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Abstract  

 
Simulation studies have demonstrated that genomic selection (GS) can produce superior results in comparison with methods 

currently used to select the quantitative traits in plants. The evaluation of GS predictive ability in wheat traits is fragmentary. On the 

other hand, assessment of GS strategies for grain yield improvement in this crop is still limited. This work aimed to evaluating the 

cross-validation accuracy (rcv) of two GS models and their efficiency in grain yield improvement. The impact of models on genetic 
diversity was also assessed using pedigree and genotyping-by-sequencing of 19 traits in two multifamily wheat populations. The 

breeding problem modeled was the performance of newly developed, untested genotypes. Overall prediction accuracy was 

comparable between models, moderate in a highly structured population (rcv  0.50) and high (rcv  0.70) in less structured 
population. This prediction level can sustain wheat breeding programs. Selecting for genetic merit produced a substantial within-

generation yield improvement. Furthermore, lines with a good level of genetic diversity were produced. These produced lines 
displayed mean pairwise kinship ranging from second-to-third to fourth degree relative levels with even lower median kinship values 

typical of unrelated individuals. 
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Introduction 
 

Genomic selection is a new paradigm in population genetic 

improvement that uses a larger number of genome-wide 

distributed molecular markers to predict individual breeding 
values. The GS has demonstrated superior performance in 

comparison with the methods used in breeding for 

quantitatively inherited characters yet, i.e., phenotypic 

selection and quantitative trait loci approaches (Bernardo and 
Yu, 2007; Heffner et al., 2011; Lorenzana and Bernardo, 

2009). The superiority of the GS strategy is mostly associated 

with higher accuracy in predicting the individual’s genetic 

merit and the shortening of a breeding cycle due to 

intercrosses driven by genetic predictions, which results in 

higher genetic gain per unit of cost and time (Heffner et al., 

2011; Jannink, 2010). These GS attributes are expected to 

have wide-range implications in plant breeding as the cost of 
cultivar development is reduced (Heslot et al., 2012). 

Therefore, farmers can grow a better variety sooner due to 

rapid variety development and release, making more income 

(Meredith and Mantel, 2000; Morris et al., 1992; Pandey and 
Rajatasereekul, 1999).  

Several factors affect GS efficiency, including model 

performance, sample size and genetic relatedness, marker 
density, trait heritability and genetic architecture, and the 

extent and distribution of marker-QTL linkage disequilibrium 

(Hickey et al., 2014). Therefore, genomic prediction can 

improve when model assumptions for the distribution of 

markers accommodate trait complexity, the training 

population is built and its size eventually increased using 
genetically close subpopulations, and the marker density 

accounts for training population size and linkage 

disequilibrium span (Crossa et al., 2013; Windhausen et al., 

2012; Würschum, 2012). Models, including both marker and 
pedigree information, perform better than when either 

information is used alone (Crossa et al., 2013), but the effects 

of trait heritability on accuracy show mixed results (Abera 

Desta and Ortiz, 2014).  

Pedigree-based selection has been practiced successfully 

since the 20th century (Bell, 1997). The intense selection, 

germplasm exchange and genetic introgressions (e.g., 

through wide crosses in wheat) have maintained a substantial 
amount of genetic diversity in breeding populations. For GS, 

a higher rate of relatedness and more rapid decline in 

selection response is likely (Goddard and Hayes, 2009). 

Kinship is a good metric to assess genetic diversity in 
agricultural populations (Lopes et al., 2013; Saura et al., 

2013). Within a population, individual genomic inbreeding 

represents the probability that two alleles at a randomly 
chosen locus are identical by state, whereas pairwise kinship 

measures the relatedness represented by the probability that 

two alleles, one sampled at random from each individual, are 
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identical by state (Powell et al., 2013). Therefore, kinship 

predicts the future level of inbreeding, which represents the 

repository for future genetic diversity. With the advent of 

whole genome high-throughput sequencing and genotyping, 
several authors (Saura et al., 2013) encouraged application of 

marker loci instead of genealogical coancestry data to 

measure genetic diversity (Lopes et al., 2013).  

This work intends to contribute to ongoing efforts to 
explain GS issues related to breeding applications. Many of 

the GS models published yet have been using different sets of 

few traits, each in diverse wheat populations, preventing 

breeders from getting the whole picture of GS prediction 
accuracy in wheat traits of breeding interest. For instance, 

Crossa et al. (2010) evaluated grain yield using pedigree and 

diversity array technology (DArT) markers. Poland et al. 

