Australian Journal of

Crop Science

Aust] Crop Sci. 19(11):1078-1089 (2025) | ISSN:1835-2707
https://doi.org/10.21475/ajcs.25.19.11.p12

Geostatistical models for asymmetric agricultural data

Amilton Luciano Garcia da Silva’*, Miguel Angel Uribe-Opazo’, Jerry Adriani Johann', Gustavo
Henrique Dalposso?

1PGEAGRI, Western Parana State University - (UNIOESTE), Cascavel, Parana, Brazil
2PPGBio, Federal University of Technology Parana - (UTFPR), Toledo, Parana, Brazil

*Corresponding author: amiltonlucianogarcia@gmail.com

Submitted: Abstract: Soybean production (Glycine max (L.) Merrill) is key to the global economy and

10/04/2025 environmental sustainability, but it faces the challenge of increasing productivity without
harming the environment. In this context, geostatistics appears as an essential tool for Precision

Revised: Agriculture (AP), allowing the mapping of spatial variability of factors such as soybean

16/06/2025 productivity and soil physicochemical attributes, which helps in making more efficient decisions,
for optimizing input application, improving crop management, reducing environmental impact,

Accepted: and maximizing yield. This study was carried out in a commercial area of 173.04 ha during the

03/08/2025 2022/2023 harvest. We analyzed soybean yield data and soil attributes, such as nutrient content
and mechanical resistance to penetration, which required data transformations due to
asymmetric distributions. Diagnostic techniques of local influence were used to identify
influential observations, whose impacts were evaluated in parameter estimates, in the
generation of thematic maps and in the definition of management zones. The exclusion of these
observations changed spatial patterns and productivity estimates, highlighting the importance
of careful analysis. Although, in some cases, the isolation forest method has identified outliers
that coincided with influential observations, it is important to emphasize that this detection is
not directly related to the concept of influential observations, since the methods have different
approaches. The proposed procedure contributes to a more sustainable agriculture, reducing the
environmental impact and optimizing the use of resources, aligning greater profitability with
environmental responsibility.
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Abbreviations: AIC_Akaike Information Criterion; BIC_Bayesian Information Criterion; K_soil potassium content;
K#42_potassium without the influential observation #42; ML_maximum likelihood; P_soil phosphorus content;
P#19_phosphorus without the influential observation #19; PA_precision agriculture; pH_soil pH; pH#45_soil pH without
the influential observation #45; Prod_soybean productivity; Prod#17_soybean productivity without the influential
observation #17; RSP, ¢_o 10m_S0il penetration resistance at a depth of 0.0 to 0.10 meters depth layer; RSP, _¢.10m#99_soil
penetration resistance in the 0.0 to 0.10 meters depth layer without the influential observation #99; RSP, 31_¢.40m_S0il
penetration resistance at a depth of 0.31 to 0.40 meters depth layer; RSP, 31_0.40m94_s0il penetration resistance in the 0.31
to 0.40 meters depth layer without the influential observation #94; SDI_Spatial Dependency Index.

Introduction

Modern agriculture faces a crucial paradox: how to meet the growing global demand for food, intensified by climate change,
while seeking to preserve environmental sustainability and strengthen the resilience of the planet (IPCC, 2019; Castaldi et
al., 2024). In this challenging scenario, the soybean production chain emerges as one of the most strategic in the world.
Besides being one of the main sources of protein for animal nutrition (Monteiro et al., 2021) and human nutrition (Chi etal.,
2021), soybean plays a vital role in the global energy matrix, especially in the biodiesel production (Zhu et al,, 2021) as a
sustainable alternative to fossil fuels.

With the shortage of new agricultural areas available, the future of global soybean production is intrinsically linked to
productivity gains at the level of rural properties (Masino et al., 2018). In this context, precision agriculture (PA) stands out
as an indispensable ally, enabling management practices adapted to the spatial variability of the factors that influence
production. This approach brings benefits such as increased productivity, greater economic return and a reduction in
environmental impact, by promoting the rational and efficient use of agricultural inputs (Zain et al., 2024).

Geostatistics appears in this scenario, as a fundamental scientific pillar for the implementation of AP. Its ability to model
and describe the spatial variability of natural phenomena is instrumental in estimating values in unsampled areas and to
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adapt traditional statistical methods to the study of spatial dependence on data (Uribe-Opazo et al,, 2021; 2023). Through
techniques such as kriging, geostatistics allows the construction of thematic maps, fundamental for decision-making.

