatthalung. Highly significant differences were shown from the combined analysis for environments with grain yields, revealing 
that environments were different and indicated change ability between the genotypes and their interactions. The average grain yield 
assessment of the tested genotypes was around the environments where genotype G8 (Nahng Kian) had the highest grain yield   
6234.11 kg/ha. AMMI biplot of the Interaction Principal Component Analysis (IPCA) scores visualized 90.7% for IPCA1 and 9.3% for 
IPCA2 with the genotypes and environments for grain yield. In the AMMI stability value method, G8 (Nahng Kian) was the most stable 
genotype followed by the genotypes G2 (Mai Tahk) and G10 (Hawm Jet Ban) Songkhla, Satun and Phatthalung environments. 
 
Keywords: AMMI, environment, genotypes, G×E interaction, upland rice, yield stability. 
Abbreviations: AMMI_additive main effect and multiplicative interaction; IPCA_interaction principal component analysis; ASV_AMMI 
stability value; ANOVA_analysis of variance; df_degrees of freedom; CV%_coefficient of variation; TSS_total sum of squares.  
 
Introduction 
 
Rice (Oryza sativa L.) is an essential staple cereal crop 
nourishing more than half of the world’s populations making 
up 50 to 80% of regular caloric consumption (Amirjani, 2011). 
Bridhikitti and Overcamp (2011), mentioned that Japonica, 
Javanica and Indica are subspecies, and that irrigated, rainfed 
lowland, deep water, and upland comprise the various 
cultivation ecosystems. Upland rice is grown in rainfed, 
naturally well-drained soils without surface water 
accumulation or a phreatic water supply, and is also usually 
not bunded.  Messina et al. (2009) reported that grain yield is 
contingent on genotype and, environment, in addition to 
management practices. Given similar management situations, 
differences in grain yield exist mainly due to effects of 
genotype and environment as reported by Dingkuhn et al. 
(2006). Combining these double descriptive variables provides 
ideas for recognizing the genotype most appropriate for a 
given the environment. 
Genotype and environment interaction (G×E) imitate the 
diverse reactions of the genotypes to different environmental 

conditions, i.e., one genotype under certain conditions is not 
the best genotype for other conditions. They are influenced by 
the environment. Hence, the G×E interaction cannot represent 
all inherent possibilities under certain which associated toward 
environmental conditions, and makes recommendations of 
genotypes to the plant breeder challenging (Arciniegas-Alarcn 
et al., 2010). According to Rodrigues et al. (2014), different 
response of genotypes across environments (location-year-
combinations) is often normal in multi-environmental trials 
and is known as G×E interaction. It governs the identification 
of stable genotypes suitable for an environment, as well as of 
genotypes with a general behaviour that are suitable across 
several environments (Annichiarico and Perenzin, 1996). 
A strong G×E interaction slows down selection and 
identification of genotypes, and makes recommendations 
difficult. To analyze G×E interaction and phenotypic stability, 
several methods have been proposed, specifically univariate 
and multivariate stability statistics methods. A combined 
analysis of variance can quantify the interactions and describe 
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the main effects (Genotype and Environment) reported by (Lin 
et al., 1986). Univariate is used of G×E interaction. Among 
multivariate approaches, AMMI analysis has been extensively 
applied in statistical analyses because it captures a large 
portion of the G×E interaction sum of squares, and   clearly 
separates main and interactive effects. It also often provides 
meaningful interpretation of records which supports a 
breeding program such as genotype stability which represents 
agronomic investigations through different types of chances. In 
addition, the model affords agriculturally evocative 
clarification of high productivity records and is increasingly 
well adapted to a given agronomic region, through the 
purpose of regionalized endorsement, plus collection of check 
locations (Ebdon and Gauch, 2013; Rodrigues et al., 2014).  
According to Gauch et al. (2008), the AMMI model combines 
ANOVA for the main genotype and environmental effects with 
principal component analysis of G×E. Consequently, based on 
the  AMMI model, the AMMI stability value (ASV) has been 
used (Purchase et al., 2000). Formerly, the Principal 
Component Analysis (PCA), that affords a different model, is 
useful to investigate the cumulative consequences since the 
additive ANOVA model. According to Thillainathan and 
Fernandez (2001), the biplot display of PCA scores plotted 
against each other provides visual inspection and interaction 
components. Integrating biplot display and genotypic stability 
statistics enables genotypes to be grouped based on similarity 
of performance across diverse environments. Application of 
the AMMI model for yield trials have taken place regularly 
throughout the previous two eras, and there have been 
numerous new assessment apprenticeships (Gauch et al., 
2008; Yang et al., 2009; Rodrigues et al., 2014).  
The AMMI result is gaining popularity and has been widely 
preferred in recent years for breeding programs, judgments 
such as definite and extensive alterations, as well as for the 
assortment of the environments (Manrique and Hermann, 
2002; Gruneberg et al., 2005). Hence, the objectives of this 
research were to 1) estimate the extension of genotype, 
environment and G×E interactions for grain yield, 2) evaluate 
rice genotypes on behalf of their yield performance in 
particular environments, and 3) select genotypes in terms of 
their stability for definite region production depending on their 
grain yield performance in particular environments. 
 