(2012) evaluated days to heading, thousand-kernel weight, 
and grain yield using DArT and genotyping-by-sequencing 

(GBS) markers, whereas Heslot et al. (2013) evaluated days 

to heading, plant height, grain yield, and pre-harvest 

sprouting using DArT, single nucleotide polymorphisms, and 

simple sequence repeat markers. It should also be noted that a 

few works have assessed GS predicting ability for disease 

resistance (Würschum, 2012) and bread-making quality traits 

(Heffner et al., 2011; Heslot et al., 2012). Several studies 
(e.g., Heffner et al., 2011; Crossa et al., 2013) have 

investigated GS accuracy, but results of using genomic 

estimated breeding values (GEBVs) for population 

improvement and genetic diversity assessment under a real 
breeding scheme are lacking.  

The objectives of this work were to (1) evaluate two GS 

models in two empirical wheat populations with different 

levels of population structure using pedigree and GBS marker 
information in a large number of traits commonly scored in 

bread wheat breeding programs, and (2) derive GS-selections 

using individuals genetic merit (GEBV) and assess the 

within-generation grain yield improvement and genetic 
diversity in those selections. The cross-validated accuracy 

was evaluated across 19 traits including traits of agronomic 

and production importance, bread-making and trading quality 

traits, and disease resistance traits in wheat (Table S1). These 
traits have distinct heritability and were evaluated across 12 

environments and four years (2009 through 2012) in two 

multifamily spring wheat populations developed at the 

international maize and wheat improvement center 
(CIMMYT).    

 

Results 

 

Environmental indices and trait heritability 

 

The environmental index, as the average grain yield of all 

varieties included in the trial within an environment 
(Habyarimana et al., 2004), is a good quantitative measure of 

the crop growing conditions and is used in the evaluation of 

varietal adaptability (Finlay and Wilkinson, 1963). In this 

study, indices ranged from to 7.2 to 1.9 t/ha, respectively, 
under full irrigation bed and drought flat environments in 

Obregon (Fig. 1). All the main effects (genotype, nursery, 

environment, and year) and interactions (equation 2) were 
highly significant (p≤0.01). Environments performed 

differently, with decreasing productivity in the following 

order: full irrigation bed, full irrigation flat, heat bed, drought 

bed, and drought flat (Fig 1). Overall, C29SAWSN surpassed 
C30SAWSN (5.1 vs. 4.6 t/ha), and the latter performed 

particularly poorly under severe drought in drought flat plots.   

Trait heritability (Fig. 2) was evaluated as it quantifies the 

precision of the trials (Piepho and Mohring, 2007). The H2 

could not be computed for the Fusarium head blight index 

because the trait was scored in one replication. Heritability 

was low (≤0.50) for the alveograph ratio between dough 

elasticity and extensibility, plant height, and yellow rust; 
medium to high (0.50≤ H2<0.80) for grain yield, grain 

protein content, leaf rust, bread loaf volume, test weight, 

flour protein content, spot blotch, mixographic type, and stem 

rust; and high (H2 ≥ 0.80) for days to heading, flour sodium 
dodecyl sulfate sedimentation, grain hardness, mixograph 

mixing time, sodium dodecyl sulfate sedimentation index, 

and thousand-kernel weight.   

 

Models’ predictive ability and population structures 

 

Subpopulation structure analysis resulted in the assignment 

of 97% (3 subpopulations and 7 unstructured genotypes) and 
62% (11 subpopulations and 101 unstructured genotypes) of 

the lines in C29SAWSN and C30SAWSN, respectively (Figs 

S1 through S4). Subpopulation size ranged from 38 to 174 

and 6 to 28 in C29SAWSN and C30SAWSN, respectively. 

On average, the two populations displayed comparable 

pairwise subpopulation genetic divergence with D values of 

0.27 and 0.25 in C29SAWSN and C30SAWSN, respectively. 

GS accuracies are summarized in Figs 2, 3, and 4. Accuracy 
was significantly higher (p<0.001) in C29SAWSN than in 

C30SAWSN for all traits common to both populations, with 

increases ranging from 10% for yellow rust, to more than 

200% for grain yield. In C29SAWSN, accuracy was on 
average 0.66, and all traits, except plant height (rcv=0.46), 

were predicted with an accuracy greater than 0.50, ranging 

from 0.52 to 0.79 (Fig 2). In C30SAWSN, the mean accuracy 

was 0.49, and all traits, except leaf rust (rcv = 0.37) and grain 
yield (rcv = 0.18), were predicted with an accuracy greater 

than 0.50, with a range of 0.56 to 0.63 (Fig 2). In 

C29SAWSN, Spearman’s rank correlation coefficient 

between GS accuracy and trait heritability was positive and 
moderately high to high (ρ  0.7) and significant (p<0.01) for 

all models. In C30SAWSN, this correlation was low, 

negative (-0.09 ≤ ρ ≤-0.03) and not significant (p> 0.9).     