In addition, the identification of influential observations are critical steps in geostatistical analysis. Such points may distort
environmental and geological patterns, changing the estimates of parameters and the results interpretation (Uribe-Opazo
et al., 2012). To evaluate the impact of disturbances on the data or model, Cook (1986) proposed the local influence
technique, widely explored in recent studies. De Bastiani et al. (2015) advanced in this field by developing widespread Zhu
disturbance, while Uribe-Opazo et al. (2023) used diagnostic techniques to identify influential points, analyzing their impact
on the response variable and on the construction of thematic maps with kriging.

One of the problems in spatial data analysis is the presence of outliers. In the literature it is known that an outlier is an
atypical value that escapes the patterns and can cause anomalies in the results obtained if it is not controlled. Understanding
outliers is fundamental in an analysis, because outliers can negatively experience all the results of a spatial analysis or the
behavior of outliers can be precisely what is being sought (creation of management zones). The central question is: what to
do with them? In the literature, the use of data transformation is recommended, such as Box-Cox (Box and Cox, 1964), which
aims to normalize data distribution and reduce the impact of extreme values.

Given this scenario, this study investigates the influence of outliers and atypical observations on asymmetric data, besides
using diagnostic techniques of local influence in geostatistical models to explore the spatial dependence of soybean
productivity and soil attributes. The results show that the identification and exclusion of these influential observations alter
not only the estimates of the parameters and the forecasts of the models, but also the reliability of the thematic maps
generated by kriging. By combining geostatistical methods with analysis of local influence, this work highlights the
relevance of a thorough analysis for assertive decision making in precision agriculture, promoting a balance among
productive efficiency, economic viability and environmental preservation.

Results and discussion

Exploratory analysis

Data were analyzed on soybean yield data (Prod)[t ha™!], of the chemical contents in the soil of: Potassium (K)[cmolc dm~
], phosphorus (P)[mg dm~2 ], pH (pH), soil resistance to penetration in layers 0.0 to 0.10m (RSP 4_o10m ) [MPa] and 0.31
to 0.40m (RSP, 31-0.40m ) [MPa] depth were selected due to its relevance for soybean crop development and its asymmetric
data behavior. The factors such as nutrient availability, soil acidity and soil resistance to penetration - directly influence
crop growth and productivity (Vanderhasselt et al., 2023). The selection of these variables aims to provide a comprehensive
analysis of the main elements that impact soybean performance.

The descriptive analysis of the variables considered in the study is presented in Table 1. The average soybean yield in the
monitored area was 1.534 t ha~!, with a coefficient of variation of 39.59%, indicating a moderate variability in the data. The
third quartile, with a value of 1.989 t ha™?, indicates that 75% of the data are below this limit, while the maximum value
observed, 2.909 t ha™1. These results suggest specific challenges for the study area, because it presents productivity values
ranging from 0.331 ¢t ha™! to 2.909 t ha™! that may be related to edaphoclimatic or agricultural management factors.

The average potassium (0.76 cmolc dm™~3) and phosphorus (19.14 mg dm~3) levels were classified as very high, according
to the criteria of Santos e Silva (2001). In contrast, the average soil pH value (5.82) is considered adequate, indicating
favorable chemical conditions for soybean crop, according to the same authors.

Regarding soil resistance to penetration, the layer of 0.0 to 0.10 m deep (RSP g—o.10m ) Presented an average of 1.554 MPa,
indicating low compaction level and little limitation to root development. The average in the layer from 0.31 to 0.40m
(RSPy.31_0.40m) Was 0.774 MPa, considered very low, without restrictions to root growth, according to the Canarache criteria
(1990).

Data distribution was analyzed using boxplots (Figure 2), histogram and density (Figure 3), normality test and asymmetry
coefficients (Table 1) and the Isolation Forest method (Figure 2) (Liu, Ting, Zhou, 2008), which identified the presence of
outliers in all analyzed variables (Table 4). The variables normality was evaluated by the Shapiro-Wilk test, whose p-value
was less than 0.05 for all variables, indicating the rejection of the normality hypothesis. To correct the effects of asymmetry
and approximate the data of a normal distribution, Box-Cox transformation (1964) was applied, with a specific
transformation parameter for each variable, as described in Table 1.

3

Geostatistical analysis

For spatial dependence analysis, 11 lags were considered up to a distance of 880 meters (50% of the maximum distance)
(Clark, 1979). The semi variogram was analyzed in the directions 02, 452, 902 and 1352 to verify the existence of isotropy,
as recommended by Guedes et al. (2013), and the results indicated that the transformed data are anisotropic, suggesting
that the spatial variability of the variables under study does not have a privileged direction.

The parameters of spatial dependence structures were estimated using the maximum likelihood method. The adjusted
models belong to the Matérn family, considering different values of the k smoothing parameter: 0.5 (exponential model),
0.7,1.0, 2.0 k > oo and (Gaussian model), in addition to the Wave model (Matérn, 1986; Silva et al, 2025a, 2025b).

