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Abstract 
 
In agricultural soils with low cation exchange capacity, it is essential to analyze the bivariate spatial correlation of soybean 
productivity and organic matter with the soil chemical attributes. Using bivariate spatial correlation makes it possible to identify 
patterns and behaviors that suggest a spatial association between two soil attributes, thus enabling better soil management and 
more efficient use of resources. The main objective of this study was to analyze bivariate spatial correlation considering variables 
with different spatial dependence structures. The bivariate Lee index was also calculated for this purpose. To model and describe 
the spatial pattern of two spatially correlated variables, the Bivariate Gaussian Common Component Model was used. In addition to 
calculating the bivariate spatial correlation of soil chemical attributes with soybean productivity and organic matter, the Lee index 
was also calculated for pairs of simulated variables with different weight matrices and geographic distance functions. It was 
observed that the greater the common practical range, the higher the Lee index value, indicating a higher bivariate spatial 
correlation. Furthermore, shorter distances between neighboring point pairs caused higher Lee index values. The distance function 
to calculate the distance between the point pairs was more relevant than the weight matrix in estimating the spatial dependence 
radius and the Lee index value. Soybean productivity showed a direct spatial correlation with the sum of bases, as well as with the 
calcium and magnesium contents. Organic matter had a direct spatial correlation with the sum of bases and an inverse one with the 
phosphorus content. 
 
Keywords: BGCCM; correlogram; cross-semivariogram; geostatistics; Lee's index. 
Abbreviations: BGCCM_Bivariate Gaussian Common Component Model; Ca_calcium; CEC_cation exchange capacity; ED_Euclidean 
distance; IED_inverse of the Euclidean distance; Mg_magnesium; OM_organic matter; P_phosphorus; Prod_soybean productivity; 
SB_ sum of bases. 
 
Introduction  
 
The current challenge faced by the agricultural sector is to 
maintain an increasing pace of production growth, 
preferably without expanding the planted area, which 
implies a rise in productivity. One of the possibilities for 
increasing agricultural productivity is using technological 
advances in order to improve knowledge on the nutritional 
requirements of each crop, providing proper use of inputs in 
the agricultural property (Deiss et al., 2020). 
A number of studies show the importance of investigating 
the existence of a relationship between the amount of soil 
nutrients and soybean productivity, aiming to establish 
better management of the production of this agricultural 
commodity (Malvezi et al., 2019; Deus et al., 2020). This is 
because excess or lack of macro- and micro-nutrients in the 
soil can alter the growth and development phases of the 
plant, thus affecting the grains and, consequently, soybean 
productivity (Mengel and Kirkby, 2001; Malavolta, 2006; 
Barbosa et al., 2016). In agricultural soils with low cation 
exchange capacity (CEC), organic matter plays a relevant role 
since, in adequate amounts, it improves the physical and 
chemical conditions of the soil, in addition to assisting in 
availability of nutrients to the plants, contributing to 

increased fertility (Cunha et al., 2015; Siqueira-Neto et al., 
2021). 
Thus, it becomes indispensable to evaluate soybean 
productivity and organic matter in relation to the soil 
chemical attributes, using spatial statistics that 
simultaneously considers the information related to the 
value and geographical location of the variables. Using 
bivariate spatial correlation, it is possible to identify patterns 
and behaviors that suggest a spatial association between 
two soil attributes, thus enabling decision-making 
(Cima et al., 2018). 
Among the studies published in the literature that use 
bivariate spatial correlation, the use of two main expressions 
is observed (Matkan et al., 2013; Cima et al., 2018). One of 
them is described by Lee (2001) and by Anselin et al. (2002) 
in a very similar way, while the other is presented by 
Almeida (2013). In Almeida's proposal (2013), only the 
variance of one of the variables is considered in the 
denominator of the ratio that expresses this measure, so 
that one attribute must be a covariate of the other. Thus, 
changing the order in which the variables are selected 
directly influences the value of the bivariate spatial 
correlation. The other proposal, obtained by Lee (2001) and 
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by Anselin et al. (2002), uses the variance of both variables, 
so that the order in which the attributes are taken does not 
affect the value of the spatial correlation between them. 
However, when compared to the proposals by 
Anselin et al. (2002) and Almeida (2013), which are called 
bivariate Moran index, the methodology developed by 
Lee (2001) is little explored in the literature. Performing a 
systematic mapping of the literature in the main databases 
(ScienceDirect, Scopus, Web of Science, and Wiley) over 
more than a decade and excluding duplicates, a total of 
229 scientific papers were obtained that used the bivariate 
Moran index, against only 25 that employed the Lee index. 
Only one study was found with the Lee index in the 
agricultural context (Gaso et al., 2021), which only used this 
metric to validate a soybean yield prediction model. Thus, it 
was not an exploratory study on such index. 
Therefore, the objectives of this paper were as follows: a) to 
analyze tests considering pairs of simulated variables with 
different values for the common practical range and to 
explore the Lee index to calculate bivariate spatial 
correlation; b) to calculate the Lee index exploring different 
spatial weighting matrices and metrics for calculation of the 
distance between point pairs; c) to calculate the bivariate 
spatial correlation using the Lee index for different attribute 
pairs: organic matter (OM) and phosphorus (P), OM and sum 
of bases (SB), soybean productivity (Prod) and calcium (Ca), 
Prod and magnesium (Mg), and Prod and SB. For data 
adjustment, the Bivariate Gaussian Common Component 
Model (BGCCM) and the cross-semivariogram were used, 
which their results had compared. 
 
