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Abstract 
 
Simulation models based on biological and environmental variables allow the analysis of scenarios in proposing more sustainable 
management. The objectives is to identify potential biological and environmental variables for inclusion and validation of multiple 
linear regression model for yield simulation and analyze scenarios that promote yield and satisfactory control of foliar diseases, 
with longer intervals between the last fungicide application and the grain harvest. The study was conducted in 2015, 2016, 2017, in 
Augusto Pestana, RS, Brazil. The soil is classified as Oxisol and the climate of the region as Cfa type, by the Köppen classification. 
The experimental design was randomized blocks, with three replications, in a 22 x 4 factorial, for 22 oat cultivars (10 recommended 
and 12 no longer recommended) and 4 fungicide use conditions (no application; one application 60 days after emergence (DAE); 
two applications, 60, 75 DAE; and three applications, 60, 75, 90 DAE. In 2015 and 2016, the fungicide FOLICUR® CE was used, and in 
2017 PRIMO®, at a dosage 0.75 and 0.3 liters ha

-1
, respectively. Necrotic leaf area, rainfall depth, mean minimum and maximum 

temperatures, thermal sum, and crop cycle period (days) are potential variables by the Stepwise technique in the simulation of oat 
yield, validating the use of the multiple linear regression. The condition with three fungicide applications, at 60, 75, 90 DAE, 
resulted in satisfactory foliar disease control and grain yield, while maintaining a long interval between the last fungicide 
application and the grain harvest, thus improving the safety of the product obtained.   
 
Keywords: Avena sativa; multiple linear regression; zero hunger; food security. 
Abbreviations: NLA_necrotic leaf area; R_rainfall depth; Tmin_minimum temperature; Tmean_mean temperature; Tmax_maximum 
temperature; TS_thermal sum; DAE_days after emergence; FY_ favorable year; UY_unfavorable year; IY_intermediate year; 
GY_grain yield; GYo_observed grain yield; GYs_simulated grain yield; WF_without fungicide; CF1_one fungicide application at 60 
days after emergence; CF2_two fungicide applications, at 60 and 75 days after emergence; CF3_three fungicide applications, at 60, 
75, and 90 days after emergence. 
 
Introduction 
 
White oat (Avena sativa L.) is a multipurpose species that 
stands out as human food due to the high nutritional quality 
of its grains (Marolli et al., 2017a; Silva et al., 2020). It has 
high protein quality, adequate lipid and carbohydrate 
contents, and a high proportion of dietary fiber, mainly -
glucan, which is related to reduction of cholesterol, diabetes, 
and obesity (Mantai et al., 2020; Basso et al., 2022). 
Oat crops are highly susceptible to fungal pathogens that 
cause foliar diseases that can completely compromise grain 
yield, under favorable conditions (Oliveira et al., 2014; Silva 
et al., 2015). Leaf rust (Puccinia coronata Cda. f.sd.avenae) 
and helminthosporiosis [Dreschslera avenae (Eidam) El 
Sharif] are among the most important oat foliar diseases 
(Dietz et., 2019; Pereira et al., 2020). Breeding programs 
have been developing more resistant cultivars to mitigate 
damages caused by these diseases (Silva et al., 2015; 
Nazareno et al., 2018). However, diseases are not 
satisfactorily controlled by genetic resistance due to the 
rapid evolution of pathogens (Bhardwaj et al., 2021). The 