Results and Discussion 
 
Climatic differences analysis 
 
According to Eberhart and Russell (1966), high variations 
occurring in this result were caused by several factors such as 
soil properties, total phosphorus, available phosphorus, as well 
as rainfall. Changeable environmental features such as relative 
humidity and rainfall through a single situation can underscore 
dissimilarity of genotypes in relation to environment across 
locations. For the different location trials, the location in which 
the field trials were undertaken showed geographical and 
environmental dissimilarities. Therefore, an enormous 
influence from the environment was expected. Consequently, 
tested genotypes in different environments differed in 
changeable environmental conditions, which suggests that a 

proper method intended for choosing genotypes exists. From 
Table 1, it can be seen that the Phatthalung environment has 
very low percentage of total phosphorus (121.92 mg/kg), 
available phosphorus (2.95 mg/kg), available Ca (65.90 mg/kg), 
available Fe (162.56 mg/kg), the lowest annually average 
rainfall (575 mm) and the medium humidity (85%). In 
comparison, Satun environment has total phosphorus of 
207.42 mg/kg, available phosphorus of 10.84 mg/kg, and 
available Fe of 353.16 mg/kg with relative humidity (81%). The 
Songkhla environment has available K of 33.73 mg/kg and the 
annually average highest rainfall (583 mm).  
 
Single analysis 
 
From Table 2, single analysis of variance revealed that 
genotype with grain yield for the Satun and Phatthalung 
environments showed significant differences, indicating 
differential performances of genotypes over these two 
environments. Whereas Songkhla had no significant difference 
for genotype. This is due to more coefficient of variation values 
(27.72%) for the Songkhla environment.  
 
Combined analysis 
 
Table 3 combines ANOVA of 10 genotypes in three 
environments (Satun, Phatthalung and Songkhla) showing 
highly significant differences for environments while no 
significant differences for genotypes and G×E interactions. The 
significant differences that AMMI analysis identifies among 
genotypes, environments and G×E interaction, and indicates 
that there are highly significant differences among 
environments and that each environment has a strong effect 
on genotypes and G×E interactions, which help in selecting 
high yielding and stable genotypes in each environment. The 
genotypes and G×E interaction had no significant differences in 
grain yield in this combined analysis because there are very 
high mean squares of pooled error. The significance of G×E 
interaction indicates distinct genotypes in each location. This 
suggests the necessity to examine patterns of adaptability of 
genotype across each location. These findings were also 
reported by Falconer and Mackay (1996). The highly significant 
differences for the environment and G×E interaction designate 
high differential behaviour (Yaghotipoor and Farshadfar, 
2007). 
 
