
1078 
 

 
Aust J Crop Sci. 19(11):1078-1089 (2025) |                                                                                              ISSN:1835-2707 
https://doi.org/10.21475/ajcs.25.19.11.p12 
 

Geostatistical models for asymmetric agricultural data 
 

Amilton Luciano Garcia da Silva¹*, Miguel Angel Uribe-Opazo¹, Jerry Adriani Johann¹, Gustavo 
Henrique Dalposso² 
 

¹PGEAGRI, Western Paraná State University – (UNIOESTE), Cascavel, Paraná, Brazil  
²PPGBio, Federal University of Technology Paraná – (UTFPR), Toledo, Paraná, Brazil 
 
*Corresponding author: amiltonlucianogarcia@gmail.com 
 

Abstract: Soybean production (Glycine max (L.) Merrill) is key to the global economy and 
environmental sustainability, but it faces the challenge of increasing productivity without 
harming the environment. In this context, geostatistics appears as an essential tool for Precision 
Agriculture (AP), allowing the mapping of spatial variability of factors such as soybean 
productivity and soil physicochemical attributes, which helps in making more efficient decisions, 
for optimizing input application, improving crop management, reducing environmental impact, 
and maximizing yield. This study was carried out in a commercial area of 173.04 ha during the 
2022/2023 harvest. We analyzed soybean yield data and soil attributes, such as nutrient content 
and mechanical resistance to penetration, which required data transformations due to 
asymmetric distributions. Diagnostic techniques of local influence were used to identify 
influential observations, whose impacts were evaluated in parameter estimates, in the 
generation of thematic maps and in the definition of management zones. The exclusion of these 
observations changed spatial patterns and productivity estimates, highlighting the importance 
of careful analysis. Although, in some cases, the isolation forest method has identified outliers 
that coincided with influential observations, it is important to emphasize that this detection is 
not directly related to the concept of influential observations, since the methods have different 
approaches. The proposed procedure contributes to a more sustainable agriculture, reducing the 
environmental impact and optimizing the use of resources, aligning greater profitability with 
environmental responsibility.   

 
Keywords: precision agriculture, geostatistics, local influence, spatial analysis of asymmetric data. 
Abbreviations: AIC_Akaike Information Criterion; BIC_Bayesian Information Criterion; K_soil potassium content; 
K#42_potassium without the influential observation #42; ML_maximum likelihood; P_soil phosphorus content; 
P#19_phosphorus without the influential observation #19;  PA_precision agriculture; pH_soil pH; pH#45_soil pH without 
the influential observation #45; Prod_soybean productivity; Prod#17_soybean productivity without the influential 
observation #17; 𝑅𝑆𝑃0.0−0.10𝑚_soil penetration resistance at a depth of 0.0 to 0.10 meters depth layer; 𝑅𝑆𝑃0.0−0.10𝑚#99_soil 
penetration resistance in the 0.0 to 0.10 meters depth layer without the influential observation #99; 𝑅𝑆𝑃0.31−0.40𝑚_soil 
penetration resistance at a depth of 0.31 to 0.40 meters depth layer; 𝑅𝑆𝑃0.31−0.40𝑚94_soil penetration resistance in the 0.31 
to 0.40 meters depth layer without the influential observation #94; SDI_Spatial Dependency Index. 
 
Introduction  
 
Modern agriculture faces a crucial paradox: how to meet the growing global demand for food, intensified by climate change, 
while seeking to preserve environmental sustainability and strengthen the resilience of the planet (IPCC, 2019; Castaldi et 
al., 2024). In this challenging scenario, the soybean production chain emerges as one of the most strategic in the world.  
Besides being one of the main sources of protein for animal nutrition (Monteiro et al., 2021) and human nutrition (Chi et al., 
2021), soybean plays a vital role in the global energy matrix, especially in the biodiesel production (Zhu et al., 2021) as a 
sustainable alternative to fossil fuels.  
With the shortage of new agricultural areas available, the future of global soybean production is intrinsically linked to 
productivity gains at the level of rural properties (Masino et al., 2018). In this context, precision agriculture (PA) stands out 
as an indispensable ally, enabling management practices adapted to the spatial variability of the factors that influence 
production. This approach brings benefits such as increased productivity, greater economic return and a reduction in 
environmental impact, by promoting the rational and efficient use of agricultural inputs (Zain et al., 2024).   
Geostatistics appears in this scenario, as a fundamental scientific pillar for the implementation of AP. Its ability to model  
and describe the spatial variability of natural phenomena is instrumental in estimating values in unsampled areas and to 
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adapt traditional statistical methods to the study of spatial dependence on data (Uribe-Opazo et al., 2021; 2023). Through 
techniques such as kriging, geostatistics allows the construction of thematic maps, fundamental for decision-making.  
In addition, the identification of influential observations are critical steps in geostatistical analysis. Such points may distort 
environmental and geological patterns, changing the estimates of parameters and the results interpretation (Uribe-Opazo 
et al., 2012). To evaluate the impact of disturbances on the data or model, Cook (1986) proposed the local influence 
technique, widely explored in recent studies. De Bastiani et al. (2015) advanced in this field by developing widespread Zhu 
disturbance, while Uribe-Opazo et al. (2023) used diagnostic techniques to identify influential points, analyzing their impact 
on the response variable and on the construction of thematic maps with kriging.   
One of the problems in spatial data analysis is the presence of outliers. In the literature it is known that an outlier is an 
atypical value that escapes the patterns and can cause anomalies in the results obtained if it is not controlled.  Understanding 
outliers is fundamental in an analysis, because outliers can negatively experience all the results of a spatial analysis or the 
behavior of outliers can be precisely what is being sought (creation of management zones). The central question is: what to 
do with them? In the literature, the use of data transformation is recommended, such as Box-Cox (Box and Cox, 1964), which 
aims to normalize data distribution and reduce the impact of extreme values. 
Given this scenario, this study investigates the influence of outliers and atypical observations on asymmetric data, besides 
using diagnostic techniques of local influence in geostatistical models to explore the spatial dependence of soybean 
productivity and soil attributes. The results show that the identification and exclusion of these influential observations alter 
not only the estimates of the parameters and the forecasts of the models, but also the reliability of the thematic maps 
generated by kriging. By combining geostatistical methods with analysis of local influence, this work highlights the 
relevance of a thorough analysis for assertive decision making in precision agriculture, promoting a balance among 
productive efficiency, economic viability and environmental preservation. 
 
