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Abstract 
 
Soil physical attributes are affected by several events. The ability to identify the variation of those attributes can be used to decide 
the best crop management. Although it is known that smaller grids are more representative, predicting the least number of points 
while maintaining accuracy is a tool that might reflect a gain in yield and time. The aims of this study were to evaluate the spatial 
physical variability and to define the minimum sampling density in a tropical Typic Haplustults soil using a scaled semivariogram in a 
central pivot area with pinto bean (Phaseolus vulgaris L.) after the eighth bean harvest in Cristalina, Goias State. Soil samples were 
collected at a regular grid of 10-m intervals, totaling 180 points, and at depths of 0.00–0.10 m, 0.10–0.20 m, and 0.20–0.30 m to 
determine total sand content (TS), silt (SIL), clay (CL), water-dispersed clay (WDC), mean weight diameter of soil aggregates (MWD), 
soil penetration resistance (PR), soil macroporosity (Ma), soil microporosity (Mi), and soil bulk density (BD). The results 
demonstrated that management promoted superficial soil compaction with increasing BD and Mi and decreasing Ma and TP. The 
scaled semivariogram demonstrated similarity between attributes in the three studied soil layers, evidencing strong spatial 
dependency. The sample density showed a strong influence of WDC in the irrigated soil properties. Adoption of  a scaled 
semivariogram is a strategy that can be used to determine a minimum number of points that represents the spatial variability of 
soil physical attributes and to assist the best management in irrigated soils.   
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Introduction 
 
Brazil is a large bean producer (Phaseolus vulgaris L.), with 
an output of 2.8 million tons per year (CONAB, 2017). The 
beans majority are crops with low input of technology, 
which consequently decreases yield (Efetha et al., 2011). It 
can be cultivated as a winter crop. It produces better quality 
and yields three to five times higher than when cultivated in 
irrigated systems, on average producing 10 kg ha

-1
 mm

-1
 of 

water (Munoz-Perea et al., 2007). Thus, irrigation can serve 
as an alternative to farmers to produce food year-long. 
Irrigation of beans by aspersion in a central pivot is 
recommended for individual and large areas because of the 
price oscillation, while the stakeholder’s financial return is 
linked to the yield. 
However, adoption of an irrigation system enables 
successive cropping, in which usually two crops, cereals and 
grains, are harvested (i.e. corn and beans). Additionally, it is 
necessary to insert cover crops during the winter season, 
which would provide a constant addition of vegetative 
residues favoring the increase of organic composts, thereby 

promoting improvements in soil physical quality (i.e. 
decrease in density, increase in porous volume, and favoring 
aeration and water infiltration) (Cintra and Meilniczuk, 
1983). 
Intensive use of soil in irrigated areas has caused alterations 
in soil physical attributes due to the management practices 
such as soil disturbance and machinery traffic (Reichert et 
al., 2003). Long-term soil degradation is reported with a 
greater intensity on the soil surface with the formation of 
compacted layers and superficial sealing. This effect might 
facilitate the erosion process, causing a decrease of essential 
soil functions, mainly those linked to structure stability, 
aggregated fractioning, density increase, microporosity (Mi) 
increase, and aeration porosity decrease, influencing root 
growth and, consequently, affecting yield (Neykova et al., 
2011).  
Irrigation systems such as a central pivot cover large areas. 
Soil modification occurs in different forms in the landscape, 
adding variability as the topography and soil type change. 
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One of the most efficient ways to detect changes in soil 
physical attributes is to analyze and describe spatial 
variability data by geostatistics techniques to elucidate the 
maximum inter-correlation of variable and its contribution 
to soil alteration in a crop area (Alho et al., 2014). This 
method can correlate soil attributes and crop yield according 
to the observed variations (Montanari et al., 2013). Analysis 
of spatial variability helps managing crop practices, orient 
future projects, and expands understanding of pedogenetic 
processes and soil quality (Sana et al., 2014).  
According to MacBratney et al. (2003), various interpolation 
techniques are being utilized within geostatistics, presenting 
different degrees of reliability. Most of these techniques use 
a large sampling intensity, decreasing their viability, 
especially when observations have to be performed several 
times (Ferreyra et al., 2002), which is usually a limiting factor 
in subsequent crop management. On the other hand, less-
dense sampling is less expensive, but it can be imprecise and 
omit special patterns of the soil. However, the strategy to 
decrease cost and increase precision is to adopt enhanced 
mapping techniques that truly characterize spatial variability 
and provide more precise maps using a minimum number of 
sampling points (Silva et al., 2015). 
Soil physical attributes are affected by several factors, the 
most impactful is water in the form of rainfall or irrigation. 
Identification of variation of those attributes might support 
precise decisions for the best crop management. It is known 
that the smaller grids are more representative. They predict 
the least number of points while maintaining accuracy. It is a 
tool that might reflect a gain in yield and time and be 
valuable in precision agriculture. In this context, the 
objective of this work was to evaluate the spatial variability 
of soil physical attributes in an irrigated pinto bean area to 
determine the minimum sampling density in tropical 
weathered soil. 
 
