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Abstract 
 

The principal objective of agriculture is the production of a high yield of healthy crops. This yield may be improved by the automatic 
detection of diseases and the consequent reduction in the use of pesticides.  A digital processing system for images was thus 
developed and used to identify lesions on the leaves of cotton plants. A collection of 60,659 images of sub-metric resolution 
showing samples of soil and both healthy and damaged leaves was obtained and processed with an algorithm for the extraction of 
texture from 102x102-pixel samples. Then they analyzed with a neuro-fuzzy classifier trained to discriminate the three types of 
regions (soil, healthy leaf, and lesioned leaf). The algorithm developed was able to recognize the three classes. It generated a great 
amount of information on recognition of background which was more consistent than leaf damage areas. Therefore, it surpassed 
the performance of areas of healthy leaves. A similar trend was found for sensitivity. The overall accuracy of the system was 71.2%, 
suggesting that the unbalanced data of the different classes had skewed the results of the algorithm, as the number of false 
positives for the less well represented classes was greater. The analysis of unbalance (F-Score) showed that, independent of the 
volume of data, the attributes of texture utilized yielded better results for the images containing areas of damage in relation to 
overall accuracy. Therefore, given the challenges involved in the automatic identification of lesions in agricultural crops, such as 
variations in illumination, color, and texture, as well as obstruction, overlapping, and complexity of the region of which the image 
was taken, the behavior of the model was deemed satisfactory. Given the hybrid nature of the model, it should contribute to the 
state of the art in the use of intelligent systems in agriculture. This algorithm is available at https://github.com/rafaeufg/Cotton-
diseases 
 
Keywords: Precision agriculture, Artificial neural networks, Diffuse inference system, Machine learning, Digital processing of 
images.  
Abbreviations: NFA_Adaptive neuro-fuzzy; SBC1_Class I sub-images; SBC2_Class 2 sub-images; SBC3_Class 3 sub-images.  
 
Introduction 
 
The interaction between plant genotype, pathogens, and the 
environment makes the pathogenesis of a disease a quite 
complex process. Moreover, it can reduce the yield, as well 
as the quality of the crop produced. For crops such as 
soybeans, losses of US$100.00 per hectare have been 
estimated, at times make the production unfeasible (Allen et 
al., 2017; Bowen et al., 2018). However, understanding the 
reactions of crops to biotic stress (symptomatology) can 
make it possible for the rural producer to diagnose diseases 
early on, minimizing the effects of their occurrence 
(Wahabzada et al., 2015). 
The conventional method for the diagnosis of agricultural 
pests and diseases requires the analysis of lesions by a 
trained technician. This puts the farmer in a difficult 
situation, because such an analysis can only be executed 
after the development of the symptoms. Moreover, it 
depends on the experience of the technician. In scenarios 
involving extensive cultivation, there is also a demand for 
speed in the diagnosis, recommendations for treatment, and 
administration, since the windows for intervention are ever 
more limited (Santos, 2015; Bourguet and Guillemaud, 
2016). 
For some time, alternative technological strategies designed 
to help the producer make decisions in the management of 
pesticides for crops (Peshin et al., 2009; Veisi, 2012; Pelzer 

et al., 2012). Information about plant physiology and health 
can be inferred from the electromagnetic spectrum reflected 
from the crop (Camargo e Smith, 2009; Mutka and Bart, 
2015). The visible region of the spectrum reveals the content 
of pigment, while the near infrared reflects the structural 
characteristics of the plants and the short infrared waves 
reflect mainly chemical components and the water content 
of the leaves (Patil and Kumar, 2011; Barbedo, 2016).  
Pathogenesis causes alterations in the biophysical and 
biochemical properties of plants, and consequently their 
color (Barbedo, 2013) and texture (Pujari et al., 2015). The 
digital processing of images can be used to implement 
systems capable of identifying such alterations and provide a 
trustworthy diagnosis of lesions (Camargo and Smith, 2009; 
Zhang et al., 2017). 
A system for the digital processing of images depends 
basically on three factors: the quality, the type and 
resolution of the image, the type of descriptor used to 
define characteristics, and the specific technique of machine 
learning selected (Gonzalez e Woods, 2018; Pujari et al., 
2015). The most common studied descriptors have utilized 
information about texture (Kaddar, 2017, Montoya-Zegarra 
et al., 2008), color (Garcia-Lamont et al. 2018, Petrushan et 
al., 2013,) and shape (Wang et al., 2017, Costa et al., 2011). 
Two basic techniques of machine learning are available: 
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supervised and unsupervised methods (Olaode et al., 2014, 
Saxena, 2017, Ma et al., 2017). 
Pujari et al. (2015) required machine learning to utilize 
techniques of digital processing of images which are 
independent of the specific crop (fruit, vegetables and 
cereals), since the lesions arising from the attack of 
agricultural pests and diseases create a characteristic 
spectral signature. This can be identified using adequate 
descriptors. A similar observation was reported by Revathi 
and Hemalatha (2014), considering the attributes of color, 
texture and shape for identification of leaf diseases from 
their spectral signature. 
The complexity of the data for agricultural application and 
the large number of analyses have led to the use of the 
techniques of machine learning on machines with support of 
vectors and application of artificial neural networks (Van de 
Vijver et al., 2020, Bakhshipour and Jafari, 2018). These 
techniques are robust and versatile and have led to 
promising results, such as those seen in Niell et al., (2018) 
and Kumar et al., (2017), who achieved success rates of 
100% and 96%, respectively. 
Despite the fact that digital image processing in agriculture 
has considerably advanced (Patrício and Rieder, 2018; Tian 
et al., 2020), Iqbal et al. (2018) have suggested that we are 
only at the beginning phases. The development of tools with 
a better performance in terms of success and fewer 
computational demands is important so that the challenges 
of complex scenarios and real time applications can be met. 
Although the pests and disease (lesions) symptoms can be 
detected by the analysis of images, the successful 
application of this technology in precision agriculture is 
highly dependent to the spatial resolution and the quality of 
the images. Lesions caused by fungi, viruses and bacteria can 
be smaller than 1 cm in diameter and be confused with 
nutritional deficiencies of the crop. Therefore, the objective 
of this study was to develop a methodology based on the 
analysis of images to identify sub-metric lesions on cotton 
leaves. The implemented algorithm segmented the images 
and extracted the attributes of texture. A hybrid classifier to 
detect such lesions on cotton leaves was also developed and 
evaluated.  
 