Results and discussion 
 
Exploratory analysis 
Data were analyzed on soybean yield data (Prod)[𝑡 ℎ𝑎−1], of the chemical contents in the soil of: Potassium (K)[𝑐𝑚𝑜𝑙𝑐 𝑑𝑚−3 
], phosphorus (P)[𝑚𝑔 𝑑𝑚−3 ], pH (pH), soil resistance to penetration in layers 0.0 to 0.10m (𝑅𝑆𝑃0.0−0.10𝑚 ) [MPa] and 0.31 
to 0.40m (𝑅𝑆𝑃0.31−0.40𝑚 ) [MPa] depth were selected due to its relevance for soybean crop development and its asymmetric 
data behavior. The factors such as nutrient availability, soil acidity and soil resistance to penetration – directly influence 
crop growth and productivity (Vanderhasselt et al., 2023). The selection of these variables aims to provide a comprehensive 
analysis of the main elements that impact soybean performance. 
The descriptive analysis of the variables considered in the study is presented in Table 1. The average soybean yield in the 
monitored area was 1.534 𝑡 ℎ𝑎−1, with a coefficient of variation of 39.59%, indicating a moderate variability in the data. The 
third quartile, with a value of 1.989 𝑡 ℎ𝑎−1, indicates that 75% of the data are below this limit, while the maximum value 
observed, 2.909 𝑡 ℎ𝑎−1. These results suggest specific challenges for the study area, because it presents productivity values 
ranging from 0.331 𝑡 ℎ𝑎−1 to 2.909 𝑡 ℎ𝑎−1 that may be related to edaphoclimatic or agricultural management factors. 
The average potassium (0.76 𝑐𝑚𝑜𝑙𝑐 𝑑𝑚−3) and phosphorus (19.14 𝑚𝑔 𝑑𝑚−3) levels were classified as very high, according 
to the criteria of Santos e Silva (2001). In contrast, the average soil pH value (5.82) is considered adequate, indicating 
favorable chemical conditions for soybean crop, according to the same authors. 
Regarding soil resistance to penetration, the layer of 0.0 to 0.10 m deep (𝑅𝑆𝑃0.0−0.10𝑚 ) presented an average of 1.554 MPa, 
indicating low compaction level and little limitation to root development. The average in the layer from 0.31 to 0.40m 
(𝑅𝑆𝑃0.31−0.40𝑚) was 0.774 MPa, considered very low, without restrictions to root growth, according to the Canarache criteria 
(1990).  
Data distribution was analyzed using boxplots (Figure 2), histogram and density (Figure 3), normality test and asymmetry 
coefficients (Table 1) and the Isolation Forest method (Figure 2) (Liu, Ting, Zhou, 2008), which identified the presence of 
outliers in all analyzed variables (Table 4). The variables normality was evaluated by the Shapiro-Wilk test, whose p-value 
was less than 0.05 for all variables, indicating the rejection of the normality hypothesis.  To correct the effects of asymmetry 
and approximate the data of a normal distribution, Box-Cox transformation (1964) was applied, with a specific 
transformation parameter for each variable, as described in Table 1. 
 
Geostatistical analysis 
For spatial dependence analysis, 11 lags were considered up to a distance of 880 meters (50% of the maximum distance) 
(Clark, 1979). The semi variogram was analyzed in the directions 0º, 45º, 90º and 135º to verify the existence of isotropy, 
as recommended by Guedes et al. (2013), and the results indicated that the transformed data are anisotropic, suggesting 
that the spatial variability of the variables under study does not have a privileged direction. 
The parameters of spatial dependence structures were estimated using the maximum likelihood method. The adjusted 
models belong to the Matérn family, considering different values of the k smoothing parameter: 0.5 (exponential model), 
0.7, 1.0, 2.0 𝑘 →  ∞ and (Gaussian model), in addition to the Wave model (Matérn, 1986; Silva et al, 2025a, 2025b).  
The models validation was performed through cross-validation (Faraco et al., 2008) and the information criteria of Akaike 
(AIC) (Akaike, 1973) and Bayesian of Schwarz (BIC) (Schwarz, 1978). The Gaussian model(𝑘 →  ∞ ) presented the best 
performance to represent the spatial variability of the variables soybean yield (Prod[𝑡 ℎ𝑎−1 ]), potassium (K[𝑐𝑚𝑜𝑙𝑐 𝑑𝑚−3 
]) and phosphorus levels (P[𝑚𝑔 𝑑𝑚−3 ]) on the soil. The Wave model was the most suitable for soil pH (pH[𝐶𝑎𝐶𝑙2 𝑑𝑚−3 ]) 
and soil resistance to penetration in layer 0.31 to 0.40 meters deep (𝑅𝑆𝑃0.31−0.40𝑚 [MPa]). On the other hand, 𝑅𝑆𝑃0.0−0.10𝑚 ,  
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Table 1. Descriptive statistics of the variables under study. 
Statistics Prod K P pH 𝑅𝑆𝑃0.0−0.10𝑚 𝑅𝑆𝑃0.31−0.40𝑚 
Minimum 0.331 0.23 7.13 4.60 0.821 0.004 
1𝑠𝑡  Quartile 1.045 0.53 11.39 5.50 1.242 0.407 
Median 1.442 0.75 16.31 5.90 1.516 0.707 
Mean 1.534 0.76 19.14 5.82 1.554 0.774 
3𝑟𝑑  Quartile 1.989 0.90 21.97 6.20 1.880 1.016 
Maximum 2.909 1.70 62.79 6.70 2.248 3.949 
SD 0.60 0.28 11.06 0.43 0.39 0.59 
CV (%) 39.59 37.44 57.79 7.40 25.23 77.38 