Results 
 
Simulated data using weight matrix W and the Euclidean 
distance function 
The BGCCM spatial model presented the highest estimated 
mean values for the common practical range (   , as well as 
the smallest dispersion (Standard Deviation-SD) of the 
estimated values of this parameter, when compared to the 
estimates obtained for the cross-semivariogram ( ) 
(Table 1). It was observed that, as the common practical 
range simulated by the exponential model (  =3  ) 
increased (T1: 375, T2: 525, and T3: 825 m), the mean values 
of the practical range estimated by the cross-
semivariogram ( ) and by BGCCM (  ) also increased and 
were very close to the simulated practical ranges (Table 1), 
indicating that both estimates for the spatial dependence 
radius were satisfactory. It was also verified that, in the last 
test (T3), the mean values estimated for the practical ranges 
of the cross-semivariogram and the bivariate model were 
very similar to the cutoff point of the simulated 
area (875 m), given the purpose of this test. 
For the nine pairs of simulated variables, considering all 
tests, the Lee index values varied between 0.19 and 0.23 
(  ; Figure 1S-a), between 0.26 and 0.33 (  ; Figure 1S-a,b), 
and between 0.37and 0.46 (T3; Figure 1S-c). Thus, there was 
a positive bivariate spatial correlation in neighboring regions 
(Lee, 2001). In addition to that, as the simulated ranges 
increased, the values on which the Lee index ranged also 
increased. 
For T1 and T2, the spatial dependence radius varied 
between 305 m and 380 m (Figure 1S-a) and between 505 m 
and 780 m (Figure 1S-b), approaching the mean values 
estimated for the practical ranges of the cross-
semivariogram (375.56 m and 510.86 m; Table 1) and of the 

bivariate model (385.41 m and 539.49 m; Table 1) in these 
tests. For T3, the spatial dependence radius was from 
1,105 m (Figure 1S-c), therefore being higher than the cutoff 
point of the simulated area. Consequently, there was 
overestimation in the spatial dependence radiuses observed 
in the correlograms, in relation to the estimated mean 
values for the practical ranges of the cross-semivariogram 
and of the bivariate model (Table 1). 
 
Lee's index in data simulated with different spatial 
weighting matrices and distance metrics 
The correlograms were statistically significant for all the 
pairs of simulated variables (Figure 1S-d and Figure 2S), 
regardless of the spatial weighting matrix and of the metric 
used. There was a positive spatial bivariate correlation in 
neighboring locations for every pair of simulated variables. 
Considering spatial weighting matrix   and the IED, the nine 
pairs of variables presented simulated Lee index values 
varying between 0.20 and 0.25, as well as a spatial 
dependence radius between 330 m and 505 m (Figure 1S-d). 
By comparing these results with test T1 (Table 1; Figure 1S-
a), in which the simulations were carried out changing only 
the metric (ED), it was verified that the values of the spatial 
dependence radius were smaller using the ED (from 305 m 
to 380 m), although the Lee index values were similar (from 
0.19 to 0.23). 
Using weight matrix   and the ED, the Lee index values 
varied from 0.13 to 0.23, with a spatial dependence radius 
between 230 m and 430 m (Figure 2S-a). When compared to 
T1, in which the altered weight matrix (for  ), a similarity 
was verified in the maximum value obtained for the spatial 
dependence radius (380 m) (Figure 1S-a and Figure 2S-a). 
However, most of the Lee index maximum values were 
lower and with greater amplitude in the range of their 
values. 
Finally, with   and the IED, Lee index values between 0.18 
and 0.27 were obtained, as well as a spatial dependence 
radius between 255 m and 530 m (Figure 2S-b). Comparing 
weight matrices   and   and maintaining the IED as the 
metric, it was verified that the Lee index maximum values 
were similar (Figure 1S-d and Figure 2S-b). However, using 
weight matrix  , the spatial dependence radius presented 
greater amplitude ( : between 330 m and 505 m). 
To perform the Lee index method for the 63 distance classes 
between neighbors of the simulated data, considering 99 
permutations per class, a machine with an Intel® Core™ i5-
8265U CPU @ 1.60GHz, 64-bit OS and 8 GB of installed 
physical memory (RAM) was used. Computational time was 
a relevant factor. This is because, for the ED in both weight 
matrices, computational time was similar, between 120 and 
140 seconds. Using the IED, although weight matrices   and 
  were similar (760 and 810 seconds), computational time 
was nearly seven times higher.   
 