Results and Discussion 
 
Assessment of normality 
  
Analysis of Table 1 demonstrates that the mean and median 
values are similar for all variables, indicating that the data 
did not present accentuated asymmetry in soil depths, which 
is confirmed by the values of asymmetry and near kurtosis of 
zero. These values may present an approximate normality, 
evidencing that it may represent a reference that measures  
central tendency, not having domain of discrepant values in 
their distribution (Cambardella et al., 1994). Therefore, 
physical attributes in this study approximate to a normal 
distribution and can be considered suitable for the use of 
geostatistics. 
According to Souza et al. (2004) and Alho et al. (2014), the 
normality condition in data distribution is not mandatory in 
a geostatistic analysis, since the data collected from the field 
creates a normal distribution which is simply an 
approximation. However, it is desirable that data 
distribution does not present long tails, which might 
compromise the analysis based in medium values. 
 
Classification of spatial dependency of soil attributes  
 
The variability of an attribute can be classified by its CV 
magnitude. According to the criteria proposed by Pimentel 
Gomes and Garcia (2002), it classifies as low (CV <10%), 

medium (10%< CV >20%), high (20%< CV >30%), and very 
high (CV >30%), since it is a dimensionless measure and 
enables comparison of two variables. 
Among the studied variables, silt (SIL), mean weight 
diameter (MWD), and RP presented the highest variabilities 
in soil depths, classified as very high, which probably 
reproduced its spatial dependency. In a similar study with 
beans, Carvalho et al. (2006) reported high CV values; 
consequently, the geostatistical analysis pointed to 
moderate spatial dependency structure for RP in the soil 
layers of 0.05–0.10 and 0.10–0.15 m and strong for grain 
yield (GY). However, the same authors also reported that 
joint spatial analysis showed no correlation; thus, spatial 
variability of RP did not influence GY. 
In the present study, CV values were low for clay (CL) and 
sand fractions, total porosity (TP), and bulk density (BD), 
showing lower heterogeneity of these attributes in the area 
and lower variability of the data collected. Souza et al. 
(2004) analyzed texture spatial variability of a Rhodic Oxisol 
under sugarcane cultivation and presented a high CV for 
coarse sand (CS). For all physical attributes evaluated, the 
mean CV was 31% at the depth of 0.00–0.10 m, 28% at 0.10–
0.20 m, and 26% at 0.20–0.30 m. The authors concluded that 
management increases the variability of the surface 
compared to the subsurface.  
 
Spatial variability of soil physical attributes 
 
The semivariograms analyzed did not indicate direction 
preferences or present anisotropy. The spatial variability 
presented the same pattern for all directions (Table 2). 
Cross-validation facilitated the choice of semivariogram 
model and provided higher accuracy for the spatial 
continuity of soil attributes. According to Wackemagel 
(1995), when values are close to one, previsions are close to 
real values, characterizing the model as suitable to study the 
phenomenon. All studied attributes presented the data 
adjusted to the exponential mathematical model of the 
semivariograms (Table 2). However, the SIL and RP in the 
depth of 0.00–0.10 m; macroporosity (Ma) at 0.10-0.20 m; 
and CS, CL, and water-dispersed clay (WDC) values at 0.20–
0.30 m, respectively, presented a coefficient of spatial 
determination (R

2
) equal to or above 0.90, indicating that 

they presented the best semivariographic adjustment. In a 
similar study, Montanari et al. (2013) evaluated the 
correlation among soil attributes and bean yield under a 
Cerrado Oxisol and reported that the geostatistical analysis 
showed attributes with a pure nugget effect, with no spatial 
dependence. The other attributes presenting spatial 
dependency can be analyzed by the magnitude of the spatial 
determination coefficient (R

2
). According to Siqueira et al. 