ũ3 0.38 0.63 1.89 -0.49 0.24 1.85 
Kur -0.69 0.23 3.72 0.04 -0.91 6.46 
p-value 0.01* 0.01* 0.00* 0.02* 0.02* 0.00 ∗ 

𝜆 0.46 0.35 -0.65 2,00 0.35 0.46 
SD: Standard deviation; CV: coefficient of variation; ũ3: coef. asymmetry; Ku: coef. Kurtosis; p-value: 
Descriptive level of Shapiro-Wilk normality test; * rejects normality at 5% significance; 𝜆 lambda 
parameter used in Box-Cox transformation; Prod: Soybean yield in harvest year 2022/2023 [ 𝑡 ℎ𝑎−1]; K: 
potassium content [𝑐𝑚𝑜𝑙𝑐 𝑑𝑚−3 ]; P: phosphorus content [𝑚𝑔 𝑑𝑚−3 ]; pH: soil pH [ 
𝐶𝑎𝐶𝑙2 𝑑𝑚−3];𝑅𝑆𝑃0.0−0.10𝑚 : soil resistance to penetration in layer 0.0 at 0.10 meters deep 
[MPa]; 𝑅𝑆𝑃0.31−0.40𝑚 : Soil resistance to penetration in layer 0.31 at 0.40 meters deep [MPa]. 

 
 
the [MPa] in layer 0.0 to 0.10 meters, the Matérn model with a smoothing parameter k = 0.7 was the most appropriate (Table 
2). 
The spatial dependence indices (SDI) presented in Table 2 show the variability in the degree of spatial association between 
the observations (Neto et al., 2020; Uribe-Opazo et al, 2023). Soybean yield (Prod) showed a strong spatial dependence (SDI 
> 24%, Gaussian model classification), indicating that spatial proximity plays a relevant role in the variability of this variable. 
The radius of spatial dependence estimated for Prod by the Gaussian model was 1.387 meters, which means that for 
distances less than or equal to this value, soybean yield samples are spatially correlated.  
For 𝑅𝑆𝑃0.0−0.10𝑚 the SDI showed a moderate spatial dependence (6% < SDI ≤ 14%, Matérn model classification with k=0.7), 
with a spatial dependence radius of 344 meters. In contrast, the potassium (K) and phosphorus (P) levels showed weak 
spatial dependence, with SDI of 4.93% and 8.75%, respectively, both classified by the Gaussian model. The radius of spatial 
dependence for K was 204 meters, while for P it was 295 meters, indicating that the spatial correlation is less expressive for 
these variables. Soil pH, in turn, showed moderate spatial dependence (SDI = 14.36 %, Gaussian model classification), with 
a spatial dependence radius of 606 meters. Whereas 𝑅𝑆𝑃0.31−0.40𝑚  showed weak spatial dependence (SDI ≤ 11 608%, 
classification of the Wave model), with a radius of spatial dependence of 608 meters.  
These results highlight the importance of spatial dependence analysis to understand the patterns of variability in the 
cultivation environment. The strong spatial association observed for soybean productivity demonstrates that factors related 
to management and edaphoclimatic conditions are spatially structured. The moderate or weak variability observed for the 
other variables suggests that these attributes may be influenced by local processes or intrinsic heterogeneity of the soil. 
This information is fundamental for the development of more accurate management strategies, aiming at the optimization 
of productivity and the sustainability of soybean crop. 
 
Diagnosis of local influence  
This section aimed to verify if some observations were influencing the distance from likelihood, using diagnostic techniques 
of local influence. The charts  𝐶𝑖  or𝐿𝑚𝑎𝑥| versus the order of observations (Cook, 1986) were used in order to identify the 
influential observations. The study was carried out by applying the generalized Zhu disturbance scheme, as proposed by De 
Bastiani et al. (2015). 
The results of the local influence analysis, presented in Figure 4, highlight the following influential observations: #17 for 
soybean yield, #42 for soil potassium content, #19 for soil phosphorus content, #45 for soil pH, #99 for soil penetration 
resistance at the 0.00 to 0.10-meter depth layer, and #94 for soil penetration resistance at the 0.31 to 0.40-meter depth 
layer. It is important to emphasize that, in this study, some influential observations coincided with the outliers previously 
identified. However, there is a conceptual distinction between the two methods: while outlier analysis seeks to identify 
atypical points in relation to the data distribution, influence analysis evaluates the impact of these observations on the 
statistical model's results. As highlighted by Uribe-Opazo et al. (2012), an outlier may not be influential, just as an influential 
observation is not necessarily characterized as an outlier. 
To evaluate the effect of the influential observations on the spatial dependence structure and on the elaboration of thematic 
maps, we performed the exclusion of them from the database for each variable, followed by a new analysis of spatial 
variability. This methodological approach provided a more detailed understanding of the spatial distribution of variables, 
taking into account the influence of individual observations. 
Considering this new context, without the presence of influential observations, the results are detailed in Table 2. Based on 
cross-validation criteria (Faraco et al., 2008), Akaike information criterion - AIC (Akaike, 1973) and Schwarz Bayesian 
information criterion - BIC (Schwarz, 1978), it was observed that for soybean productivity, the exclusion of the influential  
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Table 2. Estimated parameters of the linear spatial model, by the maximum likelihood method, asymptotic 
standard deviation of the parameters (in parentheses) and spatial dependence index – SDI. 