AMMI analysis  
 
According to Gauch (1988), AMMI is an applicable model in the 
preliminary arithmetical study of yield trials as it supports 
different logical instrument to identify other models. AMMI 
helps to make good plan for predicting new locations and new 
year. Freeman (1990) stated that the AMMI model has the 
capability of overall fitting and place no limitations on the 
multiplicative term, which results in an acceptable minimum 
mean square. The IPCA scores of genotypes and environments 
are plotted against their respective mean values in the AMMI 
model 1 biplot, where the average productivity of the 
genotypes, environments and their interactions for all possible 
genotype-environment combinations visualize among them. 
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The AMMI model is the recommended design for three key 
determinations. Firstly, the model identifies additional models; 
then illuminates G×E interaction and summarizes the 
extension and interactions of G and E (Crossa, 1990). It is 
evident from Table 4 for grain yield, 10 genotypes exposed 
82.86% of total sum of squares is attributed to environmental 
effects, 1.31% to genotypic effects, and 2.44% to G × E 
interaction effects while IPCA1 accounted for 90.7 %, and 
IPCA2 accounted for only 9.3% of variation from G×E 
interaction. Therefore, the AMMI1 biplot gives the best model, 
with a fit of IPCA1 accounting for 90.7% of the total treatment 
variation in G×E data through grain yield (Fig 1). Large 
significant mean squares attributable to environments indicate 
large differences in the influence of environments i.e., 
environments are so diverse they cause the greatest variation 
on G×E interaction. Environments accounted for the largest 
proportion followed by G×E interactions and genotypes, as 
reported by Naveed and Nadeem (2007), and is about 41 times 
higher in comparison with genotypes and G×E interaction for 
grain yield on the productivity of genotypes. The G×E 
interaction sum of squares is much less for grain yield.  
Less G×E interaction greatly sped up the selection process 
rapidly and made genotype recommendations easier. It also 
destroyed the high stable yields that are appropriate for yield 
breeders and growers, owing to its inherent configuration, and 
yields are greater which indicates that environments devour 
strong effects on the presentation of the genotypes 
(Zulqarnain et al.,2017). The significant contribution of G×E 
interaction towards grain yield variation suggests differential 
responses of genotypes to different environments. The 
partitioning of the total sum of squares indicates that the 
environmental effect is a leading source of variation followed 
by the genotype and G×E interaction, which suggests the 
presence of different genotypes suitable to different 
environments (Mohammadi et al., 2007). Highly significant G×E 
interaction reduces responses to a selection of superior 
genotypes (Flores et al., 1998). Hence, it is appropriate to 
assess yield stability under different environments and identify 
genotypes with a specific or broad adaptation. This is 
consistent with the findings of Islam et al. (2014). The 
existence of G×E interaction is visibly confirmed through the 
AMMI 1 model. The interaction is separated between the 
IPCAs, and the two IPCAs together accounted for 100% of the 
overall G×E interactions for grain yield: 90.7% from IPCA1 and 
9.3% from IPCA2. However, 10.73% was pooled error or 
residual noise and was not interpretable, thus discarded 
(Purchase et al., 1997).  Table 4 indicates that the AMMI model 
is good fit with the data, and that the model can predict 
accuracy using the IPCA (Beya et al., 2008). 
The AMMI1 biplot analysis using IPCA1 and mean grain yield 
data from Table 4 allows visual interpretation of G x E 
interactions and genotype recommendation for multi-
environments (Fig. 1). Here the “0” is a perpendicular line. The 
display shows, from the center of the perpendicular line, that 
genotypes with environments on the right side (both upper 
and lower) always bear highest mean values of grain yield. The 
upper right quadrant, contains more high mean grain yield 
values than those in the lower right quadrant, which have 
medium mean grain yield values. Those on the left side, have 