rapid evolution of a disease is dependent on the 
susceptibility of the cultivar, production systems without 
crop rotation, rapid evolution and reproduction rate of 
fungi, and meteorological conditions favorable to the 
disease progress (Silva et al., 2015; Basso et al., 2022). 
The intensive use of fungicides for controlling these diseases 
is still the most efficient way to ensure grain yield and 
quality (May et al., 2020; Pereira et al., 2020). However, 
most oat grains are used for preparation of foods, often 
used fresh, denoting the need for a careful management to 
avoid agrochemical residues in the grains (Silva et al., 2015; 
Da Luz et al., 2017). In addition, the irresponsible use of 
fungicides can cause serious damages to the environment, 
such as contamination of soil, water, and air, and death of 
animals, mainly birds, fish, and pollinating insects (Pereira et 
al. 2020; Rani et al., 2021). These conditions reinforce the 
need for more efficient managements to ensure food 
security and environmental preservation (Coelho et al., 
2020; Basso et al., 2022). In this perspective, managements 
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that anticipate or even extend the time between the last 
application and the grain harvest can assist in reducing the 
number of applications, thus ensuring a satisfactory control 
of diseases with food security. In this context, models for 
analyzing simulated scenarios involving biological and 
environmental variables and considering the disease 
progress and grain yield are important. 
Therefore, agricultural prediction models should involve 
biological and environmental variables (De Mamann et al., 
2020; Alessi et al., 2021a). Multiple linear regressions are 
among prediction models involving biological and 
environmental variables. It enables the combination of 
controlled and uncontrolled variables in the simulations 
(Mantai et al., 2016; Alessi et al., 2021a). Increasing 
efficiency of these models depends on the choice of more 
expressive independent variables over the dependent 
variable (Prunzel et al., 2016; Alessi et al., 2021b). The 
Stepwise technique is one of the most used methods for 
selection of variables, as it iteratively selects variables that 
have the most effect on the output set, excluding possible 
redundancies (Mantai et al., 2016; Marolli et al., 2017a). 
Multiple linear regression models combined with selection 
of variables using the Stepwise technique enables to extract 
important information when searching for simulation and 
management optimization, exploring variables that 
significantly affect crop yield (Silva, et al., 2016; Trautmann 
et al., 2017). 
The objective of this work was to identify potential biological 
and environmental variables for inclusion and validation of 
multiple linear regression models for yield simulation and 
analyze scenarios that promote yield and satisfactory control 
of foliar diseases, with longer intervals between the last 
fungicide application and the grain harvest. 
 
Results and discussion 
 
Agricultural year conditions and fungicide use in the 
expression of grain yield 
The air temperatures were higher in 2017 (Table 1), 
compared to those in 2015 and 2016, with a strong 
instability in the oat vegetative stage. The highest rainfall 
depths occurred during the grain filling stage (Fig 1A). The 
low soil moisture at the nitrogen application time, combined 
with the high air temperature during the cycle (Fig 1A.), was 
decisive for compromising the expected yield of 4000 kg ha

-

1
. The overall mean grain yield under these conditions was 

1861 kg ha
-1

 (Table 1), regardless of the fungicide application 
condition, making 2017 an unfavorable year (UY) for oat 
crops. 
The lowest air temperatures were observed in 2016 (Table 
1), with a stability throughout the crop cycle. Although the 
rainfall depths were lower than the historical mean, they 
were adequately distributed (Fig 1B); and although more 
expressive during the grain filling stage, the temperatures 
were mild, which is a condition that hindered the 
development of foliar diseases. Nitrogen was applied under 
adequate conditions of soil moisture due to rainfall in 
previous days. The overall mean yield was close to that 
expected (4000 kg ha

-1
), making 2016 a favorable year (FY) 

for oat crops. 
Medium to high temperatures were observed in 2015 (Table 
1), with a greater stability than that in 2017. The rainfall 
depth was similar to the historical mean of the last 25 years, 
however, with a high rainfall volume during the crop cycle. 
Regarding the soil moisture when nitrogen was applied, a 
rainfall occurred soon before the application of the nutrient. 

Medium to high air temperatures and high rainfall volumes 
throughout the cycle are favorable environmental conditions 
for the development of foliar diseases. The yield obtained 
was lower than that expected, although the nitrogen 
application conditions were favorable (Fig 1C). Considering 
the obtained yield, 2015 was an intermediate year (IY) for 
oat crops. 
 Meteorological conditions directly affect oat grain 
yields (Marolli et al., 2017b; Rother et al., 2019). Considering 
winter crops, the conditions in the agricultural year are 
defined by the amplitude and stability of air temperature 
and intensity and distribution of rainfall throughout the crop 
cycle (Cordeiro et al., 2015; Arenhardt et al., 2015). Mild 
temperatures are desirable at the beginning of the oat cycle, 
with no occurrence of very low temperatures or frost 
formation at the crop flowering stage (Leonard and 
Martinelli, 2005). Moreover, high temperatures can 
accelerate the cycle, reducing the quality of production 
components, and can increase respiration rates, reducing 
the photosynthesis efficiency, negatively affecting grain yield 
(Rodrigues et al., 2011; Castro et al., 2012). Water stress is 
one of the main environmental factors that directly affect 
crop yield (Santos et al., 2016; Scremin et al., 2017). High 
rainfall depths can favor the occurrence of diseases and loss 
of grain quality (Klein et al., 2019). The lack of rains induces 
stomatal closure in plants, resulting in low transpiration and 
photosynthesis rates, compromising the crop production 
(Souza et al., 2019; De Mamann et al., 2019). Favorable 
conditions for oat crops are those with mild temperatures 
and radiation to favor tillering and grain filling, without 
occurrence of high rainfall volume and intensity, but with a 
sufficient rainfall quantity to favor an adequate water supply 
and soil moisture (Mantai et al., 2015; Marolli et al., 2018). 
 