The models validation was performed through cross-validation (Faraco et al,, 2008) and the information criteria of Akaike
(AIC) (Akaike, 1973) and Bayesian of Schwarz (BIC) (Schwarz, 1978). The Gaussian model(k — oo ) presented the best
performance to represent the spatial variability of the variables soybean yield (Prod[t ha™! ]), potassium (K[cmolc dm™3
1) and phosphorus levels (P[mg dm™3 ]) on the soil. The Wave model was the most suitable for soil pH (pH[CaCl, dm™31])
and soil resistance to penetration in layer 0.31 to 0.40 meters deep (RSP 31— .40m [MPa]). On the other hand, RSP, g—0.10m »
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Table 1. Descriptive statistics of the variables under study.

Statistics Prod K P pH RSPy o_010m RSPy 31_g.40m
Minimum 0.331 0.23 7.13 4.60 0.821 0.004
15t Quartile 1.045 0.53 11.39 5.50 1.242 0.407
Median 1.442 0.75 16.31 5.90 1.516 0.707
Mean 1.534 0.76 19.14 5.82 1.554 0.774
374 Quartile 1.989 0.90 21.97 6.20 1.880 1.016
Maximum 2.909 1.70 62.79 6.70 2.248 3.949
SD 0.60 0.28 11.06 0.43 0.39 0.59
CV (%) 39.59 37.44 57.79 7.40 25.23 77.38
U 0.38 0.63 1.89 -0.49 0.24 1.85
Kur -0.69 0.23 3.72 0.04 -0.91 6.46
p-value 0.01* 0.01* 0.00* 0.02* 0.02* 0.00 *
A 0.46 0.35 -0.65 2,00 0.35 0.46

SD: Standard deviation; CV: coefficient of variation; {i;: coef. asymmetry; Ku: coef. Kurtosis; p-value:
Descriptive level of Shapiro-Wilk normality test; * rejects normality at 5% significance; A lambda
parameter used in Box-Cox transformation; Prod: Soybean yield in harvest year 2022/2023 [ t ha™1]; K:
potassium content [cmolcdm™ ]; P: phosphorus content [mgdm™ ]; pH: soil pH |
CaCl, dm™3;RSPyo_010m : soil resistance to penetration in layer 0.0 at 0.10 meters deep
[MPa]; RSPy 31_¢.40m : Soil resistance to penetration in layer 0.31 at 0.40 meters deep [MPa].

the [MPa] in layer 0.0 to 0.10 meters, the Matérn model with a smoothing parameter k = 0.7 was the most appropriate (Table
2).

The spatial dependence indices (SDI) presented in Table 2 show the variability in the degree of spatial association between
the observations (Neto et al., 2020; Uribe-Opazo et al, 2023). Soybean yield (Prod) showed a strong spatial dependence (SDI
> 24%, Gaussian model classification), indicating that spatial proximity plays a relevant role in the variability of this variable.
The radius of spatial dependence estimated for Prod by the Gaussian model was 1.387 meters, which means that for
distances less than or equal to this value, soybean yield samples are spatially correlated.

For RSPy _¢.10m the SDI showed a moderate spatial dependence (6% < SDI < 14%, Matérn model classification with k=0.7),
with a spatial dependence radius of 344 meters. In contrast, the potassium (K) and phosphorus (P) levels showed weak
spatial dependence, with SDI of 4.93% and 8.75%, respectively, both classified by the Gaussian model. The radius of spatial
dependence for K was 204 meters, while for P it was 295 meters, indicating that the spatial correlation is less expressive for
these variables. Soil pH, in turn, showed moderate spatial dependence (SDI = 14.36 %, Gaussian model classification), with
a spatial dependence radius of 606 meters. Whereas RSP, 31_¢40m Showed weak spatial dependence (SDI < 11 608%,
classification of the Wave model), with a radius of spatial dependence of 608 meters.

These results highlight the importance of spatial dependence analysis to understand the patterns of variability in the
cultivation environment. The strong spatial association observed for soybean productivity demonstrates that factors related
to management and edaphoclimatic conditions are spatially structured. The moderate or weak variability observed for the
other variables suggests that these attributes may be influenced by local processes or intrinsic heterogeneity of the soil.
This information is fundamental for the development of more accurate management strategies, aiming at the optimization
of productivity and the sustainability of soybean crop.

Diagnosis of local influence

This section aimed to verify if some observations were influencing the distance from likelihood, using diagnostic techniques
of local influence. The charts C; orL,,,,| versus the order of observations (Cook, 1986) were used in order to identify the
influential observations. The study was carried out by applying the generalized Zhu disturbance scheme, as proposed by De
Bastiani et al. (2015).