Variables Model 𝜇̂ 𝜑̂1 𝜑̂2 𝜑̂3 𝑎̂(𝑚) 
𝑆𝐷𝐼 

(Class) 

Prod Gaus 
0.487 
(0.291) 

0.090 
(0.115) 

0.255 
(0.171) 

0.801 
(0.198) 

1,387 
37.25 
(strong) 

Prod#17 Wave 
0.563 
(0.279) 

0.155 
(0.091) 

0.236 
(0.204) 

0.525 
(0.172) 

1,571 
35.49 
(strong) 

K Gaus 
-0.294 
(0.043) 

0.067 
(0.017) 

0.049 
(0.033) 

0.117 
(0.043) 

204 
4.93 
(weak) 

K#42 Wave 
-0.287 
(0.041) 

0.094 
(0.018) 

0.022 
(0.014) 

0.097 
(0.014) 

1,446 
11.46 
(moderate) 

P Gaus 
1.284 
(0.012) 

0.002 
(0.0008) 

0.002 
(0.001) 

0.170 
(0.043) 

295 
8.75 
(weak) 

P#19 Wave 
1.317 
(0.008) 

0.002 
(0.001) 

0.003 
(0.001) 

0.062 
(0.002) 

555 
21.19 
(moderate) 

pH Wave 
16.595 
(0.283) 

4.010 
(0.936) 

2.207 
(0.950) 

0.067 
(0.004) 

606 
14.36 
(moderate) 

pH#45 Wave 
16.674 
(0.354) 

5.000 
(0.929) 

1.015 
(0.694) 

0.145 
(0.030) 

1,305 
9.92 
(weak) 

𝑅𝑆𝑃0.0−0.10𝑚 M0.7 
0.466 
(0.052) 

0.004 
(0.014) 

0.082 
(0.027) 

0.099 
(0.033) 

344 
12.92 
(moderate) 

𝑅𝑆𝑃0.0−0.10𝑚#99 Exp 
0.457 
(0.059) 

0 
(0.014) 

0.077 
(0.024) 

0.127 
(0.052) 

382 
13.73 
(strong) 

𝑅𝑆𝑃0.31−0.40𝑚 Wave 
-0.322 
(0.121) 

0.391 
(0.091) 

0.085 
(0.062) 

0.203 
(0.052) 

608 
7.30 
(weak) 

𝑅𝑆𝑃0.31−0.40𝑚#94 M0.7 
0.637 
(0.084) 

0.018 
(0.010) 

0.029 
(0.014) 

0.474 
(0.284) 

1,636 
21.30 
(strong) 

𝜇̂: mean; 𝜑̂1: peptic effect; 𝜑̂2: contribution; 𝜑̂3: range function; 𝑎̂: range; 𝑆𝐷𝐼: spatial dependence index; 
𝐶𝑙𝑎𝑠𝑠: spatial dependence classification; # 𝑥𝑖: indicates the removal of the influential observation from the 
database; M0.7: Matérn model with a smoothing parameter k = 0.7; Prod: soybean productivity[ 𝑡 ℎ𝑎−1]; 
K: potassium content [𝑐𝑚𝑜𝑙𝑐 𝑑𝑚−3 ]; P: phosphorus content [𝑚𝑔 𝑑𝑚−3 ]; pH: soil pH [ 𝐶𝑎𝐶𝑙2 𝑑𝑚−3]; 
𝑅𝑆𝑃0.0−0.10𝑚: soil resistance to penetration in layer 0.0 to 0.10 meters deep [MPa]; 𝑅𝑆𝑃0.31−0.40𝑚: soil 
resistance to penetration in layer 0.31 to 0.40 meters deep [MPa]. 