Descriptive statistics of real data obtained under 
experimental conditions 
Table 2 shows the descriptive statistics of minimum, mean, 
and maximum necrotic leaf areas, meteorological indicators, 
and grain yield for all cultivars and crop conditions 
(unfavorable, favorable, and intermediate). The yield and 
necrotic leaf area were obtained considering different 
fungicide use conditions, but under similar meteorological 
conditions. The most significant evolution of necrotic leaf 
area at 90 and 105 DAE showed significant reductions along 
the fungicide applications. These results are consistent with 
the yield obtained, as a greater control of leaf necrosis is 
obtained when increasing the number of fungicide 
applications. The conditions with two and three applications 
tended to approximate yield values, denoting that the use of 
fungicide after 90 days can provide satisfactory control, 
maintaining a long interval between application and harvest 
for a greater food security.  
 
Potential variables for composition and simulation via 
multiple linear regressions 
Table 3 shows the mean squares for identifying potential 
variables by the partial regression model using the Stepwise 
technique, serving as a reference for the selection of 
variables for developing multiple linear regression models. 
All meteorological variables, days after emergence, and 
necrotic leaf areas were significant, regardless of the 
analyzed cultivar, denoting perennializations of simulation 
quality by the joint use of these variables. 
According to Leal et al. (2015), identifying the main 
components is essential for an efficient estimate of grain 
yield.  The stepwise  method selects potential variables for  
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Table 1. Temperatures and rainfall depths during the oat crop cycle and oat grain yield in 2015, 2016, and 2017. 

Month Temperature °C   Rainfall (mm)   Fungicide / GY (kg ha
-1

)  ̅  Class 

Min Max Mean   25years
*
 Occurred   WF CF1 CF2 CF3 

2017 

May 14.0 22.4 18.2   149.7 434.3              

June 10.7 21.8 16.2   162.5 146.3              

July 8.3 24.4 16.3   135.1 10.75   1149 1869 2116 2310 1861C UY 

August 11.4 23.7 17.5   138.2 117.8         

September 15.3 27.0 21.2   167.4 161.5            

October 13.7 26.8 20.2   156.5 304.0              

Total - - -   909.4 1174.6              

2016 

May 11.0 20.7 15.9   149.7 55.8              

June 4.7 19.3 12.0   162.5 9.8              

July 8.5 21.5 15.0   135.1 80.5   3200 3814 4072 4331 3854A FY 

August 9.4 22.5 15.9   138.2 160.0         

September 8.4 22.8 15.6   167.4 56.3           

October 12.3 24.8 18.5   156.5 325.8              

Total - - -   909.4 688.2              

2015 

May 13.1 22.7 17.9   149.7 181.3              

June 9.5 21.4 15.5   162.5 228.3              

July 10.5 20.5 15.5   135.1 211.5   1229 2086 3055 3406 2444B  IY  

August 13.3 24.8 19.0   138.2 86.8         

September 12.7 20.9 16.8   167.4 127.3           

October 14.7 25.2 19.9   156.5 161.8              

Total - - -   909.4 997.0              
GY: grain yield; FY: favorable year for cultivation; IY: intermediate year for cultivation; UY: unfavorable year for cultivation; WF: without fungicide; CF1: one fungicide application at 60 days after 
emergence (DAE); CF2: two fungicide applications, at 60 and 75 DAE; CF3: three fungicide applications, at 60, 75, 90 DAE; Min: mean minimum temperature; Max: mean maximum temperature; *: 
historical rainfall depth from May to October of the last 25 years; means followed by the same letters in the columns are not statistically different from each other by the Skott-Knott model at 5% 
error probability. 

 

Fig 1. Rainfall and daily minimum and maximum temperatures in the experiment area during the oat crop cycle, in 2015, 2016, and 
2017. 
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Table 3. Mean square values for identifying potential variables using the Stepwise technique for developing multiple regression 
models to estimate grain yield. 
Cultivar Mean Square / Stepwise Model 

R Tmin Tmean Tmax TS Cycle NLA 

(mm) (°C) (°C) (°C) (°C) (DAE) (%) 

Joint Analysis [2017(UY), 2016(FY), 2015(IY)] 