The results of the local influence analysis, presented in Figure 4, highlight the following influential observations: #17 for
soybean yield, #42 for soil potassium content, #19 for soil phosphorus content, #45 for soil pH, #99 for soil penetration
resistance at the 0.00 to 0.10-meter depth layer, and #94 for soil penetration resistance at the 0.31 to 0.40-meter depth
layer. It is important to emphasize that, in this study, some influential observations coincided with the outliers previously
identified. However, there is a conceptual distinction between the two methods: while outlier analysis seeks to identify
atypical points in relation to the data distribution, influence analysis evaluates the impact of these observations on the
statistical model's results. As highlighted by Uribe-Opazo et al. (2012), an outlier may not be influential, just as an influential
observation is not necessarily characterized as an outlier.

To evaluate the effect of the influential observations on the spatial dependence structure and on the elaboration of thematic
maps, we performed the exclusion of them from the database for each variable, followed by a new analysis of spatial
variability. This methodological approach provided a more detailed understanding of the spatial distribution of variables,
taking into account the influence of individual observations.

Considering this new context, without the presence of influential observations, the results are detailed in Table 2. Based on
cross-validation criteria (Faraco et al.,, 2008), Akaike information criterion - AIC (Akaike, 1973) and Schwarz Bayesian
information criterion - BIC (Schwarz, 1978), it was observed that for soybean productivity, the exclusion of the influential
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Table 2. Estimated parameters of the linear spatial model, by the maximum likelihood method, asymptotic
standard deviation of the parameters (in parentheses) and spatial dependence index - SDI.

. ) A A A A SDI

Variables Model Q ol Py @5 a(m) (Class)
0487 0.090 0255 0801 37.25

Prod Gaus (0291)  (0.115) 0171)  (0198) 387 (strong)
0.563  0.155 0236 0.525 35.49

Prod#17 Wave  5279)  (0.091)  (0204) (0172) 7’1 (strong)

. e 0294 0.067 0049 0117 .~ 493
(0.043) (0.017)  (0.033)  (0.043) (weak)
0287 0.094 0022  0.097 11.46

Kit42 Wave (0.041)  (0.018) 0014) (0014) **0  (moderate)

N e 1284 0.002 0002 0170 .. 875
(0012)  (0.0008)  (0.001)  (0.043) (weak)
1317 0.002 0.003  0.062 21.19

P#19 Wave  5008)  (0.001)  (0.001) (0.002) °°°  (moderate)
16595  4.010 2207 0.067 1436

pH Wave (0.283)  (0.936) 0950) (0.004) ©0° (moderate)
16674 5000 1015 0.145 9.92

pH#45 Wave (0.354)  (0.929) 0694)  (0.030) 39 (yeak)
0466  0.004 0.082  0.099 12.92

RSPo.o-0.10m Mo.7 (0052) (0014)  (0027) (0033) 3  (moderate)

0457 0 0077 0127 13.73

RSPo.0-0.10m#99 Exp (0059) (0.014)  (0.024) (0.052) 8%  (strong)
0322 0391 0.085  0.203 7.30

RSPosi-oaom — Wave 5100y (0.091)  (0.062) (0.052) ©%®  (weak)

0.637  0.018 0.029 0474 21.30

RSPos1-04om#94  MO7 (0084) (0.010)  (0.014) (0.284) ®3®  (strong)

[: mean; {,: peptic effect; ¢,: contribution; @: range function; a: range; SDI: spatial dependence index;
Class: spatial dependence classification; # x;: indicates the removal of the influential observation from the
database; M0.7: Matérn model with a smoothing parameter k = 0.7; Prod: soybean productivity[ t ha™!];
K: potassium content [cmolc dm™3 ]; P: phosphorus content [mg dm™3 ]; pH: soil pH [ CaCl, dm™3];
RSPy y_o.10m: Soil resistance to penetration in layer 0.0 to 0.10 meters deep [MPa]; RSPy 31_¢.40m: SOil
resistance to penetration in layer 0.31 to 0.40 meters deep [MPa].

observation # 85 [2.861 t ha™! | (Prod#85) resulted in a change from the Gaussian model to the Wave model, with an
increase of 184 m in the radius of spatial dependence, maintaining a strong spatial dependence according to the SDI index
(Table 2).

For the potassium content in the soil, the exclusion of the influential observation #42 [0.50 cmolc dm™3 ] (K#42) changed
the selected model, from Gaussian to Wave, leading to an increase in the radius of spatial dependence, from 204 m to 1.446
m to (increase of 1.242 m), with a transition in SDI from weak to moderate (Table 2).