 

Grain yield improvement and genetic diversity 

 

Grain yield genetic merit was used for this trait as it is critical 

for wheat line advancement. The genetic merit may guide to 
intercrosses and determine the phenotypic performance levels 

in the progeny. Ten percent selection pressure was applied to 

select 26 lines in each of the two populations. The GS 

efficiency was gauged using a selection differential (i) 
expressed in fractions of phenotypic standard deviations (Fig 

3), and comparing it with phenotypic selection. In the two 

populations and across models, grain yield (GY) 

improvement was substantial (1.1 ≤ i ≤1.3). Phenotypic 
selections showed a significant slight grain yield advantage in 

C29SAWSN (i=1.6, GY=5.55 vs. 5.47 t/ha, p ≤ 0.05) and 

C30SAWSN (i=1.8, GY =5.2 vs. 5.0 t/ha, p ≤ 0.001) relative 

to GS-based selections, and bootstrap and WRS tests led to 
similar inferences.  

Summary statistics for the genomic pairwise kinship 

coefficients in the populations and in selections are presented 
in Fig 4. C29SAWSN and C30SAWSN were not statistically 

different (p> 0.9) in terms of kinship (both had Φ= ˗0.0032). 

Negative kinship values indicate greater un-relatedness.  

PBL- and PRKHS-based selections showed comparable 
(p>0.1) mean kinship at the third-to-fourth-degree relatives 

level in C29SAWSN (Φ = 0.075 vs. 0.107), whereas PRKHS 

selections were more related (Φ = 0.140 vs. 0.100, p ≤ 0.01) 

than PBL selections in C30SAWSN. For the two models 
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evaluated, the degree of pairwise relationship (Φ) was 

statistically (p ≤ 0.01) higher in selections than in the 

respective whole populations, and in C30SAWSN-selected 

lines than in C29SAWSN selections (p ≤ 0.05).    
 

Discussion 

 

Several simulation studies proved GS can lead to meaningful 
genetic progress in plant breeding but empirical evidence is 

still limited (Abera Desta and Ortiz, 2014). Available results 

in bread wheat are still fragmented and mainly derived from 

investigations carried out under different conditions, with 
GEBVs estimated for a few traits at a time. This lacks fair 

comparisons of the predictive ability for the full set of traits 

commonly measured and bred for in this crop. This study 

addresses this issue, modeling the prediction of the genetic 
merit of newly developed and untested genotypes for a larger 

set of traits of breeding interest, and assessing the potential 

for within-generation grain yield improvement and 

safeguarding genetic diversity in bread wheat.  

 

Adaptability of wheat populations and effects of trait 

heritability on GS accuracy 

 
The environmental indices quantitatively graded the trials 

growing conditions, allowing the identification of wheat 

nurseries specifically adapted to favorable or stressed 

environments, or those show general adaptability. Overall, 
and under severe drought, C29SAWSN outperformed 

C30SAWSN; but under non-water-limiting conditions, the 

two nurseries performed comparably, suggesting a more 

general adaptability of C29SAWSN. The CIMMTY 
germplasm is well-known for its widely adapted genotypes. 

These findings highlight the need to make selections under 

both favorable and unfavorable conditions to account for 

potential genotype × environment interaction and make 
informed breeding decisions. 

Overall trait heritability was high (H2  0.70) in the two 

evaluated populations, reflecting the precision of the trials. 

Traits were measured in up to 12 environments and four 
years, which made the estimate of phenotypic means closer 

approximations to the true genotypic values (Piepho and 

Mohring, 2007). Heritability is important in breeding. A low 

heritability of trait indicates that effective selection for the 
trait of interest would require pedigree information and 

progeny testing, while high heritability indicates that 

selection using single plots might be effective (Teich, 1984). 

Heritability estimates obtained in this study were comparable 
to findings reported in the literature (Manès et al., 2012; 

McClung and Cantrell, 1986; Ornella et al., 2012; Poland et 

al., 2012). The lower plant height H2 values obtained in this 

study can be explained by the high levels of soil moisture 
stress, under which the trait was evaluated; i.e., mainly under 

water-limiting conditions in 71% of the trials. Alveograph 

ratio between dough elasticity and dough extensibility was 

the sole bread-making quality trait displaying lower 
heritability (H2= 0.47), which evidences its complex genetic 

determinism (McClung and Cantrell, 1986). Of the disease 

resistance traits, yellow rust showed the lowest heritability 

(H2≤ 0.35), which can be attributed to pathogenic races 

differing between experimental locations in Mexico and 
Ecuador. 

The GS accuracy was positively associated with trait 

heritability in C29SAWSN, but no significant correlation was 

found in C30SAWSN. A high-heritability in traits and 
genetic factors may explain most of the differences between 

individual’s performance, while in lower heritable traits 

phenotypes are less reflective of individual’s genetic make-

up and are consequently less predictable through genomic 
selection. The GS is mainly seen as an approach to achieve 

more genetic gains in traits with lower heritability; however, 

phenotyping for some highly heritable traits can be very 

expensive (e.g., some quality traits) and genomic predictions 
of unphenotyped individuals can therefore be of great 

advantage. Inconsistent relationship patterns between 

heritability and GS accuracy have been reported in previous 

studies (Guo et al., 2014). The present study shows that as 

the genetic structure of the training population becomes 

complex due to a larger number of independent haplotypes 

(e.g., in C30SAWSN), the importance of heritability in GS 

accuracy declines,  yet can be compensated for by using a 
larger number of observations to estimate marker effects. 