 
observation # 85 [2.861 𝑡 ℎ𝑎−1 ] (Prod#85) resulted in a change from the Gaussian model to the Wave model, with an 
increase of 184 m in the radius of spatial dependence, maintaining a strong spatial dependence according to the SDI index 
(Table 2). 
For the potassium content in the soil, the exclusion of the influential observation #42 [0.50 𝑐𝑚𝑜𝑙𝑐 𝑑𝑚−3 ] (K#42) changed 
the selected model, from Gaussian to Wave, leading to an increase in the radius of spatial dependence, from 204 m to 1.446 
m to (increase of 1.242 m), with a transition in SDI from weak to moderate (Table 2). 
For phosphorus content in the soil disregarding influential observation #19 [13.76 𝑚𝑔 𝑑𝑚−3] (P#19), there was a change 
in the model selected to describe spatial variability, moving from Gaussian to Wave. Spatial dependency radius increased 
from 295 m to 555 m, and SDI went from weak to moderate. 
In the case of soil pH, even after excluding the influential observation #45 [5.90  𝐶𝑎𝐶𝑙2 𝑑𝑚−3] (pH#45), the Wave model 
remained the most appropriate. However, the spatial dependence radius increased from 606 m to 1.305 m (699 m increase), 
resulting in a transition in SDI from moderate to weak (Table 2). 
For soil resistance to penetration in the layer from 0.0 to 0.10 m, the exclusion of the influential observation #99 [0.82 MPa] 
(𝑅𝑆𝑃0.0−0.10𝑚 # 99) changed the selected model, from Matérn with smoothing k=0.7 to Matérn with smoothing parameter 
k=0.5 (exponential). The spatial dependence radius increased from 344 m to 382 m, and the SDI went from moderate to 
strong (Table 2). 
Finally, for the soil resistance to penetration in the layer from 0.31 to 0.40 m, the exclusion of the influential observation 
#94  [2.20 MPa] (𝑅𝑆𝑃0.31−0.40𝑚#94) resulted in the replacement of the Wave model (range of 608 m) the Matérn model with 
a smoothing parameter k= 0.7 , and the spatial dependence radius increased to 1.636  (1.028 m increase), with the SDI from 
weak to strong (Table 2). 
These results reinforce the importance of evaluating the influence of individual observations on spatial modeling, 
highlighting how exclusion of influential points can significantly alter the parameters of the models and the characteristics 
of spatial dependence. 
 
Geostatistical map and map comparison 
Based on the interpolation by ordinary kriging and the models selected to describe the spatial variability of the variables, 
thematic maps were generated for conditions with all observations and excluding observations considered influential. The  
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Fig 1. Location of the monitored area and the positioning of the 102 sampling points. 

 
 

 
Fig 2. Detection method of outlier Boxplot and Isolation Forest for the identification of outliers in data of: (a) soybean yield; 
(b) potassium content; (c) phosphorus content; (d) soil pH; (e) soil resistance to penetration in layer 0.0 to 0.10 meters 
deep; (f) soil resistance to penetration in layer 0.31 to 0.40 meters deep. 
 
 
results are presented in Figure 5, and the comparison reveals important information about the influence of these 
observations on the spatial distribution of the analyzed variables.  
It is important to highlight that, so far, we have worked with data transformed through Box-Cox transformation in the choice 
of the model and estimation of parameters. Therefore, the thematic maps were generated using the Box-Cox inverse 
transformation, considering for each variable the 𝜆 corresponding transformation parameter. This approach ensures that 
the maps reflect the real values of the variables, preserving the interpretability of the observed spatial patterns. 
When analyzing the soybean yield maps for the year 2022/2023, it is observed that the maps generated with all 
observations (Figure 5(a)) and without the influential #observation 17 (Figure (b))) show moderate similarity according 
to the Kappa accuracy index (0.4 < 𝐾 < 0.75 , Table 5). There was a considerable change in the frequency distribution of 
classes (Table 5), especially in the area of higher productivity, which decreased from 4.55% to 0% of the total area after 
exclusion of influential observation. This reduction directly impacts the estimated profitability of the area, highlighting the 
relevance of identifying and treating influential observations in geostatistical studies. 
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Table 3. Spatial Dependency Index Classification – SDI. 
Model MF Weak Moderate Strong 
Wave 0.58900 SDI ≤ 11% 11% < SDI ≤ 24% SDI > 24% 
Matérn k→∞ 
(Gaussiano) 

0.50400 SDI ≤ 9% 9% < SDI ≤ 20% SDI > 20% 

Matérn k= 0.5 
(Exponencial) 

0.31673 SDI ≤ 6% 6% < SDI ≤ 13% SDI > 13% 

Matérn k= 0.7 0.34833 SDI ≤ 6% 6% < SDI ≤ 14% SDI > 14% 

𝑆𝐷𝐼 = 𝑀𝐹 (
𝜑2

𝜑1+𝜑2
) 𝑚𝑖𝑛 {1; (

𝑎

0.5𝑀𝐷
)} 100, MF: Specific factor for each model, 𝜑1: Pepite effect, 𝜑2: 

Contribution, a: Range, MD: Maximum distance between two sampled points. 
Source: (Seidel and Oliveira, 2014; Neto et al., 2018; Uribe-Opazo et al., 2023). 

 
Table 4. Outlier detected by the boxplot graph and isolation forest method and influential observation 
by local influence. 

Variable 
Boxplot 
outlier points 

Isolation forest 
outlier points 

Local influence 
influential points 

Prod - 13, 17*, 101 17* 
K 3 3, 4, 10 42 

P 
3, 21*, 47*, 56, 57*, 60, 65*, 
70* 

21*, 47*, 57*, 65*, 70*, 93 19 

pH - 11, 35, 82 45 
𝑅𝑆𝑃0.0−0.10𝑚 - 8, 18, 23, 28, 34, 99* 99* 
𝑅𝑆𝑃0.31−0.40𝑚 - 34, 48, 82, 86, 92 94 

Prod: Soybean yield; K: Potassium content; P: Phosphorus content; pH: Soil pH; 𝑅𝑆𝑃0.0−0.10𝑚: soil 
resistance to penetration in layer 0.0 to 0.10 meters deep; 𝑅𝑆𝑃0.31−0.40𝑚: soil resistance to penetration in 
layer 0.31 to 0.40 meters deep; *: identification coincident. 