For phosphorus content in the soil disregarding influential observation #19 [13.76 mg dm™3] (P#19), there was a change
in the model selected to describe spatial variability, moving from Gaussian to Wave. Spatial dependency radius increased
from 295 m to 555 m, and SDI went from weak to moderate.

In the case of soil pH, even after excluding the influential observation #45 [5.90 CaCl, dm~3] (pH#45), the Wave model
remained the most appropriate. However, the spatial dependence radius increased from 606 m to 1.305 m (699 m increase),
resulting in a transition in SDI from moderate to weak (Table 2).

For soil resistance to penetration in the layer from 0.0 to 0.10 m, the exclusion of the influential observation #99 [0.82 MPa]
(RSPy9_o10m # 99) changed the selected model, from Matérn with smoothing k=0.7 to Matérn with smoothing parameter
k=0.5 (exponential). The spatial dependence radius increased from 344 m to 382 m, and the SDI went from moderate to
strong (Table 2).

Finally, for the soil resistance to penetration in the layer from 0.31 to 0.40 m, the exclusion of the influential observation
#94 [2.20 MPa] (RSPy31_0.40m#94) resulted in the replacement of the Wave model (range of 608 m) the Matérn model with
a smoothing parameter k= 0.7, and the spatial dependence radius increased to 1.636 (1.028 m increase), with the SDI from
weak to strong (Table 2).

These results reinforce the importance of evaluating the influence of individual observations on spatial modeling,
highlighting how exclusion of influential points can significantly alter the parameters of the models and the characteristics
of spatial dependence.

Geostatistical map and map comparison

Based on the interpolation by ordinary kriging and the models selected to describe the spatial variability of the variables,
thematic maps were generated for conditions with all observations and excluding observations considered influential. The
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Fig 1. Location of the monitored area and the positioning of the 102 sampling points.
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Fig 2. Detection method of outlier Boxplot and Isolation Forest for the identification of outliers in data of: (a) soybean yield;
(b) potassium content; (c) phosphorus content; (d) soil pH; (e) soil resistance to penetration in layer 0.0 to 0.10 meters
deep; (f) soil resistance to penetration in layer 0.31 to 0.40 meters deep.

results are presented in Figure 5, and the comparison reveals important information about the influence of these
observations on the spatial distribution of the analyzed variables.

[tis important to highlight that, so far, we have worked with data transformed through Box-Cox transformation in the choice
of the model and estimation of parameters. Therefore, the thematic maps were generated using the Box-Cox inverse
transformation, considering for each variable the A corresponding transformation parameter. This approach ensures that
the maps reflect the real values of the variables, preserving the interpretability of the observed spatial patterns.

When analyzing the soybean yield maps for the year 2022/2023, it is observed that the maps generated with all
observations (Figure 5(a)) and without the influential #observation 17 (Figure (b))) show moderate similarity according
to the Kappa accuracy index (0.4 < K < 0.75, Table 5). There was a considerable change in the frequency distribution of
classes (Table 5), especially in the area of higher productivity, which decreased from 4.55% to 0% of the total area after
exclusion of influential observation. This reduction directly impacts the estimated profitability of the area, highlighting the
relevance of identifying and treating influential observations in geostatistical studies.
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Table 3. Spatial Dependency Index Classification - SDI.

Model MF Weak Moderate Strong
Wave 0.58900 SDI<11% 11% < SDI < 24% SDI > 24%
Matérn koo 0.50400  SDI<9% 9% < SDI < 20% SDI > 20%
(Gaussiano)
Matérn k= 0.5 031673  SDI<6% 6% < SDI < 13% SDI > 13%
(Exponencial)
Matérn k= 0.7 0.34833 SDI < 6% 6% < SDI < 14% SDI > 14%

— P2 i . a . i . ; .
SDI = MF (</J1+</Jz) min {1, (O_SMD)} 100, MF: Specific factor for each model, ¢,: Pepite effect, ¢,:

Contribution, a: Range, MD: Maximum distance between two sampled points.
Source: (Seidel and Oliveira, 2014; Neto et al., 2018; Uribe-Opazo et al., 2023).

Table 4. Outlier detected by the boxplot graph and isolation forest method and influential observation
by local influence.

Variable Boxplot Isolation forest Local influence
outlier points outlier points influential points
Prod - 13,17% 101 17*
K 3 3,4,10 42
* * * *

P 3’031 » 477, 56, 577 60, 65% 21*,47*% 57* 65*%,70%,93 19
pH - 11, 35, 82 45

RSP 0-0.10m - 8, 18, 23, 28, 34, 99* 99*

RSPy 31-0.40m - 34, 48,82, 86,92 94

Prod: Soybean yield; K: Potassium content; P: Phosphorus content; pH: Soil pH; RSPy _o10m: SOil
resistance to penetration in layer 0.0 to 0.10 meters deep; RSPy 31— .40m: SOil resistance to penetration in
layer 0.31 to 0.40 meters deep; *: identification coincident.