 

Performance of GS models and effects of genetic 

backgrounds 

 

In this study, we implemented GS models using marker and 

pedigree information as they proved to be superior to 

integrate information (Burgueño et al., 2012). The PRKHS 
and PBL were compared for accuracy of the predicted 

GEBVs, and the statistical inferences did not show 

significant differences. This finding is in agreement with 

Crossa et al. (2010) and Zhong et al. (2009) who described 
the differences in performance between the two models as 

scarce and dependent upon breeding scenarios. The PRKHS 

showed a slight non-significant 8% increase in grain yield 

prediction accuracy over PBL in C29SAWSN, highlighting 
the complex inheritance of this trait. The Bayesian LASSO is 

an additive model, whereas the Kernel model can capture 

complex non-allelic interactions in addition to allelic effects 

(Gianola and van Kaam, 2008). The overall comparable 
predictive ability of these models denotes the greater 

importance of the additive effects of genetic factors 

governing the traits evaluated in this work (Ornella et al., 

2012).  
The C29SAWSN was better predicted than C30SAWSN, 

and since the two populations were comparable for most of 

the factors influencing GS accuracy (such as population size, 

marker density, and trait heritability), it can be inferred that 
the differences in accuracy originated in the complex 

C30SAWSN stratification. The effects of population 

structure on the performance of genomic predictions were 

also reported in Windhausen et al. (2012), Asoro at al. 
(2011),   and   Daetwyler   et   al.  (2010).   All   empirically  
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Fig 1. Environmental indice using C29SAWSN and C30SAWSN (29th and 30th CIMMYT semi-arid wheat screening nurseries). 

Post hoc analysis of environments was carried out on grain yield averaged over nurseries within each environment. Environments  or 

nurseries followed by same letter are not different at the 5% probability level (Tukey’s HSD test). Refer to Table S1 for a description 

of the environments.     
 

 
Fig 2. Cross-validation accuracy and heritability (in parentheses) for 25 trait-dataset combinations, using models Bayesian LASSO 

with pedigree (PBL) and reproducing kernel Hilbert spaces with pedigree (PRKHS) in C29SAWSN and C30SAWSN (29 th and 30th 

CIMMYT semi-arid wheat screening nurseries). FHBIND Fusarium head blight index; LR leaf rust; SB spot blotch; SR stem rust; 

YR yellow rust; ALVPL alveograph ratio P/L; FLPRO flour protein content; FLRSDS flour sodium dodecyl sulfate sedimentation; 
GRNHRD grain hardness; GRPRO grain protein content; LOFVOL bread loaf volume; MIXTIM mixograph mixing time; MIXTYP 

mixographic type; SDSEDIND sodium dodecyl sulfate sedimentation index; TESTWT test weight; TKW thousand kernel weight; 

DTH days to heading; PH plant height; GY grain yield. Refer to Table S1 for a description of the traits. Traits collected from 

C30SAWSN are suffixed with this name. 

 

 

 
Fig 3. Selection intensity for grain yield in C29SAWSN and C30SAWSN (29th & 30th CIMMYT semi-arid wheat screening 
nurseries), using phenotypic selection (pheno), and Bayesian LASSO with pedigree (PBL) and reproducing kernel Hilbert Spaces 

with pedigree (PRKHS) models with a design matrix based on genotyping-by-sequencing markers. sd: standard deviation. For each 

population, grain yields in selections (labels) followed by same letter are not different at the 5% probability level using bootstrap and 

Wilcoxon rank-sum tests.  
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Fig 4. Box plot for pairwise kinship coefficients in the whole population and GS selected lines in C29SAWSN and C30SAWSN 

(29th & 30th CIMMYT semi-arid wheat screening nurseries), using the Bayesian LASSO with pedigree (PBL) and reproducing 

kernel Hilbert spaces with pedigree (PRKHS) models with a design matrix based on genotyping-by-sequencing markers. The dots, 
lower and upper whiskers, and middle line represent outliers, lower and upper quartiles, and the median value, respectively. For each 

population, groups (labels) followed by same letter are not different at the 5% probability level (bootstrap). Means were ranked in 

decreasing order. 

 
 

demonstrated that increasing the number of genetically 

diverging population strata decreases GS accuracy. Thus, the 

C29SAWSN was expected to show higher accuracies as it 
had fewer and larger subpopulations (Fig. S3), meaning that 

individuals in these subpopulations were better represented in 

the training sets and  hence, better predicted. This was not the 
case with C30SAWSN, which displayed a greater number of 

smaller and genetically divergent clusters (Fig S4). These 

results underline that population structure needs to be taken 

into account when applying GS in a breeding program, 
because it could lead to biased assessments of prediction 

accuracy. In recent studies, several algorithms were tested to 

optimize training populations and the allocation of resources 

in GS, but their efficiency was not consistent across 
populations (Rincent et al., 2012; Isidro et al., 2014). 