 
Table 5. Kappa index (𝐾) for the comparison between the maps obtained with all observations and the 
maps obtained excluding the influential observations. 
Comparison 𝐾 
Prod × Prod#17 0.74 
K × K#42 0.45 
P × P#19 0.67 
pH × pH#45 0.24 
𝑅𝑆𝑃0.0−0.10𝑚 × 𝑅𝑆𝑃0.0−0.10𝑚#99 0.89 
𝑅𝑆𝑃0.31−0.40𝑚 × 𝑅𝑆𝑃0.31−0.40𝑚#94 0.0 

Rating: 𝐾 ≥0.75 indicates high similarity between maps;0.4< 𝐾<0.75 indicates moderate similarity; 𝐾 ≤ 
0.4 indicates low similarity; #𝑥𝑖: indicates removal of influential observation from the database; Prod ≥: 
soybean yield; K: potassium; P: phosphorus; pH: soil pH;𝑅𝑆𝑃0.0−0.10𝑚:soil resistance to penetration in 
layer 0.0 to 0.10 meters deep; 𝑅𝑆𝑃0.31−0.40𝑚: soil resistance to penetration in layer 0.31 to 0.40 meters 
deep.  

 
Similarly, thematic maps of potassium content in the soil (K) also show considerable differences. The comparison between 
the map and all observations (Figure 5(c)) and the one without the influential observation #42 (Figure 5(d)) shows low 
similarity (0.4 ≤ 𝐾, Table 5). The main change is the extinction of the class of very high levels of potassium (1.00 to 1.13 
𝑐𝑚𝑜𝑙𝑐 𝑑𝑚−3), according to the classification of Santos e Silva (2001). Given the crucial role of potassium in water regulation 
and nutrient transport (Moreira et al., 2024), it is essential to ensure a homogeneous distribution for satisfactory 
performance. 
The evaluation of soil pH, represented in the maps with all the observations (Figure 5(g)) and without the influential 
observation #45 (Figure 5 (h)), also presents low similarity (0.4 ≤ 𝐾, Table 5). There was a significant reduction in the area 
corresponding to the pH class between 5.31 and 5.50, classified as mean, and the extinction of the area in the ideal range 
from 6.06 to 6.25, according to Santos e Silva (2001). Fagundes et al. (2018) emphasize that the ideal pH for soybean 
cultivation varies from 5.7 to 7.0, being influenced by factors such as fertilization, organic matter and soil type. Thus, 
adjustments in pH are fundamental for efficient agricultural production. 
As for soil resistance to 𝑅𝑆𝑃0.31−0.40𝑚, the maps generated by the Wave model with all observations (Figure 5(k)) and the 
Matérn model with = k 0.7, excluding the influential observation #94 (𝑅𝑆𝑃0.31−0.40𝑚 # 94) (Figure5(l)), they show 
substantial differences, being classified as low similarity(0.4 ≤ 𝐾, Table 5). In the first case, the area consists of classes from 
0.45 to 1.31 MPa, while in the second case these classes are replaced by values between 1.31 and 2.61 MPa, classified as 
average resistance to root development (Canarache, 1990). Soil compaction is more pronounced in the regions with higher 
machine traffic (Keller et al., 2019; Vanderhasselt et al., 2023).  
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Fig 3. Frequency distribution of the sample values of the data of: (a) soybean yield; (b) potassium content; 
(c) phosphorus content; (d) soil pH; (e) soil resistance to penetration in layer 0.0 to 0.10 meters deep; (f) 
soil resistance to penetration in layer 0.31 to 0.40 meters deep. 

 
 
This study identified that the northern region of the property is the most affected by soil compaction due to slightly inclined 
relief. This area is also the one with the highest machine traffic, especially in return maneuvers, intensifying the pressure 
on the ground. 
Finally, the phosphorus maps (P) with all observations (Figure 5(e)) and without the influential observation #19  (P#19) 
(Figure 5(f))) were classified as moderate similarity (0.4 < 𝐾 < 0.75, Table 5), while the maps of soil resistance to 
penetration in layer 0.0 to 0.10 m (Figure 5(i) and Figure 5(j)) showed high similarity(𝐾 ≥ 0.75 , Table 5). These analyzes 
highlight the importance of considering influential observations and the use of appropriate geostatistical models to capture 
spatial variability and guide agricultural management practices with greater efficiency and sustainability. 
 
Materials and methods 
 
Study of the area and data 
Soybean yield data (Prod) [𝑡 ℎ𝑎−1], potassium content (K)[𝑐𝑚𝑜𝑙𝑐 𝑑𝑚−3 ], phosphorus content (P)[𝑚𝑔 𝑑𝑚−3 ], soil pH (pH) 
and soil resistance to penetration in layer 0.0 to 0.10 m(𝑅𝑆𝑃(0.0 𝑎 0.10𝑚) ) [MPa] and layer 0.31 to 0.40 m(𝑅𝑆𝑃(0.31 𝑎 0.40𝑚) ) 