Methodology application to the soil attributes and soybean 
productivity 
Considering the soil chemical attributes for Paraná, on 
average, the mean levels of Ca (4.03 cmolc dm

-3
), 

P (19.53 mg dm
-3

), Mg (1.73 cmolc dm
-3

), OM (24.93 g dm
-3

), 
and SB (6.05 cmolc dm

-3
) are considered high or very high 

(SBCS-NEPAR, 2017); while the mean of Prod (3.12 t ha
-1

) in 
the 2016-2017 harvest year was below the mean values for 
Paraná (3.72 t ha

-1
) and Brazil (3.36 t ha

-1
) (CONAB, 2017). 

Through the coefficient of variation (CV), the exploratory 
analysis showed that dispersion of the soil attributes, as well 
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as of productivity, varies between medium (10% CV 20%), 
high (20% CV 30%) and heterogeneous (CV 30 
%) (Pimentel Gomes and Garcia, 2002) (Table 2). 
In the cross-semivariogram, the Prod covariates were better 
adjusted by the Gaussian and exponential models (Table 3); 
while the OM covariates had their data set adjusted by the 
Matérn model with k=2.5 (Table 3). All attribute pairs 
showed strong spatial dependence 
(Cambardella et al., 1994). It can also be observed that the 
sill (  +    of the OM and P pair is negative (Table 3). As in 
a cross-semivariogram, the sill approaches the value of the 
covariance between both variables; this indicates that the 
correlation between OM and P is inverse (Righetto, 2012). 
For the BGCCM, the OM covariates were better adjusted by 
the Gaussian and exponential models; most of the Prod 
covariates were better adjusted by means of the Matérn 
model with k=2.5 (Table 4). Among the adjusted models, 
Matérn with k=2.5 is the one that had the highest constant 
multiplied to the range function, approximately 5.92  , 
        (Diggle and Ribeiro Jr., 2007). Consequently, the 
spatial dependence radiuses were high (above 1,000 m; 
Table 4). The range functions both of the common 
component (  ) and for each variable (  ,   ) were similar 
to each other in the attribute pairs (Table 4). The dispersion 
parameters (   ,   ,    ,   ) were low for most of the 
attribute pairs (Table 4). 
A higher Lee index value was obtained for all attribute pairs 
in a module, in the shortest distance between neighbors 
(140 m) (Figure 2). After this distance, the attribute pairs 
that had positive bivariate spatial correlations showed a 
sharp drop for the Lee index, presenting a downward trend 
for the correlogram, which is gradually attenuated with 
increases in the distance, until stabilizing close to zero. The 
OM-P correlogram presented a negative Lee index, which 
indicates a negative bivariate spatial correlation (Figure 2-a). 
Thus, the correlogram's behavior was inverse, increasing 
with increases in the distances between neighbors, until 
stabilizing close to zero. 
Considering the spatial dependence radius identified in the 
correlograms (Figure 2), the attribute pairs with higher Lee 
index values, in a module, presented the largest radiuses; 
where the highest values of the spatial dependence radiuses 
and Lee index by pair were as follows: OM-SB (465 m; L: 
0.36), Prod-SB (440 m; L: 0.35), and Prod-Mg (415 m; 
L: 0.34). On the other hand, the Prod-Ca and OM-P pairs had 
the same spatial dependence radius (315 m) and presented 
lower values for the Lee index: 0.26 and -0.27, respectively. 
 