(2008), spherical and exponential mathematical models 
predominate in soil science studies. In their study, they 
emphasized that the lowest values were attributed to SIL, 
Ma, and BD in the layer of 0.00–0.10 m; TP in the layers of 
0.10–0.20 m and 0.20–0.30 m; and RP in the layer of 0.10–
0.20 m, which represented 27% of the sample mesh. The 
largest reaches obtained in this study were observed in the 
WDC attributes in the 0.10–0.20-m layer (Table 2). According 
to Montanari et al. (2013), when the same attributes are 
involved, the values of the scopes, obtained in their study, 
can be used in the geostatistical packages, which will feed 
the computational packages used in precision agriculture. 
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Table 1. Mean, median, coefficient of variation (CV), asymmetry and kurtosis values for the physical attributes of the evaluated soil. 

Variables TS Clay Silt WDC MWD Mi Ma TP BD PR 

 0.0-0.1 m 

Mean 552.58 384.44 62.98 170.90 1.76 0.29 0.19 0.49 1.33 3.34 
Median 559.50 383.75 59.5 163.75 1.67 0.29 0.19 0.48 1.33 3.32 
CV 11.01 14.44 38.62 21.56 29.87 18.58 20.03 9.21 9.92 37.82 
Asymmetry -0.29 -0.01 1.76 0.48 0.36 -0.26 0.86 1.25 0.34 1.42 
Kurtosis 0.08 0.05 5.69 -0.14 0.19 1.23 7.24 5.89 0.41 2.93 

 0.1-0.2 m 

Mean 556.47 388.04 58.01 182.91 1.63 0.28 0.19 0.47 1.36 5.17 
Median 564.00 384.25 53.00 180.25 1.61 0.28 0.19 0.47 1.37 4.69 
CV 10.07 14.43 40.19 19.24 31.71 17.12 19.28 10.19 9.38 31.63 
Asymmetry -0.01 -0.29 4.35 0.10 0.58 0.56 0.93 2.09 -0.91 1.98 
Kurtosis 0.20 0.90 34.57 0.05 2.24 4.43 4.03 11.67 1.50 7.12 

 0.2-0.3 m 

Mean 543.72 400.65 55.32 191.56 1.70 0.27 0.20 0.47 1.37 5.63 
Median 550.50 399.25 54.25 193.75 1.66 0.27 0.19 0.46 1.37 5.38 
CV 11.03 14.75 38.17 20.04 31.64 16.26 19.68 10.29 10.56 35.07 
Asymmetry 0.02 -0.60 2.63 -0.60 0.59 -0.47 1.87 0.42 0.46 2.27 
Kurtosis 0.15 0.90 20.62 1.60 1.73 2.81 8.62 2.58 3.75 5.59 

TS = Total sand; WDC = Water disperse clay (ADA); DMP = Mean weight diameter of soil aggregates; Mi = Microporosity; Ma = Macroporosity; TP = Total porosity; SD = 
Soil Density; PR = Penetration resistance. 

 
Table 2. Semivariograms adjusted for soil physical attributes evaluated in an exponential model in 2011. 

Variables SC Clay Silt WDC WAD Mi Ma TP BD PR 

 0.0-0.10 m 
1
C0 797.000 49.000 68.000 750.000 0.0200 0.0002 0.8500 0.0001 0.0017 0.5030 

2
C0/C0+C1 3061.00 815.00 75.03 1501.00 0.89 0.0010 0.002 0.0012 0.0143 10.070 

Reach 41.70 47.70 15.60 85.80 17.70 20.40 13.16 21.00 12.90 52.20 
3
R

2
 0.88 0.88 0.91 0.71 0.71 0.71 0.54 0.71 0.72 0.90 

4
VC 0.87 0.82 0.55 0.80 0.56 0.80 0.68 0.70 0.31 0.74 

5
GDE

 
26.04 6.01 9.06 49.97 9.27 12.65 15.55 11.02 12.45 49.95 

 0.10-0.20 m 
1
C0 1364.00 17050.00 150.60 671.00 0.0100 0.0002 0.5000 0.0001 0.0007 0.0400 