URS Altiva 615214* 10618239* 1212657* 21063160* 8022634* 62137929* 16255910* 

URS Brava 518611* 5718415* 2879882* 5341338* 19830963* 16974347* 28078610* 

URS Guará 170448* 3951223* 1894435* 3458150* 13587363* 10779019* 21365684* 

URS Estampa 326142* 1468615* 11944502* 156548* 4121875* 2958305* 61199020* 

URS Corona 4623011* 14160970* 1226841* 1817263* 21019788* 6018703* 21140882* 

URS Torena 393321* 3228255* 1570927* 2980820* 12223989* 9975016* 18146267* 

URS Charrua 194329* 4285030* 2298389* 4014042* 11577929* 9153214* 17380260* 

URS Guria 1151625* 9224358* 534895* 21380706* 7858480* 1285491* 10759833* 

URS Tarimba 267326* 4961290* 2322930* 4213891* 14823227* 11926447* 17741658* 

URS Taura 278008* 46692217* 1832541* 3512581* 9354821* 16843291* 10399869* 

URS 21 379356* 16520831* 431680* 14374486* 9254332* 7562819* 13708430* 

FAEM 007 507495* 122152541* 264832* 5611354* 31187111* 3546891* 15926205* 

FAEM 006 468412* 31885036* 1025504* 19046428* 16939321* 13113933* 35219709* 

FAEM 5 Chiarasul 107114* 32313969* 223664* 2422963* 22374877* 18373660* 43633799* 

FAEM 4 Carlasul 1588189* 33781370* 6248672* 1244131* 4081213* 14080120* 11406144* 

Brisasul 989468* 10168594* 6059842* 9494986* 23097111* 20159263* 28482102* 

Barbarasul 829222* 8827394* 2186611* 4408616* 22090905* 17240994* 41507214* 

URS Fapa Slava 523531* 9772140* 17582816* 135462* 13311204* 10735993* 25837768* 

IPR Afrodite 46845* 8211889* 4150134* 6335573* 22265600* 17162853* 37296506* 

UPFPS Farroupilha 134907* 4718849* 2254348* 3968430* 17792499* 15138901* 25745628* 

UPFA Ouro 545412* 9421208* 5717775* 9924173* 7364193* 6449470* 9617580* 

UPFA Gaudéria 2540867* 2313156* 51297614* 795237* 7742123* 4821461* 1825859* 

Geral 1774526* 75417408* 36197508* 60089140* 307038323* 261383674* 479545367* 
R: accumulated rainfall; Tmin: minimum temperature; Tmax: maximum temperature; Tmean: mean temperature; TS: thermal sum; NLA: necrotic leaf area; DAE: days after 
emergence; UY: unfavorable year for cultivation; IY: intermediate year of cultivation; FY: favorable year for cultivation; *: significant by F-test at 5% probability of error. 
 

Table 4. Multiple linear regression equations and estimation of oat grain yield. 
Cultivars GY=b0±b1NLA ±b2R±b3Tmin±b4Tmean±b5Tmax ±b6TS ±b7DAE GYO     GYE     

(kg ha-1) (kg ha-1) 

Joint Analysis [2017(AD). 2016(AF). 2015(AI)] 

URS Altiva GY=34581-30NLA+0.65R-2699Tmin+3618Tmean-2908Tmax+17.49TS-187DAE 2909 2954 

URS Brava GY=45134-46NLA+1.62R-4210Tmin+5143Tmean-3839Tmax+29.23TS-326DAE 2744 2876 

URS Guará GY=40176-29NLA-0.88R-4312Tmin+6140Tmean-4275Tmax+22.12TS-234DAE 2813 2944 

URS ETSampa GY=36453-26NLA-0.76R-4347Tmin+6749Tmean-4536Tmax+18.33TS-191DAE 2489 2652 

URS Corona GY=49344-27NLA-3.21R-6074Tmin+9274Tmean-6182Tmax+26.05TS-264DAE 2975 3176 

URS Torena GY=37112-30NLA-0.42R-3733Tmin+5214Tmean-3734Tmax+21.63TS-231DAE 2576 2712 

URS Charrua GY=38495-31NLA+0.1R-4141Tmin+5862Tmean-4081Tmax+20.65TS-219DAE 2757 2868 

URS Guria GY=30413-32NLA+0.98R-1987Tmin+2224Tmean-2025Tmax+19.57TS-219DAE 2660 2768 

URS Tarimba GY=45804-33NLA-1.57R-5099Tmin+7365Tmean-5089Tmax+25.89TS-270DAE 2575 2774 

URS Taura GY=35337-27NLA-0.86R-4907Tmin+7416Tmean-4725Tmax+20.41TS-215DAE 2447 2622 