the lowest mean grain yield values. Taking the performance of 
the perpendicular line as standard, genotypes with high mean 
values and positive interaction with IPCA1 are in the Satun 
environment. As a result, among the ten genotypes G8, G9, 
G10, G3, G7 and G4, are generally high yielding with the 
highest mean values (6234.11, 6115.56, 6043.44, 5893.44, 
5854.78 and 5268.22 kg/ha, respectively) in the Satun 
environment. After that G1, G2, G5 and G6 (5546.56, 5342.89, 
6115.56 and 5831.22 kg/ha, respectively) are in the Songkhla 
environment, and are generally lower yielding than the 
genotypes suited to the Satun environment. In contrast, 
Phatthalung is the poorest environment among the three, as 
shown on left side of the perpendicular line, and bore no best 
suited genotype. The Satun and Songkhla environments are on 
the right side of the vertical axis, indicating rich environments, 
whereas the Phatthalung environment is generally the poorest 
environment. Thus, the AMMI biplot shows that the studied 
genotypes differed from each other not only in their 
interactive effects but also in their mean grain yield values. 
 
IPCA interactions  
 
The AMMI biplot provides a visual expression of the 
relationships between the IPCA1 and IPCA2 with the mean of 
genotypes and environments. According to Alberts (2004), 
Principal Component Analysis is a multivariate technique that 
recognizes figure arrangements in addition to 
correspondences and differences between the variables 
established and arranged in a consecration procedure of 
multivariate systems. Table 5 shows IPCA1 and IPCA2 scores 
that characterize the interaction of a genotype across 
environments as well as relationships between genotypes and 
environments. According to Yan and Hunt (2001) and 
Mohammadi et al. (2007), a genotype with a positive IPCA 
score in several environments must neutralize negative 
interactions in other environments. Hence, these scores 
exhibit an unequal genotype reaction to the environment. 
Nevertheless, both positive and negative signs, as well as 
genotypes and environments using large IPCA scores, have 
strong large interactions and are stable. However, genotypes 
with IPCA1 and IPCA2 scores at zero or close to zero have little 
interaction across environments, indicating that they all 
perform well in these environments and are stable. 
Conversely, genotypes with negative IPCA1 and IPCA2 values 
had no interaction across environments (Crossa, 1990). All 
these are below average yields. Similarly, those genotypes 
have zero scores on the IPCA1, indicating that they are less 
influenced by the environments. On the other hand, the 
genotypes list above usually yield and IPCA1 score near zero, 
as they are accustomed to stable environments and are 
general adapted to all the environments. For grain yield, the 
biplot shows G8 had the highest mean value (6234.11 kg/ha), 
followed by G9 with 6115.56 kg/ha and G5 with 6115.56 kg/ha. 
These were all in Satun. The maximum mean value was 
8425.60 kg/ha and the interactions were strong. Among the 
experiments, for grain yield, G3, and the environment, 
Phatthalung was the most unstable and discriminate. Related 
symbols of the IPCA1 score on behalf of similar genotypes as 
well    as    environment   indicates   positive   association    and  
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  Table 1. Soil property and weather condition before land preparation during the growing season. 

Samples 
Details 

Satun Phatthalung Songkhla 

Soil properties( 0-30 cm) 
Total N (%) 0.08 0.09 0.08 
Organic matter (%) 1.9 1.9 1.9 
Organic Carbon (%) 1.1 0.9 1.1 
Total P (mg/kg) 207.42 121.92 165.92 
Available  P (Bray II method, mg/kg) 10.84 2.95 6.38 
Available K (NH4OAc extract, mg/kg) 26.75 28.10 33.73 
Available Ca (NH4OAc extract, mg/kg) 99.74 65.90 90.63 
Available Fe DTPA extract  (mg/kg) 353.16 162.56 238.61 
Cation Exchange Capacity (meq/100g soil) 4.09 4.05 3.13 
pH (1:5 H2O) 5.09 4.89 4.87 
Ec (µS/cm) 25.90 18.43 21.30 
Weather properties 
Max_temp (

0
c) 36 35 35 

Min_temp (
0
c) 24 25 26 

Annually average rainfall (mm) 580 575 583 
Humidity (%) 81 85 87 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   Fig 1. AMMI 1 biplot using IPCA1 and mean grain yield data for ten Thai genotypes in three environments. 
 