2
C0/C0+C1 3318.0 3411.0 30.140 1343.0 0.8900 0.0010 0.0020 0.8800 0.0069 0.9190 

Alcance 72.00 91.50 59.00 98.10 21.00 20.40 41.30 14.10 22.20 12.9 
3
R

2
 0.87 0.87 0.51 0.85 0.74 0.47 0.96 0.57 0.74 0.71 

4
VC 1.02 1.06 0.88 0.85 0.82 0.59 0.71 0.36 0.41 0.63 

5
GDE 41.11 49.99 49.97 49.96 1.12 13.07 49.91 8.80 10.27 4.35 

 0.20-0.30 m 
1
C0 1337.0 1452.0 72.000 40.000 0.0700 0.0001 0.5000 0.0001 0.0012 0.0740 

2
C0/C0+C1 3770.0 3458.0 29.270 34.800 0.7200 0.0011 0.0020 0.0010 0.0091 0.9040 

Alcance 76.80 72.00 20.10 34.80 46.50 20.70 37.80 14.70 18.00 20.70 
3
R

2
 0.93 0.94 0.73 0.91 0.88 0.61 0.86 0.48 0.74 0.60 

4
VC 1.13 1.15 0.80 0.86 0.54 0.76 0.71 0.24 0.55 0.58 

5
GDE 35.46 41.99 2.46 2.46 49.83 11.71 49.91 12.89 13.60 8.19 

1C0 = Nugget effect; 2C0/C0+C1 = Spatial dependecy degree; 3R2 = Determination coeficient; 4VC = Cross-validation; 5GDE = Degree of spatial dependecy. TS = Total sand; WDC = Water dispersed clay; 
WAD = Weighted average diameter; Mi = Microporosity; Ma = Macroporosity; TP = Total porosity; SD = Soil density; PR = Penetration resistance. 

 
Table 3. Sample density for the physical attributes of the soil in the layers 0.0-0.1, 0.1-0.2 and 0.2-0.3 m. 

Variables SC Clay Silt WDC MWD Mi Ma TP BD PR 

 0.0-0.10 m 

Points 46 4 41 1 32 24 58 50 20 4 
Spacing 8.18 10.73 28.69 16.02 22.19 13.8 14.88 6.84 7.37 28.09 

 0.10-0.20 m 

Points 2 1 3 1 23 24 6 50 20 60 
Spacing 7.48 10.72 29.86 14.29 23.56 12.72 14.32 7.57 6.97 23.5 

 0.20-0.30 m 

Points 2 2 25 8 5 23 7 46 31 23 
Spacing 8.19 10.96 28.35 14.89 23.5 12.08 14.62 7.64 7.84 26.05 
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Comparing the degree of CL dispersion in central pivot-
irrigated soil under annual and perennial cultivation, Dantas 
et al. (2012) observed greater dispersion of CL under annual 
cultivation. This confirms that the use of central pivot 
irrigation in an area without soil cover benefits the impact of 
water droplets on its surface, surface aggregates, and 
dispersed CL. The C0+C0/C0+C1 ratio is used to define the 
spatial dependency of soil attributes, so the values of this 
relation showed that spatial dependency was classified as 
strong and moderate to the attributes in this study. This 
highlights significant variability and sampling efficiency; 
however, successive sampling may reflect in the further 
spatial structure of soil attributes (Corá et al., 2004). 
 
Scaled semivariogram of soil physical attributes 
 
The scaled semivariogram range was observed as 14.29 m in 
the three studied depths. These characteristics allowed us to 
affirm that soil attributes were heterogeneous and strongly 
influenced by management. The use of irrigation allowed 
continuous cropping yet promoted significant alterations of 
soil physical attributes. Regarding the data obtained by the 
spatial dependency range, it was possible to establish a 
sampling amplitude, showing different values for soil 
attributes. Based on the semivariogram range, we 
determined the minimum sampling density of each attribute 
in the three studied soil layers (Tables 2 and 3). Individual 
analysis of the attributes demonstrated that minimum 
sampling density showed values ranged from 1 to 58 points 
ha