URS 21 GY=35295-25NLA-0.87R-2743Tmin+3403Tmean-2776Tmax+20.33TS-217DAE 2606 2660 

FAEM 007 GY=51555-36NLA-3.1R-5391Tmin+7263Tmean-5149Tmax+32.91TS-345DAE 2839 2987 

FAEM 006 GY=40005-32NLA-1.17R-3826Tmin+5075Tmean-3728Tmax+24.08TS-252DAE 2847 2988 

FAEM 5 
Chiarasul 

GY=42028-37NLA-0.83R-2665Tmin+2679Tmean-2612Tmax+27.76TS-299DAE 2646 2734 

FAEM 4  
Carlasul 

GY=35821-33NLA+0.29R-4375Tmin+6150Tmean-4043Tmax+22.39TS-244DAE 3065 3251 

Brisasul GY=53267-58NLA+2.33R-6092Tmin+8173Tmean-5569Tmax+35.58TS-400DAE 2811 2946 

Barbarasul GY=50401-35NLA-1.91R-5201Tmin+7589Tmean-5411Tmax+28.05TS-293DAE 2780 2955 

URS Fapa Slava GY=32891-44NLA+1.51R-2635Tmin+2855Tmean-2355Tmax+23.66TS-257DAE 2423 2505 

IPR Afrodite GY=48081-31NLA-1.89R-6510Tmin+9701Tmean-6238Tmax+26.68TS-280DAE 2908 3019 

UPFPS 
Farroupilha 

GY=39083-39NLA+0.82R-3981Tmin+4999Tmean-3548Tmax+25.86TS-286DAE 2916 3024 

UPFA Ouro GY=30449-29NLA+0.84R-2381Tmin+2449Tmean-2020Tmax+20.62TS-232DAE 2531 2641 

UPFA  
Gaudéria 

GY=37014-30NLA-0.45R-3313Tmin+4100Tmean-3099Tmax+24.17TS-268DAE 2521 2586 

Geral GY=39499-31NLA-0.61R-4065Tmin+5613Tmean-3979Tmax+23.22TS-248DAE 2720 2879 
GY: grain yield (kg ha-1); NLA: necrotic leaf area (%); R: accumulated rainfall; Tmin: minimum temperature (ºC); Tmax: maximum temperature (ºC); Tmean: mean temperature (°C); TS: thermal sum (ºC); 
DAE: days after emergence; GYO: observed grain yield; GYE: grain yield estimated by multiple regression equation; UY: unfavorable year for cultivation; IY: intermediate year of cultivation; FY: 
favorable year for cultivation; b1, b2, b3, b4, b5, b6 and b7: regression coefficients. 
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Table 5. Necrotic leaf area data of oat cultivars and meteorological variables. 
Cultivars Fungicide/NLA   Meteorological Data DAE 