 
               Table 2. Single analysis of variance for grain yield of Thai upland rice genotypes. 

 
Source 

 
df 

Mean squares for Grain Yield 

Satun Phatthalung Songkhla 

 
Replication 

 
2 

 
7159306

**
 

 
1202650

**
 

 
848063

ns
 

 
Genotype 

 
9 

 
1507255

*
 

 
400517

*
 

 
981513

ns
 

 
Error 

 
18 

 
594415 

 
145121 

 
3392696 

CV (%) 
 

9.15 15.90 27.72 
                     *and ** indicate statistical significance at 5% and 1% level probability, respectively. ns indicate non-significance.  
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Fig 2. AMMI 2 biplot using (IPCA1 and IPCA2) scores data for grain yield with ten Thai genotypes in three environments. 

 
 
            Table 3. Mean squares of analysis of variance (ANOVA) for grain yield of 10 Thai upland rice genotypes across 3 locations. 

Source of variation df Mean squares for Grain Yield 

Environment (E) 2 287119472
**

 
Replication within E 6 3070006 
Genotype(G) 9 1009507

ns
 

G×E 18 939889
ns

 
Pooled error 54 1377744 

C.V. (%)  20.15 
                 ** indicates statistical significance at 1% level probability and ns indicates non-significance.  

 

 
                                                                     Fig 3. Map of three experimental sites. 
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       Table 4. AMMI analysis of grain yield in ten Thai upland rice genotypes over 3 locations. 

Source of variation df Total Sum of squares Explained TSS (%) Percent of IPCA 

Environment(E) 2 574238944 82.86  
Replication within E 6 18420038 2.66  
Genotype(G) 9 9085564 1.31  
G x E 18 16917998 2.44  
IPCA1 10 15338587 - 90.7 
IPCA2 8 1579411 - 9.3 
Pooled error 54 74398169 10.73  
Total 87 693060713   

 
Table 5. AMMI analysis showing means with IPCA1, and IPCA2 scores of grain yield for 10 Thai upland rice genotypes grown in 3 
locations. 

Genotype 
Grain Yield 

Mean (kg/ha) IPCA1 IPCA2 ASV 

G1 5546.56 -28.93 2.65 27.25 
G2 5342.89 4.24 2.11 13.39 
G3 5893.44 -6.93 -16.60 90.19 
G4 5268.22 8.73 -12.68 30.00 
G5 6115.56 12.18 -0.55 37.97 
G6 5831.22 -13.68 3.19 42.74 
G7 5854.78 -26.58 2.26 82.86 
G8 6234.11 1.49 11.51 12.40 
G9 6115.56 13.83 -9.55 44.15 
G10 6043.44 6.85 6.20 22.24 
Phatthalung 2403.53 10.08 -21.24 37.91 
Satun 8425.60 27.43 15.56 86.89 
Songkhla 6644.60 -37.51 5.68 117.03 

 
 
                       Table 6. Details of ten popular Thai upland rice genotypes in different provinces in Thailand. 

SL Name of the genotypes Collection site (Province) 

G1 Dawk Pa-yawm (white rice) Phatthalung 
G2 Mai Tahk (white rice) Songkhla 
G3 Bow Leb Nahng (white rice) Satun 
G4 Dawk Kha (red rice) Krabi 
G5 Dawk Kahm (red rice) Chumphon 
G6 Khao

/
 Trai (white rice) Krabi 

G7 Nual Hawm (white rice) Songkhla 
G8 Nahng Kian (white rice) Chumphon 
G9 Nahng Dum (white rice) Chumphon 
G10 Hawm Jet Ban (red rice) Krabi 

 
 
                Table 7. Description of the experimental sites.  