-1
. The medium spacing of 15.67 m in the 0.00–0.10-m soil 

layer, to the 0.10–0.20-m soil layer showed values of 1 and 
30-point ha

-1
, the average spacing of 15.09 m, and to layer 

0.20–0.30 from 2 and 46 points ha
-1

 and average spacing of 
15.41 m. We verified a similarity among soil attributes, when 
we analyzed the performance of the scaled semivariogram, 
showing more intense variability for WDC, CL, and PR in the 
0.00–0.10-m layer, presenting an average number of points 
of 1, 4, and 4, respectively (Table 3). In the 0.10–0.20-m 
layer, CL, total sand (TS), SIL, and WDC presented sampling 
points of 1, 2, 3, and 1, respectively. In the 0.20–0.30-m 
layer, TS, CL, MWD, and Ma presented sampling points of 2, 
2, 5, and 7, respectively.  These characteristics allowed us to 
conclude that the granulometric fractions were well defined 
in the proposed sampling and that a strong influence of WDC 
in the soil layers was evidenced (Table 3). According to 
Dantas et al. (2012), there is a possibility of higher 
occurrence of WDC in irrigated areas compared to rain-fed 
systems. In the 0.00–0.10-m layer, the lowest sample density 
was observed for the PR attribute, indicating that soil 
presented surface compaction (Table 3). In the 0.20–0.30-m 
layer, MWD and Ma presented the smallest sample 
densities, due to TP obtained by the arrangement of the 
contact of solid particles. There was a predominance of 
solids in the soil sample due to TP. On the other hand, if soil 
particles are not arranged in aggregates, the voids 
predominate, and the TP is high. 
 

Materials and Methods 
 
Site description 
 

The experiment was conducted in Cristalina, Goias State 
(16°53’36” S; 47°32’17” W at 1,021 m asl). Soil samples were 
collected in an eight-year-old pinto bean crop area. The 

climate in the region is classified as Aw according to the 
Köppen classification, with an average annual cumulative 
rainfall of 1,500 mm. The soil at the experimental site is 
Typic Haplustults (Soil Survey Staff, 2014), with the following 
physical and chemical characteristics in the 0.0–0.2-m layer: 
441, 514, and 45 g kg

-1
 CL, sand, and SIL content, 

respectively; pH (H2O) 5.2; 27 mmolc dm
-3

 of Ca
+
 Mg; 31.0 

mmolc dm
-3

 of H+Al; 33.1 mmolc dm
-3

 of S, 64.1 31.0 mmolc 
dm

-3
 of CTC; 52% of V; and 2.2 g kg

-1
 of organic matter. The 

area relief is classified as an upland plateau, where 70% or 
more is plain or gently wavy. Detailed mapping was 
performed for 78 ha utilizing a GPS. We selected 1.8 ha from 
the total area to conduct the experiment. 
 
Crop and irrigation management  
 
The pinto beans were cultivated for eight seasons, one per 
year, in a seeding density of 9.4 plants per m, with 0.45 m 
between rows. The crop was seeded in succession to 
soybean under a no-till system. Irrigation was performed by 
a central pivot system, with sprayers with fixed swivel. 
Fertilization was performed by applying during seeding 30, 
90, and 30 kg ha

-1
of N, P2O5, and K2O, respectively. The 

topdressing was performed by applying 60 and 40 kg ha
-1

 of 
N and K2O, respectively. 
The irrigation management was based on monitoring the soil 
water tension (SWT) with the water reposition of the water 
blade of 50% of the crop’s evapotranspiration (ETc), 
calculated based on the previous year. To monitor SWT, we 
installed tensiometers at 0.15 and 0.30-m depth. Soil 
moisture was estimated by water retention regression curve 
when reaching the critical tension of 35 kPa. The water blade 
varied from 8 to 10 mm every other day. 
 
Soil sampling 
 
Soil samples were collected with an Ullhand probe, using 
volumetric rings of 0.04-m height by 0.05-m diameter, at the 
soil layers of 0.0–0.10 m, 0.10–0.20 m, and 0.20–0.30 m at 
the grid crossing points that were georeferenced, with 
regular intervals of 10 m, in three positions with a slope of 
1.8 ha. 
 