WF CF1 CF2 CF3   R Tmin Tmean Tmax TS 

URS Altiva 58 33 22 20  457 10.7 16.9 23.1 1355 105 

URS Brava 53 30 24 21  457 10.7 16.9 23.1 1355 105 

URS Guará 60 32 25 20  457 10.7 16.9 23.1 1355 105 

URS Estampa 47 33 31 22  457 10.7 16.9 23.1 1355 105 

URS Corona 69 51 23 27  457 10.7 16.9 23.1 1355 105 

URS Torena 57 37 28 24  457 10.7 16.9 23.1 1355 105 

URS Charrua 60 30 24 20  457 10.7 16.9 23.1 1355 105 

URS Guria 56 31 27 22  457 10.7 16.9 23.1 1355 105 

URS Tarimba 58 36 29 27  457 10.7 16.9 23.1 1355 105 

URS Taura 67 32 24 22  457 10.7 16.9 23.1 1355 105 

URS 21 60 38 28 24  457 10.7 16.9 23.1 1355 105 

FAEM 007 66 49 27 30  457 10.7 16.9 23.1 1355 105 

FAEM 006 72 47 26 21  457 10.7 16.9 23.1 1355 105 

FAEM 5 Chiarasul 66 44 26 27  457 10.7 16.9 23.1 1355 105 

FAEM 4 Carlasul 59 33 21 20  457 10.7 16.9 23.1 1355 105 

Brisasul 47 34 24 22  457 10.7 16.9 23.1 1355 105 

Barbarasul 63 51 25 20  457 10.7 16.9 23.1 1355 105 

URS Fapa Slava 60 42 32 26  457 10.7 16.9 23.1 1355 105 

IPR Afrodite 66 33 21 16  457 10.7 16.9 23.1 1355 105 

UPFPS Farroupilha 56 34 24 20  457 10.7 16.9 23.1 1355 105 

UPFA Ouro 46 30 27 22  457 10.7 16.9 23.1 1355 105 

UPFA Gaudéria 44 31 29 26   457 10.7 16.9 23.1 1355 105 
NLA: necrotic leaf area (%); WF: without fungicide; CF1: one fungicide application at 60 days after emergence (DAE); CF2: two fungicide applications, at 60 and 75 DAE; 
CF3: three fungicide applications, at 60, 75, and 90 DAE; R: accumulated rainfall (mm); Tmin: minimum temperature (°C); Tmax: maximum temperature (°C); Tmean: mean 
temperature (°C); TS: thermal sum (°C). 

 
Table 6. Simulation of oat yield by the general multiple linear regression model. 