According to Crossa et al. (2013), trait prediction under 

severe drought stress is more problematic than under well-

watered conditions, which suggests that the greater 
susceptibility to severe drought observed (Fig 1) could have 

also contributed to lower predictions in C30SAWSN.   

Available empirical evidence for GS efficiency in plant 

breeding set to 0.5 the threshold for GS prediction accuracy 
for net merit (i.e., overall performance) useful for breeding 

purposes (Heffner et al., 2010, 2011). The results of this 

study; therefore, indicate that GS can sustain wheat breeding 

and allow important genetic gains per unit of time and costs 
for most of the evaluated traits, except grain yield in the 

population (C30SAWSN) with complex genetic structure, 

and plant height in C29SAWSN. This situation suggests that 

grain yield’s complex inheritance might require increasing 
the size of the training population to improve the likelihood 

of sampling useful marker-QTL linkages of interest. For the 

plant height, the low prediction ability can be explained by 

the possible lack of genotypic variation, as the major plant 
height gene in CIMMYT germplasm is mainly Rht1. 

Interestingly, the high level of accuracy by which the GEBVs 

for end-use quality traits were predicted, means that unlike 

conventional breeding, GS could allow early selection for 
genetic merit for these traits (flour protein content, flour 

sodium dodecyl sulfate sedimentation, grain hardness, grain 

protein content, mixograph mixing time, mixographic type, 

sodium dodecyl sulfate sedimentation index, loaf volume, 

thousand-kernel weight, and test weight) without requiring 

time consuming and costly biochemical quality testing.    

 

GS potential for wheat improvement 

 

GS is an attractive breeding approach as it allows the 
prediction of genetic merit, upon which a superior parental 

line is selected for use in intercrosses and the success for a 

potential new cultivar is assessed before it is field tested. This 

contributes to the shortening of a breeding cycle, rapid 
variety development and release, and higher genetic gain per 

unit of cost and time (Heffner et al., 2011; Jannink 2010).  In 

this study, the GS was applied to improve wheat grain yields 

in C29SAWSN and C30SAWSN, mimicking breeding for 
grain yield potential, which was the original priority in the 

evaluated nurseries. The superiority of individuals was 

measured at the level of the selected breeding populations 

using a selection differential, a key tool breeders use to 
predict the response to selection (Piepho and Mohring, 2007). 

Overall, GS models were effective in selecting for grain yield 

(Fig 3). The C29SAWSN and C30SAWSN showed very 

small phenotypic variance for this trait (σ2
GY ≤ 0.07), 

indicating that individual performances tended to be very 

close to each other, which might have limited grain yield 

selection differential. The slightly higher yield performance 

observed in phenotypic selections can be attributed to this 
strategy accounting for non-additive effects of Mendelian 

factors and non-genetic (environmental factors) effects, 

which nonetheless are not inheritable and; hence, in contrast 

to GS selections, cannot dependably drive intercrosses in 
breeding programs. The GS-based yield improvement 

reached 7% and 6-7%, respectively in C29SAWSN and 

C30SAWSN populations, which exceeds the yearly overall 

progress reported in a recent study (Manès et al., 2012) that 
was based on phenotypic trials related to ours. Thus, at the 

within-generation stage of the breeding cycle, GS shows 

competitive potential relative to conventional breeding and 

remains an attractive strategy, particularly as it obviates the 
need for phenotyping the selection candidates, which 

shortens the length of the breeding cycle (Heffner et al., 

2010). The lower prediction accuracy achieved in 

C30SAWSN did not impact yield improvement relative to 
the better predicted C29SAWSN nursery.   
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Conventional genetic improvement is frequently blamed for 

the genetic bottleneck in plants (Bai and Lindhout, 2007). 

Kinship is a good metric for assessing genetic diversity in 

populations. Kinship values were comparable between 
C29SAWSN and C30SAWSN. PBL- and PRKHS-based 

selections, showing comparable mean kinship in 

C29SAWSN, whereas PRKHS selections were more related 

(higher Φ) than PBL selections in C30SAWSN. Across 
models, the degree of pairwise relationship was statistically 

higher in selections than in the respective whole populations. 

Since most of the predictive ability is due to linkage 

disequilibrium  between QTL and marker loci (Long et al., 
2011), the similar performance of PRKHS and PBL in 

C29SAWSN can be explained by the broader linkage 

disequilibrium span (Riedelsheimer et al., 2012) common in 

wheat (Dreisigacker et al., 2012). In the highly structured 
C30SAWSN population, the higher kinship values in 

PRKHS-selected lines relative to PBL suggest an increased 

effect of population structure. RKHS can capture population 

structure and substructures, as well as within and between 

family means (de los Campos et al., 2010) due to the 

nontrivial correlation structure introduced by the reproducing 

kernel matrix Kh (equation 5) (Gianola and van Kaam, 2008). 