Discussion 
 
Considering the simulated data, in all the tests conducted 
with W and the ED, the Lee index presented a downward 
trend due to the distance between the neighbors, 
approaching zero as the distance increases (Figure 1S-a, b, 
c). Thus, the highest Lee index values were obtained with 
the smallest distances between the neighbors. The same 
result was observed in the papers by Liu et al. (2013) and by 
Costa and Scalon (2015), which used the univariate Moran 
index to analyze the autocorrelation of different attributes. 
The reduction was more pronounced in the first class of 
distances (between 200 m and 510 m) and attenuated in the 
second class (between 510 m and 820 m), from which it 
begins to stabilize and approach to zero. In a correlogram 
analysis, the decrease over increasing distances between the 
neighbors, until stabilization of its curve, indicates the 

stationary character of the stochastic process. In addition to 
that, the increase in the simulated practical range implied 
slower decreases in the correlogram; this can be observed 
mainly by comparing T1 and T2 (Figure 1S-a, b) to T3 (Figure 
1S-c). The highest Lee index values (between 0.37 and 0.46) 
and the highest spatial dependence radiuses (above 
1,105 m) were obtained in T3. 
As the simulated practical range increased, there was also a 
larger difference between the values of the spatial 
dependence radius in the correlogram (Figure 1S-a, b, c) and 
the mean values of the spatial dependence radius estimated 
by the cross-semivariogram (Table 1). Such difference was 
smaller for T1 and T2, and higher for T3. This can be 
explained by the difference between the methodologies of 
the correlogram and of the cross-
semivariogram (Liu et al., 2013). 
Comparing the IED and the ED, maintaining   fixed, larger 
spatial dependence radiuses were obtained using the IED 
(Figure 2S). However, in both cases the difference between 
the smallest and the largest maximum Lee index value was 
approximately 0.10 and the values of the bivariate spatial 
correlation were higher with the IED (Figure 2S). The 
conclusions regarding the spatial dependence radius and the 
bivariate spatial correlation values considering the IED were 
also obtained by fixing  . In general, the correlogram's 
behavior considering the IED was different from the ED in 
both weight matrices used since, in larger distances, the Lee 
index value did not approach zero. 
In the data corresponding to the soil attributes and soybean 
productivity, as the values of the spatial dependence 
radiuses (  and   ) were influenced by choice of the model, 
the comparisons were made in relation to the range 
functions, contrasting those obtained in the cross-
semivariogram (  ) with those estimated by the bivariate 
model (  ). The range function values were higher for the 
BGCCM for all the attribute pairs (Tables 3 and 4). This fact 
was also observed in the simulation studies conducted in 
this paper, as well as by Cantu (2015), considering other 
pairs of soil attributes analyzed in the same experimental 
area in the 2010-2011 and 2013-2014 harvest years. 
Regarding the correlogram's behavior being decreasing and 
tending to zero with an increase in the distance between 
neighbors, this has also been observed in the tests simulated 
in this study (Figure 1S-a, b, c). However, unlike the 
simulation, the pairs formed by Prod and OM with their 
covariates presented correlograms that remained 
overlapped to the upper limit of the envelope graph until 
completely entering in the distance identified as spatial 
dependence radius. 
The Lee index values showed a negative bivariate spatial 
correlation between OM and P and a positive one for the 
other pairs (Figure 2), corroborating with what the 
estimated values of the sill indicated in the cross-
semivariogram, which was only negative for this pair 
(Table 3). The bivariate spatial correlation between all pairs 
indicated that the closer the neighbors (smaller distance), 
the stronger the spatial correlation bivariate (positive or 
negative) (Dalchiavon et al., 2017). 
The positive spatial correlation between OM and SB is 
expected since, in tropical soils, the OM content is critical to 
raising the soil's CEC; therefore, soils with higher CEC tend to 
have higher SB values, that is, greater retention of cations in 
the topsoil (Ramos et al., 2018). SB represents the sum of 
exchangeable cations (Ca

2+
, Mg

2+
, and K

+
) in the soil; 

consequently, the positive spatial correlation between Prod  
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Table 1. Estimated values for the practical range ( ) of the cross-semivariogram and for the common practical range (  ) of the 
BGCCM.  