[MPa] depth, were chosen for their relevance to the development of soybean crop. These variables are determinant for the 
establishment, growth and productivity of the crop, since the availability of nutrients, soil acidity and resistance to 
penetration directly influence root development, water and nutrients absorption, and consequently plant performance 
(Keller et al., 2019; Vanderhasselt et al., 2023; Moreira et al., 2024).  
Data were collected during the 2022/2023 soybean harvest year in a commercial area of 172.04 ha, located in the 
municipality of Cascavel, western Paraná, Brazil. This area, is cultivated in a no-tillage system with rotation of corn and 
soybean crops, has geographic coordinates of approximately 24º57’18 29”S latitude, 53º34’750”W longitude, at an average 
altitude of 1 m (Figure). The regional climate is mesothermic and super humid temperate, climatic type Cfa (Köppen) and 
its soil is classified as a typical dystroferric Red Latosol of clayey context (Santos et al., 2018). 
The 102 sampling points were defined by means of a lattice plus close pairs sampling (Diggle and Ribeiro Jr., 2007; Chipeta 
et al., 2017). The soil chemical attributes were collected at a layer from 0.0 to 0.20 meters, for each sampling point, three 
subsamples were randomly collected in a radius of 4 meters, allowing a representative and homogeneous final sample. Soil 
resistance to penetration (RSP) was measured with the penetrometer penetroLOG – PLG 2040 Falker brand up to 0.40 
meters deep and soybean yield data (Prod) were collected manually. All samples were georeferenced using GPS in an UTM 
spatial coordinate system. 
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Fig 4. Charts of local influence  𝐶𝑖   and |𝐿𝑚𝑎𝑥| according to the order of observations collected: (a) 𝐶𝑖   and 
(b) |𝐿𝑚𝑎𝑥|  for soybean productivity; (c) 𝐶𝑖   and (d) |𝐿𝑚𝑎𝑥| for potassium content; (e) 𝐶𝑖   and (f) |𝐿𝑚𝑎𝑥|  for 
phosphorus content; (g )𝐶𝑖   and (h) |𝐿𝑚𝑎𝑥| for pH; (i) 𝐶𝑖   and (j )|𝐿𝑚𝑎𝑥| for soil resistance to penetration in 
layer 0.0 to 0.10 meters; (k) 𝐶𝑖   and (l) |𝐿𝑚𝑎𝑥| for soil resistance to penetration in layer 0.31 to 0.40 meters. 

 
 
Exploratory analysis 
Descriptive analyzes were performed, which included the calculation of position, dispersion and form measurements. The 
data normality was evaluated by Shapiro-Wilk test, serving as a decisive tool to determine the need for the data adjustment, 
ensuring its adequacy to the adjustment of geostatistical models. In the absence of normality, the data were submitted to a 
transformation using the Box and Cox method (1964). 
This transformation aims to correct asymmetries and adjust the data to the premises of geostatistical models. To 
complement exploratory analysis, boxplot charts were used, which allowed to identify patterns and behaviors of sampling 
points. In addition, the Isolation Forest algorithm (Liu, Ting, & Zhou, 2008) was applied for outlier detection. This method, 
based on unsupervised learning principles, isolates anomalous observations through recursive random splits in feature 
subspaces. The fewer splits required to isolate an observation, the higher its probability of being classified as an outlier, 
given its deviation from the predominant data distribution. 
 
Geostatistical analysis 
To model the spatial dependence structure of a regionalized variable, a Gaussian stochastic 𝑍 = {𝑍(𝑠), 𝑠 ∈ 𝑆} process was 
considered where 𝑠 = (𝑥, 𝑦)⊤  represents a specific location in the study area 𝑆 ⊂ 𝑅2, where 𝑅2 is the two-dimensional 

euclidean space. It is assumed that the data 𝑍 = (𝑍(𝑠1), … , 𝑍(𝑠𝑛))
⊤

 constitute a Gaussian stochastic process is stationary of 

second order and isotropic, collected in known locations (𝑠1, … , 𝑠𝑛)  ∈ 𝑆 ⊂ 𝑅2 . This process is modeled by the set 𝑍 =
𝜇(𝑠) + 𝜀(𝑠)where the deterministic  term 𝜇(𝑠) = 𝜇1 is a vector 𝑛 × 1 of the process averages 𝑍(𝑠), and 𝜇  is an unknown 

parameter to estimate and 1 a unit vector,  𝜀 = (𝜀(𝑠1), … , 𝜀(𝑠𝑛))
⊤

 represents the random error vector 𝑛 × 1, , with normal 

n-varied distribution, where,𝐸[𝜀(𝑠)] = 0 and covariance matrix 𝛴, of dimension 𝑛 × 𝑛 , defined as 𝛴 = 𝛴[(𝜎𝑖𝑗)] =

𝐶(𝑠𝑖 , 𝑠𝑗), 𝑖, 𝑗 = 1, … , 𝑛. The covariance matrix 𝛴 is symmetrical and defined positive, with elements 𝐶(𝑠𝑖 , 𝑠𝑗) that depend on 

the Euclidean  distance 𝑑𝑖𝑗 = ‖𝑠𝑖 − 𝑠𝑗‖ between  points 𝑠𝑖  and 𝑠𝑗 , being sometimes denoted  by 𝐶(𝑑𝑖𝑗) or  𝐶(𝑑). The structure 

of the matrix 𝛴 is influenced by the parameters 𝜑 = (𝜑1, … , 𝜑𝑠)⊤ as established by Equation (2) (Uribe-Opazo et al., 2012): 
𝛴 = 𝜑1𝐼𝑛 + 𝜑2𝑅(𝜑3),            (2) 
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Fig 5. Thematic map interpolated by kriging of: (a) soybean productivity; (b) soybean productivity without 
the  #17 influential observation; (c) potassium content; (d) potassium content without the #42  influential 
observation; (e) phosphorus content; (f) phosphorus content without the # 19 influential observation; (g) 
soil pH; (h) soil pH without #45 influential  observation; (i) soil resistance to penetration in layer 0.00 to 
0.10 meters; (j) soil resistance to penetration in layer 0.0 to  0.10 m without  #99 influential observation; 
(k) soil resistance to penetration in layer 0.31 to 0.40 meters; (l) soil resistance to penetration in layer 0.31 
to 0.40 meters without #94 influential observation. 