This is analogous to utilizing information regarding 
similarities between individuals (kinship) for prediction 

purposes (Gianola and van Kaam, 2008) and can increase 

relatedness in selections (Heslot et al., 2012). The use of 

markers in linkage disequilibrium-based models was 
expected to provide information on the Mendelian sampling 

terms and to add the impact of pedigree information, 

combining between- and within-subpopulation selection, 

resulting in lower pairwise genomic kinship in the selected 
lines. The observed higher levels of kinship in the selections 

relative to the base populations can therefore be explained by 

(1) the high selection pressure applied in this work, and (2) 

several individuals being selected from each of the few better 
predicted subpopulations just as in conventional breeding, 

where between-family selection saves a few families to make 

up the future breeding population (Hallander and Waldmann, 

2009; Hallauer et al., 1988). The higher kinship values 
observed in C30SAWSN selections (second-to-third vs. third-

to-fourth degree relatives level) relative to selections in 

C29SAWSN imply that in the highly structured C30SAWSN 

population, individuals were mostly selected from fewer 
better predicted subpopulations. Higher pairwise relatedness 

in selections would lead to increased levels of faster 

inbreeding in a breeding program, which would jeopardize 

the genetic diversity. Our work evaluated the within-
generation genetic diversity and recommends that GS long 

term effects  be further investigated. 

 

Materials and Methods 

 

Plant materials 

 

Plant materials consisted of 264 and 268 elite lines that were 
the CIMMYT candidates for the 29th (C29SAWSN) and 

30th (C30SAWSN) semi-arid bread wheat screening 

nurseries, respectively. CIMMYT developed the semi-arid 
wheat nurseries in response to the needs expressed by 

farmers in drought-prone areas (Manès et al., 2012). The 

crossing history showed that C30SAWSN was produced 

from 125 unique crosses with 1 to 15 sister lines per cross, 
whereas C29SAWSN was derived from 121 unique crosses 

with 1 to 12 sister lines per cross. The pedigrees of two 

C30SAWSN lines could not be accessed. A total of 25 

dataset-trait combinations were analyzed, 19 and 6 of which 

were collected from C29SAWSN and C30SAWSN, 

respectively (Table S1). Traits were measured throughout the 

2009, 2010, 2011, and 2012 cropping seasons at six 

CIMMYT test sites: 1) El Batan, State of Mexico, Mexico; 2) 
CENEB-Obregon, Sonora, Mexico; 3) Toluca and Boximo, 

State of Mexico, Mexico; 4) Agua Fria, Puebla, Mexico; 5) 

Njoro, Kenya, and 6) Santa Catalina, Ecuador. Variance 

components and trait broad sense heritability (H2), hereafter 
referred to as heritability) were estimated by fitting the linear 

mixed model equation ijiij egy  
                          (1)   

i = 1,…., s  genotypes,  j =1,….., ni replicates for genotype i, 

yij is the response variable for genotype i in replicate j  
(Ausemus et al., 1967; Crossa et al., 2011; de los Campos et 

al., 2010). It was assumed that ),0(~ 2

ui Ng   and 
),0(~ 2

ei Ne  ; furthermore, gi and eij are independent. The 

model was fitted with restricted maximum likelihood using 
the R package lme4 (R Core Team, 2013). Yield 

environmental indices were used to characterize crop 

growing conditions and adaptability. Environmental indices 

were defined as the average grain yield of all varieties 
included in the trial within an environment (Habyarimana et 

al., 2004) and derived solving the linear model  

ijklkijkjkikijjiijkl egsygsgygyssyy  
 (2) 

Where ijkly  is the measurement on plot l , in environment 
j

, 

year i , containing genotype k . 


, iy
, js

, ijys
, kg

, 

kigy
, kjgs

, kijgsy
, and ijkle

 are the overall mean, the 

effects of year i, environment j, interaction of year  i with 

environment j, genotype k, interaction of genotype k with 

year i, interaction of genotype k with environment j, 

interaction of genotype k with environment j and year i, and 

the plot residual. The effects were considered fixed, and the 

Tukey’s test was used for mean comparisons. Computations 

were executed using the R software (R Core Team, 2013).      