 Cross-semivariogram BGCCM 

                  

   378.75 577.32 856.83 391.32 533.55 851.70 

   372.81 485.70 804.06 385.56 541.80 845.13 

   332.28 571.98 816.96 378.15 532.38 842.82 

   383.34 392.19 740.40 400.80 548.22 853.14 

   413.04 537.27 812.79 389.10 528.93 845.34 

   435.99 519.78 834.15 381.33 570.66 827.94 

   434.31 522.27 905.10 378.36 535.80 842.13 

   387.99 590.34 770.07 380.07 532.26 836.10 

   334.86 400.86 755.52 383.97 531.78 846.24 

 ̅ 375.56 510.86 810.65 385.41 539.49 843.39 

SD 60.26 72.62 51.62 7.37 13.11 7.69 
        : tests 1 to 3;          : the nine pairs of simulated variables; SD: standard deviation;  ̅: mean. The practical ranges are expressed in meters. 

 
 
Fig 1. (a) Methodological scheme used in the simulation studies, (b) Experimental area with the locations of the sampling points in 
UTM coordinates.  : vector of means;  : dispersion vector;  : range vector;         : tests 1 to 3;   and  : spatial weighting 
matrices. 
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Table 2. Descriptive statistics for the attributes: calcium (Ca, cmolc dm
-3

), phosphorus (P, mg dm
-3

), magnesium (Mg, cmolc dm
-3

), 
organic matter (OM, g dm

-3
), soybean productivity (Prod, t ha

-1
), and sum of bases (SB, cmolc dm

-3
). 

Attributes Minimum Maximum Mean SD CV 

Ca 1.40 6.00 4.03 0.85 21.27 

P 4.62 56.48 19.53 10.69 54.74 

Mg 0.40 4.20 1.73 0.73 42.09 

OM 13.40 89.80 42.14 10.51 24.93 

Prod 1.51 4.20 3.12 0.54 17.33 

SB 2.55 9.65 6.05 1.38 22.82 
SD: Standard Deviation; CV=    

  

    
: coefficient of variation (%). 

 

 
Fig 2. Correlogram (red) and envelope graph (blue) for the pairs of attributes (a) OM-P, (b) OM-SB, (c) Prod-Ca, (d) Prod-Mg, and (e) 
Prod-SB, considering weight matrix   and Euclidean distance. 
 
Table 3. Estimated values for the parameters of the cross-semivariogram of the best geostatistical model for the attributes: 
calcium (Ca, cmolc dm

-3
), phosphorus (P, mg dm

-3
), magnesium (Mg, cmolc dm

-3
), organic matter (OM, g dm

-3
), soybean 

productivity (Prod, t ha
-1

), and sum of bases (SB, cmolc dm
-3

).  

Attributes Geostatistical models  ̂   ̂   ̂   ̂    ̂ 

OM and P Matérn k=2.5 -0.0041 -0.0337 178.43 1056.30 10.84 

OM and SB Matérn k=2.5 0.1819 5.1839 61.19 362.24 3.38 

Prod and Ca Gaussian 0.0125 0.1454 159.85 276.86 7.90 

Prod and Mg Exponential -0.0576 0.1857 161.62 484.86 23.67 

Prod and SB Exponential -0.1616 0.5268 106.55 319.65 23.47 
 ̂ ,  ̂ ,  ̂ ,  ̂: the estimated values of the nugget effect, partial sill, range function, and practical range (meters) parameters; RNE = 100

  

     
: Relative Nugget Effect (%). 

 
Table 4. Estimated values for the parameters of the BGCCM of the best geostatistical model for the attributes: 
calcium (Ca, cmolc dm

-3
), phosphorus (P, mg dm

-3
), magnesium (Mg, cmolc dm

-3
), organic matter (OM, g dm

-3
), soybean 

productivity (Prod, t ha
-1

), and sum of bases (SB, cmolc dm
-3

).  