Parameters 
Environments 

Songkhla Satun Phatthalung 

Latitude 7.13° N 6° 39' 13" N 7°37′04″N 
Longitude 100.26° E 100° 4' 59"E 100°04′40″E 
Altitude (m) 63 6 14 
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therefore greater yield of the genotypes in that particular 
environment. The Satun environment, G8 and G10 had positive 
IPCA1 scores and registered above average yields. G4 and G5 
had negative IPCA2 values, thus the Phatthalung environment 
was favourable for these genotypes. Likewise, G1, G6 and G7 
in the Songkhla environment had negative IPCA1 scores and 
thus the Songkhla environment was found to be the most 
favorable environment for these genotypes (Fig. 2). 
  
Materials and methods  
 
Plant materials and conduction of experiment 
 
The experimental plant materials i.e., the best ten upland rice 
genotypes (Table 6) were selected from the report of Chuchert 
(2018). The experiments were carried out at the farmers’ fields 
of Songkhla, Satun and Phatthalung Provinces under the 
rainfed upland conditions. Here we used a limited number of 
genotypes because we had to select genotypes that retained 
characteristics of survival under upland conditions. These 
genotypes were already tested under rainfed upland 
conditions without surface water accumulation using different 
experiments. Another important point was that availability of 
rainfed condition tolerant genotypes are limited in Thailand. 
The soils were tested in the soil analysis laboratory of Natural 
Resources Faculty, Prince of Songkla University, Hat Yai 
campus, Thailand with results displayed in Table 1. The 
experiment was laid out with a Randomized Complete Block 
Design (RCBD) with three replications in each environment. 
Each replication consisted of four rows (5 meters per row) and 
ten genotypes which were randomized and replicated within 
each block. Each genotype was planted 30 cm apart between 
rows and 25 cm within the rows. Three locations differing in 
latitude, longitude and altitude, from sea level, are shown in 
Table 7 and Fig.3. 15:15:15 N-P-K fertilizers was applied at the 
rate of 15 kgs of N, P and K per hectare as urea, super 
phosphate and muriate of potash before planting. Agronomic 
actions, were done manually, e.g., weed and insect control. 
Insect pests were controlled by the application of 20 ml per 1 L 
Cypermethrin 10% w/v EC and 50 ml per 1 L Benfuracarb 20% 
w/v EC with water. At 30 days after planting, urea fertilizer (46-
0-0) was applied. 
 
Data collection 
 
Grain yield data were documented on a single plant basis using 
sixteen plants per genotype in each replication. At the maturity 
stage, data were collected and observations were recorded on 
the basis of plant height (cm), number of tillers (no), number 
of panicles (no), panicle length (cm), flag leaf length (cm), flag 
leaf width (cm), leaf area index, harvest index (%), total dry 
weight (gm), total grain weight (gm), 1000 seed weight (gm), 
filled grains per panicle and unfilled grains per panicle, all of  
which were used to estimate  grain yield per genotypes 
(kg/ha). The G×E interaction is evaluated only for yield 
contributing characters and grain yield per genotypes (kg/ha).  
 
 
 

Statistical analysis  
 
This paper mainly focused on grain yield at 12 % moisture 
level. The grain yield of each genotype in each location was 
subjected to analysis of variance (ANOVA) using the R program 
with agricolae package (Mendiburu and Simon, 2007). 
Homogeneity variances were checked with Fmax and verified 
homogeneous if it was less than 5 (Tabachnick and Fidell, 
2001). If they were homogeneous, the quantitative trait means 
of the genotypes that were evaluated in all three locations 
were used for pooled ANOVA. The mean trait values of the 10 
genotypes evaluated in three replications were subjected to 
statistical analysis depending on the additive part (main effect) 
and PCA to examine the non-additive part that remained after 
the ANOVA analysis (Sabaghnia et al., 2008).  
 