 

Whole genome genotyping and model-based clustering 

 

GBS markers (Poland et al., 2012) were used to genotype the 
C29SAWSN and C30SAWSN populations. GBS markers are 

co-dominant in nature and were coded as -1, 0, 1 for the first 

allele of homozygote, the heterozygote and the homozygote 

for the second allele, respectively. The molecular marker 
matrix was cleaned for non-informative markers, i.e., 

markers with an allele frequency of less than 5 or more than 

95%. In the GBS data set, we observed that 2013 GBS 
markers with less than 28.8% missing data and the total 

number of GBS markers (33,762) with up to 80% missing 

data revealed a comparable predicting power across six 

molecular marker-based genomic selection algorithms, i.e., 
Bayesian LASSO (BL), Bayesian ridge regression (BRR), 

and Reproducing kernel Hilbert spaces (RKHS), each with 

and without using pedigree as a covariance matrix (Table 

S2). The cross-validated accuracy is shown for the 
C29SAWSN dataset using data from trials conducted in 

Obregon for traits grain yield, days to heading and plant 

height.  The results in Table S2 prompted us to use the 

smaller marker data set (2,013 loci), which reduced 
computing time. Residual missing data were imputed using 

simple marker means (Poland and Rife, 2012).   

Genetic diversity was measured with genomic pairwise 

kinship coefficients (Φg) using a GBS marker-derived 
genomic relationship matrix built according to the first 
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method described in van Raden (2008). Population genetic 

structure was estimated using a model-based Bayesian 

clustering method implemented in STRUCTURE software, 

version 2.3.4 (Pritchard et al., 2000), with 1,666 and 1,664 
GBS markers in C29SAWSN and C30SAWSN, respectively. 

The size of the marker matrices was determined to be 

comparable between the two populations by setting the 

ceiling for missing loci at 20.5% and 29% for C29SAWSN 
and C30SAWSN, respectively. The increased number of 

markers represented a computational burden but allowed for 

better resolution of population genetic structures (Inghelandt 

et al., 2010; Bouchet et al., 2012). The number of 
subpopulations (K) was determined using 3.104 burn-in 

periods and 7.104 iterations, with five independent runs per 

each K value (from 2 to 20), applying the admixture model 

and assuming allele frequencies were uncorrelated. Both the 
posterior probability of the data for a given K (Pritchard et 

al., 2000) and the Evanno method (Evanno et al., 2005) were 

used to estimate K. Membership coefficients (Q ) were 
estimated for each individual based on allele frequencies  to 

depict the percentage of its genome that derived from each 

subpopulation. Wheat lines were highly admixed (Figs S1 

and S2); hence, to assign individuals to unique genetic 

groups (Figs S3 and S4). The threshold for Q  was set to 0.5, 
as suggested by Royo et al. (2010). Pairwise genetic 

divergence between subpopulations was measured using the 

net nucleotide distance (D) approach, as described in 

Pritchard et al. (2000). This metric represents the average 
probability that a pair of alleles (one from each of two 

subpopulations) is different and takes on a value close to zero 

in the case of two similar subpopulations.  

 

Genomic selection algorithms  

 

Two of the models commonly used in plant breeding (Crossa 

et al., 2011; Heffner et al., 2011; Heslot et al., 2012; Perez et 
al., 2012) namely, Bayesian LASSO (PBL) and reproducing 

kernel Hilbert spaces (PRKHS), each with pedigree and 

markers, were evaluated based on the predictive ability for 

individual genetic merit, grain yield improvement, and 
genetic diversity in candidates for selection. Pedigree 

information was included in the models as a covariance 

matrix for polygenic effects, and represented by the 

coefficient of parentage. The general structure of the linear 
model PBL was:   

eZuXy n  1
     (3)   

Where; y is the vector of the phenotypes with n lines, 1n is a 

vector of n ones, μ is the population mean, X is the design 
matrix allocating records to marker effects, β is the vector of 

marker effects, e is a vector of random deviates, u is a vector 

of polygenic breeding values (polygenic effects) in the 

model, and Z is a design matrix allocating plant materials to 
records. The covariance structure of e and u takes on the 

forms ),0(~ 2 ANu u  and 
),0(~ 2INe e , respectively, where A 

is the additive relationship matrix built from the pedigree of 

the population, I is the identity matrix, 
2

u
 is the additive 

genetic variance, and 
2

e  is the error variance. The 
corresponding genomic estimated breeding values (GEBV) 
were derived as:  

̂ˆ XuGEBV       (4)  

The polygenic covariate was found to be effective at reducing 

spurious marker effects and improving the accuracy of 

breeding value prediction (MacLeod et al., 2010). The use of 
coefficient of parentage in genomic selection models was 

detailed in Crossa et al. (2007, 2011). The relationship 

between genetic covariance of relatives i  and i  due to their 

additive genetic effects, and the coefficient of parentage ( iif  ) 

can be described by the equation
222 uuii Af   . The 

relationship matrix was built using the Browse application of 

the International Crop Information System (ICIS) as 
described at http://cropwiki.irri.org/icis/index.php/TDM_ 

GMS_Browse (McLaren et al., 2005).  