 
 

where, 𝜑1 ≥ 0 it is known as peptic effect ;𝜑2 ≥ 0 as contribution;𝑅(𝜑3) = [(𝑟𝑖𝑗)]  is a symmetric matrix 𝑛 × 𝑛, depending 

on 𝜑3 > 0, with elements diagonally 𝑟𝑖𝑖 = 1 𝑗 = 1, … , 𝑛, ;𝑟𝑖𝑗 = 𝜑2
−1𝐶(𝑠𝑖 , 𝑠𝑗) 𝜑2 ≠ 0 to  𝑟𝑖𝑗 = 0 and 𝜑2 = 0to , 𝑖 ≠ 𝑗 = 1, … , 𝑛, 

where 𝑟𝑖𝑗   is dependent on 𝑑𝑖𝑗 ;𝜑3 it is determined by the range model (𝑎 = 𝑔(𝜑3)). 

To investigate the spatial dependence structure, semi variograms were constructed using the Matheron semi variance 
function estimators (equation 3) (Cressie, 2015).  

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [(𝑍(𝑠𝑖) − 𝑍(𝑠𝑖 + ℎ))

2
]

𝑁(ℎ)

𝑖=1

,           (3) 

where, 𝛾(ℎ) it is the estimator of the Matheron semivariance function; 𝑁(ℎ)is the number of pairs of values sampled in 
locations separated by distance ℎ ;𝑍(𝑠𝑖 + ℎ) and 𝑍(𝑠𝑖)  are the values of the variable 𝑍 in   points 𝑠𝑖 + ℎ, and  𝑠𝑖  ,  respectively. 
For a detailed analysis of spatial dependence, 11 gaps were defined, covering up to 880 meters (𝑐𝑢𝑡𝑜𝑓𝑓 = 0,5 × 𝑀𝐷 ), that 
is, half the maximum distance (𝑀𝐷 ) of 1,760 meters between two sampled points, as recommended by Clark (1979). The 
semivariogram was examined in the directions 0º, 45º, 90º and 135º, following the guidelines of Guedes et al. (2013), 
allowing to verify potential anisotropy in the data. 
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For the analysis of the spatial dependence structure, the models of the Matérn family (Matérn, 1986) were evaluated, using 
different values for the k smoothing parameter: 0.5 (exponential), 0.7, 1.0, 2.0 and 𝑘 →  ∞ (Gaussian) and Wave model (Olea, 
2006).  
The estimates of the parameters were performed using the maximum likelihood method (ML) (Mardia & Marshal, 1984), 
more details in Silva et al. (2025a). The selection of the ideal model was made based on cross-validation and the information 
criteria of Akaike (AIC) and Shwarz Bayesian (BIC) (Faraco et al., 2008). 
The local influence study (Cook, 1986) used the generalized Zhu disturbance in the response variable, (De Bastiani et al., 
2015).  The influential point charts for the variable response to the Wave model can be consulted in Silva et al. (2025a). 
The evaluation of the spatial dependence degree of the adjusted model was performed using the Spatial Dependency Index 
(SDI), as proposed by Seidel and Oliveira (2014). The classification is according to Table 3 (Neto et al., 2018; Uribe-Opazo 
et al., 2023). 
The comparison of maps with all points and without the influential points was performed using the error matrix and the 
similarity between interpolated maps was evaluated by the estimates of Kappa accuracy indices (𝐾) (Cohen, 1960), 
according to Table 5. 
 
Computational resources 
All analyzes were performed in the software R (R Core Team, 2025). The Geor package was used to calculate the semi 
variances, adjust the models and generate the thematic maps (Ribeiro Jr & Diggle, 2001). The lambda parameter used in the 
Box-Cox transformation was calculated with the MASS package (Venables & Ripley, 2022). The Kappa index was calculated 
with the vcd package (Meyer et al, 2021) and the identification of outlier by isolation forest was performed with the isotree 
package (Cortes, 2025). 
 
Conclusion 
 
The identification of outliers, performed by the Boxplot and Isolation Forest methods, revealed the presence of asymmetry 
in the data, confirmed the data non-normality by the Shapiro-Wilk test. This characteristic is common in agronomic 
variables. To correct this asymmetry, Box-Cox transformation was applied, normalizing the data distribution and ensuring 
the adequacy of geostatistical models and reliability of estimates. After the analysis, the inverse transformation was used to 
return to the original values, ensuring that the thematic maps represent the actual conditions of the field. 
The methodology used was effective in detecting and analyzing influential points, showing that its removal can significantly 
alter the estimates of the parameters that define the spatial dependence structure. These changes directly impact the 
construction of thematic maps, as demonstrated by the exclusion of the influential observation #17, which affected both the 
areas of high productivity of soybean and the general spatial patterns. The area of higher soybean productivity, for example, 
was reduced from 4.55% to 0%, reinforcing the importance of a careful analysis of influential observations. 
In addition, the results highlighted considerable differences between the maps generated with and without the inclusion of 
influential points, ranging from low to high similarity. An emblematic case was the resistance of soil to penetration in the 
layer from 0.31 to 0.40 meters deep, where the K̂ accuracy index indicated low similarity between the maps. This finding 
reinforces the need for thematic maps to faithfully reflect the real conditions observed in the field, since they are decisive 
tools for resource allocation and strategic planning by producers. 
Therefore, the analysis of influence of observations is an indispensable component in geostatistical studies, ensuring that 
thematic maps accurately represent spatial variability and serve as a reliable basis for informed decisions in precision 
agriculture. The rigorous application of this approach contributes to the advancement of more efficient, sustainable and 
economically advantageous agricultural practices.  
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