 Attributes OM - P OM - SB Prod - Ca Prod - Mg Prod - SB 

 Geostatistical 
models 

Gaussian Exponential Matérn 
k=2.5 

Gaussian Matérn 
k=2.5 

P
ar

am
et

er
s 

  ̂ 45.81 43.95 -0.96 3.16 3.50 

  ̂ 17.52 6.14 5.95 1.94 6.40 

   ̂ -1.30 10
-11

 3.14 1.54 10
-13

 2.12 10
-14

 -5.65 10
-14

 

  ̂ -1.90 10
-10

 1.91 10
2
 3.46 10

-11
 5.84 10

-12
 -3.36 10

-12
 

   ̂ -1.55 10
-13

 1.87 5.70 10
-14

 1.98 10
-12

 -3.62 10
-12

 

  ̂ -1.91 10
-10

 5.78 10
-7

 3.18 10
-12

 5.92 10
-12

 -2.20 10
-11

 

  ̂ 179.41 79.43 179.53 190.95 186.60 

  ̂ 310.53 237.97 1,062.60 330.50 1,104.45 

  ̂ 270.46 269.28 267.82 259.49 275.55 

  ̂ 468.13 806.70 1,585.16 449.13 1,630.90 

  ̂ 275.66 296.02 267.84 247.56 269.10 

  ̂ 477.12 886.81 1,585.25 428.28 1,592.71 
  ̂ ,   ̂,   ̂,   ̂: the estimated values of the mean, dispersion, range and practical range parameters, respectively, associated with the  -th variable (      .    ̂,  ̂ ,   ̂: the estimated values of the 
dispersion, range, and practical range parameters, associated with the common random field.  
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and SB is also reflected in the positive correlations between 
Prod and the Ca and Mg contents. The inverse spatial 
correlation between OM and P can be explained by the fact 
that, in places with more OM, the P content adsorbed in the 
clay fraction of the latosol is lower (Fink et al., 2016). 
Therefore, in regions with more OM, there was greater P 
availability in the soil solution and, as P is an element of low 
mobility and that is rarely lost by leaching 
(Maggi et al., 2011), it was possibly lost due to erosion or 
absorbed by the plants in larger amounts, resulting in 
neighborhoods with lower P contents in the soil. 
 
Materials and methods 
 
Description of the study area and of the soil attributes 
The data were collected during the 2016-2017 agricultural 
year in a commercial grain production area of 167.35 ha 
cultivated with soybean, where no-till has been carried out 
since 1994 (Figure 1b). The area is located in the 
municipality of Cascavel, western region of Paraná, Brazil, 
with approximate geographic coordinates of 24.95º South 
for latitude and 53.37º West for longitude, with 650 m of 
mean altitude. The soil is classified as Dystroferric Red 
Latosol, the regional climate is mesothermic and super 
humid temperate, climatic-type Cfa (Köppen). 
The soil attributes used in this study were calcium content 
(Ca, cmolc dm

-3
); phosphorus content (P, mg dm

-3
); 

magnesium content (Mg, cmolc dm
-3

); organic matter 
content (OM, g dm

-3
); sum of bases (SB, cmolc dm

-3
), which 

represents the sum of exchangeable cations (Ca
2+

, Mg
2+

, and 
K

+
) in the soil; and soybean productivity (t ha

-1
). Soybean 

productivity (Prod) with the calcium (Ca), magnesium (Mg) 
and sum of bases (SB) attributes was considered as pairs of 
variables, in addition to organic matter (OM) with the 
phosphorus (P) and sum of bases (SB) attributes. Such pairs 
were chosen because they have an agronomically interesting 
association due to their contribution to plant growth and 
development and, consequently, to grains (Mengel and 
Kirkby, 2001; Malavolta, 2006; Dalchiavon et al., 2017). 
 
Bivariate Gaussian Model 
In the cases where there is statistical evidence of spatial 
correlation between two attributes, the spatial pattern of 
these variables can be modeled and described considering a 
bivariate Gaussian spatial model (Fonseca, 2008). The 
Bivariate Gaussian Common Component Model (BGCCM) 
(Diggle and Ribeiro Jr., 2007) was employed in this study. 
In the BGCCM proposal, there are two random Gaussian 
fields that can be modeled as follows (Fonseca, 2008): 

{
                

                
,                                                                                                      

(1) 
where        are the mean values of the    and    variables, 

respectively;      (              
  is the vector of 

dispersion parameters of the bivariate geostatistical model; 
and   ,   , and    are mutually independent Gaussian 
random fields. Random field    is common to the    and    
variables, while    are    individually associated with each 
variable (Righetto, 2012). Thus, BGCCM presents a 
covariance structure built from three correlation functions 
valid for   ,    and   , which will be denoted by   ,    and 
  , respectively. 
Let us suppose that   (    and   (    are    attribute 
observations measured in locations    and   , which are 

separated by an Euclidean distance of        , with 

           and      . In this way, there is   
(      

 , in which vector   has an  -varied Gaussian 
distribution, with        ,    and    being the sample 
sizes of    and   , respectively. In this paper, it was 
considered that      . In addition to that,   has mean 
vector   (      

  and positive definite covariance matrix 
  , given by (Fonseca, 2008): 