In Bayesian LASSO (de los Campos et al., 2009b; Park and 

Casella 2008), marker effects are assigned a double 
exponential (DE) distribution conditionally on the 

regularization parameter  . The effects are centered at zero 

with marker-specific variance namely, 

),0|(),|(
2

2

e

jej DEp



 

.  

The PBL is easily implemented as the double exponential 

distribution can be represented as a mixture of scaled normal 

densities (Perez et al., 2012). The priors used in Bayesian 

LASSO were valorized as suggested in González-Camacho et 

al. (2012). The reproducing kernel Hilbert space is a semi-

parametric nonlinear algorithm that was first heralded by 

Gianola and van Kaam (2008). Besides the allelic effects, the 

model can capture allelic and epistatic genetic interactions 
(Gianola et al., 2006), which may explain its superior 

predictive accuracy relative to linear models in some 

situations (Crossa et al., 2011; de los Campos et al., 2009a, 

2010). The model was implemented as suggested in Gianola 
and van Kaam (2008), and González-Recio et al. (2009), as 

follows:  

eKy h  1
                (5)           

Where y is a vector of phenotypes,  μ is a scalar standing for 

the overall mean, 1 is a vector of ones, and Kh is a positive 

definite matrix, called a reproducing kernel matrix, which is 

dependent on the bandwidth parameter h :   

)exp(),(
2

iiii xxhxxK  
, 

),.....,( 1
 ipii xxx
and 

),.....,( 1
  piii xxx
 being input vectors 

whose elements are marker genotypes for individuals i and 

i , and ii xx 
 being the Euclidean norm between each pair 

of input vectors (Lopes et al., 2013);   is a vector of 

coefficients with distribution 
),0(~ 21

 

hKN
, whereas e 

is a vector of random residuals with distribution 

),0(~ 2

eINe 
. To optimize the bandwidth parameter, we 

implemented the kernel averaging strategy by applying the 

Bayesian approach, as suggested in de los Campos et al. 
(2010).  

Samples from posterior distributions for PBL and PRKHS 

were produced using a Gibbs sampler/Metropolis-Hastings 

algorithm (de los Campos et al., 2009a, 2010). We based our 
statistical inferences upon 35000 samples obtained after the 

first 5000 iterations were discarded as burn-in. The models 

were run using R software, version 3.0.2 (R Core Team, 

2013).   
 

Cross-validation prediction accuracy 

 

Phenotypic data were Box-Cox (Box and Cox, 1964) 
transformed before they were inputted into the models to 

improve model fit (Kim et al., 2014). The criterion for model 

prediction accuracy (rcv) was the Pearson correlation 

coefficient between the phenotypic data and the cross-
validated GEBVs. The GEBVs were estimated using a 10-
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fold cross-validation by randomly dividing the phenotypic 

dataset into 10 folds, and alternately removing one fold to be 

used as a testing set, and training the model on the remaining 

nine folds (Crossa et al., 2013; Heslot et al., 2012).     
Differences in accuracy between models and populations 

and in the levels of kinship between GS selections, on the 

one hand, and GS selections and the respective base 

populations, on the other, were tested using bootstrap with 
1000 resamples and Wilcoxon rank-sum test (WRS). We 

used non-parametric instead of parametric tests (e.g., t-test) 

as the latter would violate the normality assumption in the 

original distributions because of the small size of the 
evaluated samples.   

 

Selection for grain yield genetic merit 

 
Superior individuals were selected based on grain yield 

GEBV, mimicking selection for yield potential of 

unphenotyped candidates as would be carried out under the 

actual GS regime. Mean performance of GS selected lines 

was compared with selections based on phenotypic values 

(phenotypic selection) using bootstrapping approach with 

1000 resamples and WRS test. Ten percent directional 

selection pressure (higher values) was applied. Selections 
were evaluated based on genomic pairwise kinship and the 

realized selection differential in standard deviation units (i). 

The latter is an important criterion for evaluating breeding 

strategies as it is directly related to selection response (Fehr, 
1987). 

 

Conclusions 

 
Genomic selection leverages high-throughput genotyping 

technology together with efficient algorithms to predict the 

genetic merit, for which superior individuals are selected. 

This strategy can significantly reduce phenotypic evaluations 
and efficiently expedite breeding processes. The objectives of 

this study were to evaluate the value of GS by implementing 

two algorithms across 19 traits of wheat breeding interest and 

two genetic backgrounds using pedigree and GBS marker 
information. The breeding problem modeled included 

prediction of the performance of newly developed, untested 

genotypes that have not been evaluated in open-field trials. 

The results show that a good level of GS accuracy that can 
sustain a wheat breeding program can be achieved for most 

traits commonly bred for in this crop. Population structure 

plays a significant role for the prediction ability, and this can 

adversely impact genetic diversity and breeding efficiency in 
successive generations. Selecting for genetic merit led to a 

substantial level of within-generation grain yield 

improvement and genetic diversity, producing a great 

proportion of unrelated individuals.  
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