Additive main effect and multiplicative interaction (AMMI) 
method 
 
The AMMI method was applied with additive effects to 10 
genotypes in three environments, and multiplicative was used 
for G×E interaction. According to Sabaghnia et al. (2008), the 
AMMI method at first adjusts additive effects for host 
genotypes and environments through the normal additive 
analysis of variance (ANOVA) technique and fits multiplicative 
effects for G×E by PCA. It affords a symbolic view of the 
transformed G×E interaction for any interpretation (Kempton, 
1984) based on the following AMMI equation: 

𝑌𝑔𝑒𝑟 =   𝜇 + 𝛼𝑔 +  𝛽𝑒 + ∑ 𝛿𝑛 𝛾𝑔𝑛𝜕𝑒𝑛  + 𝜌𝑔𝑒   + 𝜀𝑔𝑒𝑟  

Where,  
𝑌𝑔𝑒𝑟  = Yield for genotype g, environment e and replication r 

µ      = Grand mean value for trait 
 𝛼𝑔   =  Mean deviations for genotype (genotype means minus 

grand mean) 
 𝛽𝑒   =  Mean deviations for environment 
n     = PCA axis number reserved in the model 
𝛿𝑛   = Singular value for PCA axis n 
𝛾𝑔𝑛  = Genotype eigenvector values for PCA axis n 

𝜕𝑒𝑛  = Eigenvector for environment 
𝜌𝑔𝑒   = Residuals 

𝜀𝑔𝑒𝑟 = Error is used 

 
AMMI stability value 
 
The AMMI stability value (ASV) catalogue has recommended 
for measurements and ranks genotypes according to their 
yield stability. Purchase et al. (2000), described the AMMI 
stability value (ASV) which is calculated as follows: 
 

√[
IPCA1 Sum of square

IPCA2 Sum of square 
(IPCA1score)]2 + (IPCA2score) 

 
Where, 
 
SSIPCA1/SSIPCA2 is the weight given to the Interaction Principal 
Component Analysis (IPCA1) significance through allotting the 
IPCA1 sum of squares by the IPCA2 sum of squares. The higher 
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the IPCA significance, whether negative or positive 
significance, the higher the explicitly adjusted  genotype suits 
the environments. Lower ASV values, designate an additional 
stable genotype crosswise environment. 
 
Conclusion 
 
This study demonstrated statistically significant differences for 
environment (E) and non-significant differences for genotypes 
(G) and for G×E interaction. In the AMMI model, the mean 
highest and lowest grain yield values indicated that G8 (Nahng 
Kian: 6234.11 kg/ha) and G4 (Dawk Kha: 5268.22 kg/ha) 
positioned according to the performance ranges with 8425.60 
kg/ha in Satun, to 2403.53 kg/ha from Phatthalung. It showed 
82.86%, interaction followed by environment, at 1.31% to 
genotypic effect, and only 2.44% to G×E interaction effects. In 
addition, the analysis showed that low G×E interaction had 
high stability, which is desirable for plant breeders, farmers, 
and that their yields are higher, indicating the genotypes had 
less effect on the performance of environments. AMMI biplot 
of the interaction (IPCA) scores visualized 90.7% for IPCA1 and 
9.3% for IPCA2 and total scores 100% for grain yield suggesting 
that IPCA1 performed better with the genotypes and 
environments than with grain yield. The best genotypes for 
Satun were G8 (Nahng Kian), G10 (Hawm Jet Ban) and G2 (Mai 
Tahk). The Songkhla environment is suitable for G1 (Dawk Pa 
yawm), G6 (Khao

/
 Trai) and G7 (Nual Hawm). Phattalung is 

suitable for G4 (Dawk Kha), G5 (Dawk Kahm) and G9 (Nahng 
Dum). According to the AMMI stability value method, the G8 
(Nahng Kian) is the most stable for three environments. 
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