Table 5. Kappa index (K) for the comparison between the maps obtained with all observations and the
maps obtained excluding the influential observations.

Comparison )74
Prod X Prod#17 0.74

P x P#19 0.67

RSP;0-0.10m X RSPy g-010m#99 0.89

RSPy 31— g40m X RSPy31-g40m#94 0.0

Rating: K 20.75 indicates high similarity between maps;0.4< K<0.75 indicates moderate similarity; K <
0.4 indicates low similarity; #x;: indicates removal of influential observation from the database; Prod =:
soybean yield; K: potassium; P: phosphorus; pH: soil pH;RSP; y_¢ 10m:S0il resistance to penetration in
layer 0.0 to 0.10 meters deep; RSPy 31_¢.40m: SOil resistance to penetration in layer 0.31 to 0.40 meters
deep.

Similarly, thematic maps of potassium content in the soil (K) also show considerable differences. The comparison between
the map and all observations (Figure 5(c)) and the one without the influential observation #42 (Figure 5(d)) shows low
similarity (0.4 < K, Table 5). The main change is the extinction of the class of very high levels of potassium (1.00 to 1.13
cmolc dm™3), according to the classification of Santos e Silva (2001). Given the crucial role of potassium in water regulation
and nutrient transport (Moreira et al, 2024), it is essential to ensure a homogeneous distribution for satisfactory
performance.

The evaluation of soil pH, represented in the maps with all the observations (Figure 5(g)) and without the influential
observation #45 (Figure 5 (h)), also presents low similarity (0.4 < K, Table 5). There was a significant reduction in the area
corresponding to the pH class between 5.31 and 5.50, classified as mean, and the extinction of the area in the ideal range
from 6.06 to 6.25, according to Santos e Silva (2001). Fagundes et al. (2018) emphasize that the ideal pH for soybean
cultivation varies from 5.7 to 7.0, being influenced by factors such as fertilization, organic matter and soil type. Thus,
adjustments in pH are fundamental for efficient agricultural production.

As for soil resistance to RSP, 31_0.40m, the maps generated by the Wave model with all observations (Figure 5(k)) and the
Matérn model with = k 0.7, excluding the influential observation #94 (RSPy31_g40m # 94) (Figure5(1)), they show
substantial differences, being classified as low similarity(0.4 < K, Table 5). In the first case, the area consists of classes from
0.45 to 1.31 MPa, while in the second case these classes are replaced by values between 1.31 and 2.61 MPa, classified as
average resistance to root development (Canarache, 1990). Soil compaction is more pronounced in the regions with higher
machine traffic (Keller et al., 2019; Vanderhasselt et al., 2023).
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Fig 3. Frequency distribution of the sample values of the data of: (a) soybean yield; (b) potassium content;
(c) phosphorus content; (d) soil pH; (e) soil resistance to penetration in layer 0.0 to 0.10 meters deep; (f)
soil resistance to penetration in layer 0.31 to 0.40 meters deep.

This study identified that the northern region of the property is the most affected by soil compaction due to slightly inclined
relief. This area is also the one with the highest machine traffic, especially in return maneuvers, intensifying the pressure
on the ground.

Finally, the phosphorus maps (P) with all observations (Figure 5(e)) and without the influential observation #19 (P#19)
(Figure 5(f))) were classified as moderate similarity (0.4 < K < 0.75, Table 5), while the maps of soil resistance to
penetration in layer 0.0 to 0.10 m (Figure 5(i) and Figure 5(j)) showed high similarity(K > 0.75, Table 5). These analyzes
highlight the importance of considering influential observations and the use of appropriate geostatistical models to capture
spatial variability and guide agricultural management practices with greater efficiency and sustainability.

Materials and methods

Study of the area and data

Soybean yield data (Prod) [t ha™!], potassium content (K)[cmolc dm™2 ], phosphorus content (P)[mg dm~2 ], soil pH (pH)
and soil resistance to penetration in layer 0.0 to 0.10 m(RSPo 4 0.10m) ) [MPa] and layer 0.31 to 0.40 m(RSPo.31 a 0.40m) )
[MPa] depth, were chosen for their relevance to the development of soybean crop. These variables are determinant for the
establishment, growth and productivity of the crop, since the availability of nutrients, soil acidity and resistance to
penetration directly influence root development, water and nutrients absorption, and consequently plant performance
(Keller et al., 2019; Vanderhasselt et al.,, 2023; Moreira et al.,, 2024).