   (
      

    
   

), 

where    is the       covariance matrix of the    

variable,        ;      is the       matrix with the cross-

covariances between the    and    variables; the elements 
of the    covariance matrix are given by 

 (        
    (     

   (  , where   represents the 
covariance function in relation to distance  , and   ,    are 
the correlation functions in    and   , respectively, for 

       . 
Hence, the probability distribution of vector   depends on 
parameter vector estimation     (       , in which 
vector   (      

  is associated with the mean, vector 

    (              
  is the dispersion vector, and vector 

   (  
         

  is associated with range function   , 
linked to the geostatistical model chosen for the    spatial 
correlation function, where         is related to random 
field   . According to Righetto (2012), the estimation of the 
  parameters follows the same criteria of univariate 
geostatistical techniques. Thus, the maximum likelihood 
method for parameter estimation was used in this paper 
(Cressie, 2015). 
 
Spatial weighting matrix and bivariate spatial correlation 
A spatial weight matrix is an       square matrix, where the 
    space weights represent the connection degree between 

the regions according to some proximity criterion, showing 
the influence of location   on location  ,          . The 
weight matrix presents a kind of weighting of the influence 
that the locations exert on each other (Almeida, 2013). 
To establish the connection degree expressed in the spatial 
weight matrices, the geographic distance was considered, 
which in turn depends on a metric. In this paper, the   and 
  spatial weighting matrices were used, both of dimension 
  x  , where   is the number of observations, and the 
Euclidean Distance (ED) and the inverse of the Euclidean 
Distance (IED) were employed as metrics. 
Matrix    (      is standardized by row, so that the sum 

of the weights of each row equals 1. For the ED,         

  , where    is the total number of neighbors in the  -th row 
considering the   columns that have neighbors. For the 
locations that have no neighbors,      . Locations   and   

are considered neighbors whose distance is less than the 
cutoff distance. The cutoff distance varied from 200 m to 
1,750 m for the simulated data and from 140 m to 1,750 m 

for the real data. For the IED,      
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∑     
 
    represents the sum of the inverse of the distances 

between neighbors in the  -th line considering the   
columns, and       is the inverse of the distance of the 

element belonging to line   and column  ,             
(Bivand and Wong, 2018), for    ,      . 

Matrix    (      is globally standardized, making the sum 

of the weights to be  . For the ED,          , where   is 

the total number of neighbors considering the   points; 

while for the IED,      
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, where ∑      

 
      is 
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the sum of the inverse of the distances considering all 
neighbors (Bivand et al., 2013), for    ,      . 

Using a spatial weighting matrix, it is possible to establish 
the spatial correlation between two georeferenced variables 
in   sampling points. The expression for calculating bivariate 
spatial correlation, developed by Lee (2001), is given by: 
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(2) 
where   is the number of georeferenced sampling points;   , 
   and   ,    are the values of the   and   attributes in the 

   -th observations, respectively,          ;  ̅ and  ̅ are 
the mean values of the   and   attributes in the area under 
study; and     is an element of the spatial weight matrix. 

 
Description of the simulations 
The simulation study aimed at reproducing situations that 
could occur in different experimental agricultural areas with 
any attribute pairs, thus adding practical-theoretical 
knowledge about the bivariate spatial correlation between 
soil attributes with a spatial dependence structure. 
Three tests were elaborated (        ) considering 
different spatial dependence structures (Figure 1a), and 
based on BGCCM. The first objective of these tests was to 
analyze the Lee index variation in relation to the increase in 
the values of the simulated range parameters (  . 
The second objective consisted in evaluating performance of 
the Lee index considering different spatial weighting 
matrices, combined with different metrics for calculating the 
distances between observations. T3 was discarded for this 
purpose because the variables had radiuses greater than the 
cutoff point in the previous stage (matrix W with ED). Due to 
the similarity observed between T1 and T2 in the first stage 
regarding the Lee index values, tests were performed for 
both tests with matrices W and C. However, at T2, the 
spatial dependence radius extrapolated the cutoff point. 
Thus, only T1 was considered in the second stage of this 
study. 
For each test, nine simulations were generated, with two 
variables, containing 100 sampling points each. A Monte 
Carlo experiment was used for this, from the Cholesky 
decomposition of covariance matrix    (Cressie, 2015). 
Following the scheme in Figure 1a, for each of the nine pairs 
of simulated variables from each test, the practical range 
was estimated considering BGCCM, as well as from 
construction of the cross-semivariogram, in which the 
practical range represents the maximum distance of spatial 
dependence between two variables (Cressie, 2015). 
Subsequently, calculation of the bivariate spatial correlation, 
using the Lee index, was subdivided into two stages that 
correspond to both of the aforementioned objectives. 
In both stages, the correlogram was designed to investigate 
the behavior of Lee's bivariate spatial correlation. To analyze 
the statistical significance of the values that make up the 
correlogram, a simulated envelope graph was used, which is 
generated from permutations of the simulated data in the 
sampling grid coordinates. Thus, to obtain the Lee index 
value, the geographic coordinates are kept unchanged, and 
the   values of the variable pair are permuted. According to 
Diggle and Ribeiro Junior (2007), the principle of performing 
permutations is to try to break the spatial dependence 
structure of the data, generating a type of independent data. 
We indicated that the correlogram is not statistically 
significant if the line corresponding to the Lee index values is 
completely contained between the upper and lower limits of 