Cultivares GY=39499-31NLA-0.61R-4065Tmin+5613Tmean-3979Tmax+23.22TS-248DAE 

WFS WFO   CF1S CF1O   CF2S CF2O   CF3S CF3O 

URS Altiva 2295 2105  3070 2655  3411 3273  3473 3604 

URS Brava 2450 1850  3163 2643  3349 3084  3442 3399 

URS Guará 2233 2059  3101 2629  3318 3135  3473 3430 

URS Estampa 2636 1870  3070 2477  3132 2684  3411 2924 

URS Corona 1954 1888  2512 2978  3380 3410  3256 3622 

URS Torena 2326 1689  2946 2483  3225 2962  3349 3172 

URS Charrua 2233 2061  3163 2770  3349 3097  3473 3102 

URS Guria 2357 1803  3132 2464  3256 2991  3411 3282 

URS Tarimba 2295 1871  2977 2295  3194 2821  3256 3313 

URS Taura 2016 1387  3101 2347  3349 2757  3411 3296 

URS 21 2233 1963  2915 2561  3225 2894  3349 3005 

FAEM 007 2047 1889  2574 2609  3256 3410  3163 3449 

FAEM 006 1861 1850  2636 2696  3287 3248  3442 3595 

FAEM 5 Chiarasul 2047 1714  2729 2332  3287 3103  3256 3433 

FAEM 4 Carlasul 2264 2258  3070 2920  3442 3467  3473 3617 

Brisasul 2636 1819  3039 2583  3349 3248  3411 3593 

Barbarasul 2140 1753  2512 2586  3318 3278  3473 3504 

URS Fapa Slava 2233 1408  2791 2328  3101 2891  3287 3065 

IPR Afrodite 2047 1954  3070 2671  3442 3298  3597 3710 

UPFPS Farroupilha 2357 2045  3039 2892  3349 3254  3473 3474 

UPFA Ouro 2667 1786  3163 2440  3256 2772  3411 3127 

UPFA Gaudéria 2729 1887   3132 2522   3194 2707   3287 2970 
GY: grain yield (kg ha-1); NLA: necrotic leaf area (%); R: accumulated rainfall (mm); Tmin: minimum temperature (ºC); Tmax: maximum temperature (ºC); Tmean: mean temperature (°C); TS: thermal sum 
(ºC); DAE: days after emergence; WFS: without simulated fungicide application (kg ha-1); WFO: no observed fungicide application (kg ha-1); CF1S: one simulated fungicide application (kg ha-1); CF1O: 
with one observed fungicide application (kg ha-1); CF2S: two simulated fungicide applications (kg ha-1); CF2O: two observed fungicide applications (kg ha-1); CF3S: with three simulated fungicide 
applications (kg ha-1); CF3O: with three observed fungicide applications (kg ha-1). 
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simulation models. In this method, a variable is considered 
explanatory due to the increase in the coefficient of 
determination resulting from its inclusion in the multiple 
linear regression model (Mantai et al., 2016). The Stepwise 
technique was used by Trautmann et al. (2017) to define 
variables for a multiple regression model for simulating 
wheat biomass. Mantai et al. (2016) used the model to 
define variables for developing a simulation model for 
estimating oat grain yield by multiple linear regression; by 
Marolli et al. (2017a) to select panicle variables to compose 
a multiple linear regression model for simulating grain yield 
of oat crops grown under different conditions of use of 
growth regulator and nitrogen fertilization; and by Alessi et 
al. (2021a) to define potential variables for developing a 
simulation model for estimating wheat grain yield. 
Table 4 shows the multiple linear regression models 
developed for each oat cultivar tested, considering the joint 
analysis of unfavorable (UY), favorable (FY), and 
intermediate (IY) years, to ensure efficient simulation 
processes, regardless of the agricultural year conditions. In 
this perspective, the obtained and simulated data found for 
this cultivar, as well as for the other cultivars, presented 
great similarity. The general model obtained denoted the 
possibility of simulating grain yield, regardless of information 
on the cultivar. Table 5 presents the meteorological data and 
the necrotic leaf area of each oat cultivar, under the 
fungicide use conditions, in the evaluation at 105 DAE. These 
values were used to simulate the oat grain yield using the 
general model of multiple linear regression (Table 4). 
The simulation by the general grain yield model showed 
similarity between simulated and observed values for all 
cultivars (Table 6). Therefore, proper identification of 
variables and use of multiple regression model, considering 
meteorological components, necrotic leaf area, and 
development cycle (DAE), result in satisfactory information 
for estimating grain yield and predict scenarios, with high 
similarity between simulated and observed values. 
Conditions that enable the generation of elements for 
formulation of a more qualified management of fungicides 
can be based on this database structure. Thus, increasing the 
number of years of study can generate elements to qualify 
the parameters of the model, expanding its range of action 
to a greater number of scenarios for simulation. 
The observed and simulated values for the condition with 
three fungicide applications were higher than those in the 
other conditions, denoting that this fungicide management 
results in great productive potential than the other 
conditions, in addition to have a long interval before harvest. 
In this way, the management with three fungicide 
application, at 60, 75, and 90 DAE, provides disease control 
and a satisfactory yield, with a lower risk of pesticide 
residues in the oat grains, due to the long interval between 
the last application and the grain harvest, or even before the 
grain filling stage; this condition does not allow for 
mobilization of agrochemical residues to oat grains. 
The use of multiple linear regression models to estimate 
yield of agricultural crops provides important information 
about factors that act throughout the crop cycle (Silva et al., 
2016). In this context, the use of models developed by 
multiple linear regression enables the optimization of 
agricultural managements, making systems more 
productive, with predictable results according to the 
conditions presented (Pereira et al., 2013). The multiple 
linear regression method was also used by Prabhu et al. 
(2003) to develop simulation models for predicting rice yield, 

considering the severity of rice blast (brusone) in leaves and 
panicles; and by Steinmetz et al., (2013) to develop a 
simulation and prediction model for rice grain production, 
considering global solar radiation and minimum air 
temperature. According to Marolli et al. (2017a), multiple 
linear regression equations are efficient for simulating oat 
grain yield under the conditions of use of growth regulators, 
regardless of the N fertilizer rate used. In addition, 
(Trautmann et al., 2017) reported that multiple linear 
regression models are efficient for simulating wheat biomass 
yield for silage during the crop cycle in rotation systems; and 
Alessi et al. (2021a) used multiple linear regression to 
develop a wheat yield simulation model involving nitrogen 
management and ear components.  
 
Materials and methods 
 
Study area and experimental design 
The work was carried out in 2015, 2016, and 2017, in 
Augusto Pestana, RS, Brazil (28°26'30''S and 54°00'58''W). 
The soil of the experimental area was classified as a Typic 
Hapludox (Latossolo Vermelho distroferrico tipico; Santos et 
al., 2018). The climate of the region is humid subtropical, 
according to the Köppen classification. The soil was analyzed 
before sowing and presented the following chemical 
characteristics: pH = 6.3; P = 34.1 mg dm

-3
; K = 198 mg dm

-3
; 

organic matter = 3.2%; Al= 0 cmolc dm
-3

; Ca = 6.5 cmolc dm
-

3
; and Mg = 2.5 cmolc dm

-3
. 

 The experimental plot consisted of five 5-meter rows 
spaced 0.2 m apart, resulting in an experimental unit of 5 
m

2
. The population density used was 400 viable seeds m

-2
, 

according to the technical recommendation. Nitrogen was 
applied at sowing, using 10 kg ha