Data were collected during the 2022/2023 soybean harvest year in a commercial area of 172.04 ha, located in the
municipality of Cascavel, western Parand, Brazil. This area, is cultivated in a no-tillage system with rotation of corn and
soybean crops, has geographic coordinates of approximately 24257°18 29”S latitude, 53234’750”W longitude, at an average
altitude of 1 m (Figure). The regional climate is mesothermic and super humid temperate, climatic type Cfa (Képpen) and
its soil is classified as a typical dystroferric Red Latosol of clayey context (Santos et al., 2018).

The 102 sampling points were defined by means of a lattice plus close pairs sampling (Diggle and Ribeiro Jr., 2007; Chipeta
et al,, 2017). The soil chemical attributes were collected at a layer from 0.0 to 0.20 meters, for each sampling point, three
subsamples were randomly collected in a radius of 4 meters, allowing a representative and homogeneous final sample. Soil
resistance to penetration (RSP) was measured with the penetrometer penetroLOG - PLG 2040 Falker brand up to 0.40
meters deep and soybean yield data (Prod) were collected manually. All samples were georeferenced using GPS in an UTM
spatial coordinate system.
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Fig 4. Charts of local influence C; and |L,,,,| according to the order of observations collected: (a) C; and
(b) |Lmax| for soybean productivity; (c) C; and (d) |Lqx| for potassium content; (e) C; and (f) |L,,q,| for
phosphorus content; (g )C; and (h) |L,..| for pH; (i) C; and (j )|Lqx| for soil resistance to penetration in
layer 0.0 to 0.10 meters; (k) C; and (1) |L;nqx | for soil resistance to penetration in layer 0.31 to 0.40 meters.

Exploratory analysis

Descriptive analyzes were performed, which included the calculation of position, dispersion and form measurements. The
data normality was evaluated by Shapiro-Wilk test, serving as a decisive tool to determine the need for the data adjustment,
ensuring its adequacy to the adjustment of geostatistical models. In the absence of normality, the data were submitted to a
transformation using the Box and Cox method (1964).

This transformation aims to correct asymmetries and adjust the data to the premises of geostatistical models. To
complement exploratory analysis, boxplot charts were used, which allowed to identify patterns and behaviors of sampling
points. In addition, the Isolation Forest algorithm (Liu, Ting, & Zhou, 2008) was applied for outlier detection. This method,
based on unsupervised learning principles, isolates anomalous observations through recursive random splits in feature
subspaces. The fewer splits required to isolate an observation, the higher its probability of being classified as an outlier,
given its deviation from the predominant data distribution.

Geostatistical analysis

To model the spatial dependence structure of a regionalized variable, a Gaussian stochastic Z = {Z(s), s € S} process was
considered where s = (x,y)T represents a specific location in the study area § ¢ R?, where R? is the two-dimensional
euclidean space. It is assumed that the data Z = (Z(sl), . Z(sn))T constitute a Gaussian stochastic process is stationary of
second order and isotropic, collected in known locations (si,...,s,) € S € R? . This process is modeled by the set Z =
u(s) + e(s)where the deterministic term u(s) = u1 is a vector n X 1 of the process averages Z(s), and ¢ is an unknown
parameter to estimate and 1 a unit vector, € = (e(sl), . es(sn))T represents the random error vector n X 1,, with normal
n-varied distribution, where,E[e(s)] = 0 and covariance matrix X, of dimension n xn , defined as X = E[(o‘”)] =
C(si, s]-), i,j =1,..,n. The covariance matrix X is symmetrical and defined positive, with elements C(si, sj) that depend on
the Euclidean distance d;; = ||s; — s;|| between points s; and s;, being sometimes denoted by C(dij) or C(d).The structure
of the matrix X is influenced by the parameters ¢ = (¢4, ..., @) as established by Equation (2) (Uribe-Opazo et al., 2012):

X = (,011n + ¢2R((p3)' (2)
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Fig 5. Thematic map interpolated by kriging of: (a) soybean productivity; (b) soybean productivity without
the #17 influential observation; (c) potassium content; (d) potassium content without the #42 influential
observation; (e) phosphorus content; (f) phosphorus content without the # 19 influential observation; (g)
soil pH; (h) soil pH without #45 influential observation; (i) soil resistance to penetration in layer 0.00 to
0.10 meters; (j) soil resistance to penetration in layer 0.0 to 0.10 m without #99 influential observation;
(k) soil resistance to penetration in layer 0.31 to 0.40 meters; (1) soil resistance to penetration in layer 0.31
to 0.40 meters without #94 influential observation.

where, ¢, = 0 it is known as peptic effect ;¢p, = 0 as contribution;R(¢3) = [(ri]-)] is a symmetric matrix n X n, depending
on @3 > 0, with elements diagonally r;; = 1j =1, ...,n,;1;; = (p2_1C(Si,Sj) @, #0to r;; =0and @, =0to,i #j=1,..,m,
where 7;; is dependent on d;;;¢5 it is determined by the range model (a = g(<p3)).