the simulated envelope. Otherwise, if the line is above the 
upper limit for some cutoff distance  , the correlogram is 
considered statistically significant in favor of positive spatial 
dependence; if the line is below the lower limit for some 
distance, the correlogram is statistically significant but 
indicates a negative spatial dependence between the 
variables (Diggle and Ribeiro Jr., 2007; Costa and Scalon, 
2015). The distance at which the correlogram enters the 
envelope is the spatial dependence radius of the variable 
pair in question (Costa and Scalon, 2015). The spatial 
dependence radius was compared to the practical ranges 
obtained by fitting the cross-semivariogram and using the 
bivariate model. 
 
Description of the real data analysis and computational 
resources 
Lattice plus close pairs sampling was used in the agricultural 
area, consisting of 102 sampling points, which comprises 
both a regular grid with a minimum distance of 141 m 
between the points, as well as 19 locations that were 
randomly added to the regular grid and which have smaller 
distances with some observations of it (from 50 m and 75 m) 
(Figure 1b). The samples were located and georeferenced by 
a Global Navigation Satellite System (GNSS) signal receiver 
device using a spatial UTM (Universal Transverse Mercator) 
coordinate system. 
The soil attributes used in this study were spatially 
dependent, isotropic and without any directional trend. The 
same spatial statistical analyses were performed for the real 
data set (estimation of the BGCCM spatial model, cross-
semivariogram, and Lee index calculation) as in the 
simulated data. In real data sets, geostatistical models were 
adjusted for each pair of variables (Diggle and Ribeiro Jr., 
2007) for which the quality of the estimates obtained were 
evaluated using the cross-validation 
criteria (Faraco et al., 2008). 
The routines for calculating the Lee index and for other 
statistical and geostatistical analyses were developed using 
the R software (R Development Core Team, 2022), 
considering the geoR (Ribeiro Jr. and Diggle, 2001) and 
spdep (Bivand, 2020) packages. 
 
Conclusion 
 
When comparing the different spatial weighting matrices in 
the simulated data analysis, a similarity was verified 
between the Lee index values. However, the IED and the ED 
presented different results, with larger spatial dependence 
radiuses and higher Lee index values achieved using the IED, 
which also required more computational time. Therefore, 
the metric to be considered to calculate the distance 
between the point pairs was more relevant than the weight 
matrix in estimating the spatial dependence radius and the 
Lee index value. 
Also in the simulated tests, as the simulated common range 
increased, the mean values of the practical range estimated 
in the cross-semivariogram and by BGCCM also increased 
and were satisfactory, as they approached the simulated 
practical ranges. In addition to that, the bivariate spatial 
correlation value calculated by means of the Lee index was 
higher as the simulated practical range increased. The same 
relationship between Lee index values and spatial 
dependence radius was verified for the attribute pairs 
analyzed in the real data, so that the practical studies 
corroborate with the simulated ones. 
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Soybean productivity presented a positive spatial correlation 
with the sum of bases and with the calcium and magnesium 
contents, indicating that in the regions with the highest 
soybean productivity there was greater availability of these 
attributes. In addition, organic matter had a positive spatial 
correlation with the sum of bases and a negative one with 
phosphorus, respectively due to the CEC of the region's soil 
and to absorption by the plants or erosion. 
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