Soil physical characteristics analysis 
 
Granulometric analysis was performed by the pipette 
method, using NaOH 0.1 N as a chemical dispersant and 
agitation with a low-rotation apparatus. The WDC was 
determined as presented by Embrapa (2011). 
We determined Mi in a water tension table, with samples 
submitted to a 0.006 MPa after saturation. TP and SBD were 
obtained by following the methodology of EMBRAPA (2011), 
in which, Ma was determined by the difference of TP and Mi.  
Aggregate stability was evaluated by the method described 
by Kemper and Chepil (1965), which constitutes weighting 
two replicates of 50 g of air-dried soil that were moistened 
by capillarity for 10 minutes. These samples were 
transferred to a set of sieves in vertical oscillation under 
water for 15 minutes. After the procedure, aggregates were 
separated in the following classes: C1 (9.52–4.76 mm), C2 
(4.76–2.0 mm), C3 (2.0–1.0 mm), C4 (1.0–0.5 mm), C5 (0.5–
0.25 mm), and C6 (< 0.25 mm). The content of each sieve 
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was air dried for 24 h at 105ºC and weighted. From the 
values of aggregate dry weight, we calculated the MWD of 
soil aggregates, mean geometric diameter, and aggregated 
distribution by class of diameter. 
The soil water content was determined by the gravimetric 
method in deformed samples (EMBRAPA, 2011). In order to 
determine PR, we utilized an impact penetrometer model 
IAA/Planalsucar, with a 30º-angle cone. The transformation 
of the equipment penetration in the soil (cm per impact) 
into resistance to penetration was obtained by equation 1 
(Eq 1): 

RP =  
(Mg+mg)+ (

M

M+m
× 

Mg∗h

x
)

A
                              (1)                                       

Where; PR = Penetration resistance (kgf cm
-2

); M = piston 
mass (4 kg) (Mg = 4 kgf); m = equipment mass without piston 
(3.2 kg); h = piston drop height (40 cm); x = equipment 
penetration (cm per impact); A = cone area (1.29 cm

2
); and g 

= gravity acceleration (9.8 m s
-2

).  
 
Statistical and geostatistical analysis 
 
Soil physical attributes were analyzed by descriptive 
statistical analysis, in which values higher than average plus 
four standard deviations and the inferior number were 
discarded (Cahn et al., 1994). The number of discarded data 
was always less than 10% in each 180 data set. 
Spatial dependency was analyzed by means of 
semivariogram adjusts, based on the presumption of the 
stationary intrinsic hypothesis, which is estimated by 
equation 2 (Eq 2) (Vieira, 2000): 

γ× (h) =  
1

2 N(h)
 ∑ [Z(xi) − Z (xi + h)]²

N (h)
i=1             (2)                                       

Where; N(h) is the number of observation experimental 
pairs Z(xi) and Z (xi + h) separated by an h distance. 

The semivariogram is represented by the graphic 
(h)γ̂

 × h. 
The adjustment of the mathematical model was calculated 

to the values of (h)γ̂ . We estimated the coefficients of the 
semivariogram theoretical model, nugget effect (C0), 
plateau (C0+C1), and range (a). 
In order to analyze the degree of special dependency of the 
attributes in the study, we utilized the classification 
proposed by Cambarella et al. (1984), in which the 
semivariograms that have a nugget effect < 25% of the 
plateau are considered of strong special dependency, 
between 25% and 75% moderate, and > 75% weak. 
 
Scalded semivariogram 
 
The semivariograms were staggered and used with the 
objective to apply the same scale to all attributes. They were 
used as an information base to calculate the minimum 
number of soil samples and to determine the variability of 
soil physical attributes, using equation 3 (Eq 3) (Ceddia et al., 
2009): 

N =  
A

(a2) 10000⁄
                                    (3)                                                           

Where; N = minimum number of samples necessary to 
determine a sampling grid; A = total area in hectares; and a = 
semivariogram range in m.  
 
Cline approach 
 
Based on the coefficient of variation, we determined the 
number of subsamples necessary to compose a sample and 

to estimate the average value of variables using equation 4 
(Eq 4), described by Cline (1944): 

𝒏 =  (
𝒕∝.𝒄𝒗

𝑫
)                                 (4)                                                                     

Where; n = minimum number of samples necessary to 
determine the sampling grid; tα = Student’s t value (at 95% 
probability); CV = coefficient of variation; and D = 
percentage of variance from the mean value (5%).  
 
Conclusion 
 
Several years of irrigation promoted soil surface compaction, 
increased BD and Mi of the soil, and decreased Ma and TP. 
The scaled semivariogram demonstrated similarity among 
the attributes in all soil layers, which presented strong 
spatial dependency. The sample density showed the strong 
influence of WDC on irrigated soil attributes. A scaled 
semivariogram can be utilized as a strategy to determine the 
minimum scale of points in a sampling area. We became 
able to represent the spatial variability of soil physical 
attributes faithfully and thus assist the management of 
agricultural practices that directly affect physical parameters 
of irrigated tropical weathered soils. 
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