To investigate the spatial dependence structure, semi variograms were constructed using the Matheron semi variance

function estimators (equation 3) (Cressie, 2015).
N(h)
1

70 = 309 2. (@024 w)’] @)

where, y(h) it is the estimator of the Matheron semivariance function; N(h)is the number of pairs of values sampled in
locations separated by distance h ;Z(s; + h) and Z(s;) are the values ofthe variable Z in pointss; + h, and s;, respectively.
For a detailed analysis of spatial dependence, 11 gaps were defined, covering up to 880 meters (cutoff = 0,5 X MD ), that
is, half the maximum distance (MD ) of 1,760 meters between two sampled points, as recommended by Clark (1979). The
semivariogram was examined in the directions 02, 452, 902 and 1359, following the guidelines of Guedes et al. (2013),
allowing to verify potential anisotropy in the data.
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For the analysis of the spatial dependence structure, the models of the Matérn family (Matérn, 1986) were evaluated, using
different values for the k smoothing parameter: 0.5 (exponential), 0.7, 1.0, 2.0 and k = oo (Gaussian) and Wave model (Olea,
2006).

The estimates of the parameters were performed using the maximum likelihood method (ML) (Mardia & Marshal, 1984),
more details in Silva et al. (2025a). The selection of the ideal model was made based on cross-validation and the information
criteria of Akaike (AIC) and Shwarz Bayesian (BIC) (Faraco et al., 2008).

The local influence study (Cook, 1986) used the generalized Zhu disturbance in the response variable, (De Bastiani et al.,
2015). The influential point charts for the variable response to the Wave model can be consulted in Silva et al. (2025a).
The evaluation of the spatial dependence degree of the adjusted model was performed using the Spatial Dependency Index
(SDI), as proposed by Seidel and Oliveira (2014). The classification is according to Table 3 (Neto et al., 2018; Uribe-Opazo
etal, 2023).

The comparison of maps with all points and without the influential points was performed using the error matrix and the
similarity between interpolated maps was evaluated by the estimates of Kappa accuracy indices (K) (Cohen, 1960),
according to Table 5.

Computational resources

All analyzes were performed in the software R (R Core Team, 2025). The Geor package was used to calculate the semi
variances, adjust the models and generate the thematic maps (Ribeiro Jr & Diggle, 2001). The lambda parameter used in the
Box-Cox transformation was calculated with the MASS package (Venables & Ripley, 2022). The Kappa index was calculated
with the vcd package (Meyer et al, 2021) and the identification of outlier by isolation forest was performed with the isotree
package (Cortes, 2025).

Conclusion

The identification of outliers, performed by the Boxplot and Isolation Forest methods, revealed the presence of asymmetry
in the data, confirmed the data non-normality by the Shapiro-Wilk test. This characteristic is common in agronomic
variables. To correct this asymmetry, Box-Cox transformation was applied, normalizing the data distribution and ensuring
the adequacy of geostatistical models and reliability of estimates. After the analysis, the inverse transformation was used to
return to the original values, ensuring that the thematic maps represent the actual conditions of the field.

The methodology used was effective in detecting and analyzing influential points, showing that its removal can significantly
alter the estimates of the parameters that define the spatial dependence structure. These changes directly impact the
construction of thematic maps, as demonstrated by the exclusion of the influential observation #17, which affected both the
areas of high productivity of soybean and the general spatial patterns. The area of higher soybean productivity, for example,
was reduced from 4.55% to 0%, reinforcing the importance of a careful analysis of influential observations.

In addition, the results highlighted considerable differences between the maps generated with and without the inclusion of
influential points, ranging from low to high similarity. An emblematic case was the resistance of soil to penetration in the
layer from 0.31 to 0.40 meters deep, where the K accuracy index indicated low similarity between the maps. This finding
reinforces the need for thematic maps to faithfully reflect the real conditions observed in the field, since they are decisive
tools for resource allocation and strategic planning by producers.

Therefore, the analysis of influence of observations is an indispensable component in geostatistical studies, ensuring that
thematic maps accurately represent spatial variability and serve as a reliable basis for informed decisions in precision
agriculture. The rigorous application of this approach contributes to the advancement of more efficient, sustainable and
economically advantageous agricultural practices.
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