-1
, and as topdressing at the 

fourth expanded leaf stage, considering an expected grain 
yield of 4 Mg ha

-1
. Based on the soil P and K contents, 45 kg 

ha
-1

 of P2O5 and 30 kg ha
-1

 of K2O were applied at sowing. 
A randomized block experimental design with three 
replications was used, in a 22×4 factorial arrangement 
consisted of 22 oat cultivars and 4 fungicide use conditions. 
The analyzed oat cultivars included those currently 
recommended and those no longer recommended for crops 
in Brazil, namely: URS Altiva, URS Brava, URS Guará, URS 
Estampa, URS Corona, URS Torena, URS Charrua, URS Guria, 
URS Tarimba, URS Taura, URS 21, URS Fapa Slava, FAEM 007, 
FAEM 006, FAEM 5 Chiarasul, FAEM 4 Carlasul, Brisasul, 
Barbarasul, IPR Aphrodite, UPFPS Farroupilha, UPFA Ouro, 
and UPFA Gaudéria. The fungicide use conditions were: 
control (without application); one application at 60 days 
after emergence (DAE); two applications, at 60 and 75 DAE; 
and three applications, at 60, 75, and 90 DAE. The fungicide 
use conditions were proposed for analyzing the intervals 
between the last fungicide application and the harvest, 
considering protection periods of 15 to 20 days after 
application, as indicated in the product label. The last 
application (90 DAE) was chosen to ensure a considerable 
interval between the fungicide application and the grain 
maturity (around 30 days), and the absence of application in 
the grain filling stage. The fungicides used to control foliar 
diseases were Folicur

®
 CE in 2015 and 2016 and PRIMO

®
 in 

2017 at the rate of 0.75 and 0.3 L ha
-1

, respectively. The 3 
central rows of each plot were considered for estimating 
grain yield; they were manually harvested when the grain 
moisture was approximately 15%. The plants were threshed 
using a stationary harvester and taken to the laboratory for 
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correcting grain moisture to 13% and determining grain 
yield, which was converted to kg ha

-1
. 

 
Variables analyzed 
The development of the grain yield simulation model for the 
oat cultivars was carried out considering the following 
variables: necrotic leaf area, rainfall depth (R), minimum 
temperature (Tmin), mean temperature (Tmean), maximum 
temperature (Tmax), thermal sum (TS), and days after 
emergence (DAE). Three plants were randomly collected 
from each plot for determining necrotic leaf area. Plants 
were collected from all plots at 60, 75, 90, and 105 DAE. The 
three upper leaves of each plant were removed to evaluate 
leaf area; the leaves were scanned using a leaf area reader 
and the WinDIAS software (Copyright 2012, Delta-T Devices 
Limited), and the necrotic area over the total leaf area was 
determined. The variables R, Tmin, Tmean, and Tmax during the 
cycle were obtained from a total automatic station installed 
at 500 meters from the experiment area. 
The thermal sum was obtained by the equation: 

    ∑(
         

 
)    

 

   

 
 
 

where: 
 n = number of days from emergence to harvest; 
TB = basal temperature; the base temperature of oats used 
in the study was 4 °C (Pedro Júnior et al., 2004). 
 
Statistical analysis and multiple linear regression 
The Stepwise technique was used for defining potential 
variables to compose the multiple linear regression models. 
This technique enables to select variables with greater 
explanatory capacity, resulting in a simpler model with an 
efficient simulation (Marolli et al., 2017a; Alessi et al., 
2021a). The addition and removal of variables were carried 
out using partial F statistics, according to the model: 

    
               

   (     )
 

 
 

where: 
    = sum of squares of the regression; 

   (     ) = mean square of the error that contains the 

variables    and   .  

 
The variables selected by the Stepwise technique were used 
to compose the multiple linear regression models for the 
simulation of oat grain yield. This equation is composed of 
two or more variables for generating an equation, as follows 
(Cruz, 2006): 

 
 
 

                              

where:  
   = the p-th observed variable; 

   = the coefficient associated with the p-th variable; 

     ̂                   is the error.  

This equation can be described as matrix: 
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]  

These matrices were used to obtain the regression 
coefficients: 

  ̂              

and the variance of the coefficients was obtained by the 
covariance matrix of the vector of the regression 
coefficients: 

   ̂ ( ̂)          ̂   

  ̂  
(    ̂)

 
     ̂ 

     
  

where:  
  = number of equations; 
  = number of parameters.  
The hypothesis test was checked,                   , 
and expressed by: 

 
  

 ̂    

√ ̂   ̂ 

 
 

The analyses were carried out using the GENES computer 
program (Cruz, 2013). 
 
Conclusion 
 
Necrotic leaf area, rainfall depth, minimum, mean, and 
maximum temperatures, thermal sum, and days of crop 
cycle are potential variables to be included in oat yield 
simulation models. The use of the multiple linear regression 
technique with these variables allows to obtain efficient 
models for grain yield simulations. 
The condition with three fungicide applications, at 60, 75, 
and 90 days after emergence, results in satisfactory foliar 
disease control and grain yield, maintaining a long interval 
between the last fungicide application and the grain harvest, 
thus improving the safety of the product obtained. 
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