Results and discussion  
  
The performance of the classifiers based on fuzzy logic and 
artificial neural networks for the recognition of objects and 
the classification of images has improved considerably in the 
past few years (Altaher, 2017; Belaout et al., 2018; 
Chlingaryan et al., 2018; Rangarajan et al., 2018). Although 
unusual, the application of a hybrid classifier for the 
recognition of lesions on leaves via images is seen as an 
improvement in the way of dealing with the problem, since 
most conventional classifiers are binary and allow little or no 
flexibility (Mohanty et al., 2016).  
 
Global analysis 
The performance of the algorithm proposed in this paper 
was evaluated based on the calculations of confusion matrix 
(a table showing the quantitative relationship between the 
images belonging to the class under study and those 
predicted by the algorithm). The results of the predictions of 
the algorithm as to the presence of lesions on cotton leaves 
and their derivations are presented in Tables 1 and 2.  
The use of the proposed algorithm is feasible, since it 
presents an overall accuracy of 71.1% for the identification 

of lesions on cotton leaves (Chemura et al., 2017). However, 
this performance is far from the ideal. Mohanty et al. (2016) 
achieved 99.35% accuracy in the detection of leaf diseases, 
while Brahimi et al. (2017) achieved 99.18% for the 
identification of tomato diseases. Zhang et al. (2018) found 
an overall accuracy above 90% in the identification of 
damage to soybeans. All of these values are substantially 
greater than those found here.  Despite the fact that the 
hybrid classifier adopted here is able to make predictions in 
complex scenarios, inference is still necessary. According to 
Behmann et al. (2015), the success of classification is directly 
related to the descriptor of the characteristics utilized.  On 
the other hand, when dealing with the identification of 
symptoms of stress and disease in plants, both Masood and 
Khan (2016) and Singh et al., (2016) suggested that the 
selection of a method for machine learning is a factor for the 
success of classification. 
Although the optimization of mathematical computational 
models for identification of agricultural pests and diseases 
provides a glimpse of the overall accuracy, relatively high 
rates of success do not necessarily mean that the 
performance of that classifier is good, since situations of 
over-adjustment of models and/or low generalizability are 
quite common (Davis and Goadrich, 2006; Zhang et al., 2018; 
Vasicek, 2019; Yeom et al., 2019).  
Krawczyk, (2016) points out that in the use of machine 
learning, disproportional distribution of the classes in the 
data set can mask the results of the classifier, causing 
commission errors (when images attributed to a class belong 
to a different class), i.e., false positives are common. In Table 
2, it can be seen that the false positives (commission errors) 
substantially affect all of the classes, although the 
background class has the smallest proportion of false 
positives. This indicates that the unbalance of the classes 
minimized the errors of the algorithm for the class of 
background, i.e., the algorithm is biased for this class, since 
it has more than 50% of the total set of data (Figure 1). 
For certain applications, unbalanced data is to be expected, 
due to the high cost of obtaining data, low availability of 
data, or even problems related to labeling in the manual 
classification of data due to noise. In these cases, the 
adoption of strategies for dealing with the unbalanced data 
set it is crucial. The more traditional methods used in the 
literature include increasing the data artificially by creating 
new data (Mikolajczyk and Grochowski, 2018; Huang et al., 
2019; Cha et al., 2020), resampling the data in the training 
set (Koziarski and Wozniak, 2017; Sun et al., 2018; Nguyen et 
al., 2019), and regularization of the classifier (Yuan et al., 
2018; Vasicek, 2019). However, in recent years, various 
proposals have been made for using deep neural networks. 
This has improved the performance of classification systems 
(Acharya et al., 2017; Yu et al., 2017; Yuan et al., 2018). 
 
Analysis by class 
In this study, we attempted to go beyond an overall analysis 
of the results to include a study of the behavior of the 
classifier for each class, since this can identify limitations and 
the contribution of the individual classes, as well as ignoring 
the unbalance in data (Saito e Rehmsmeier, 2017; Chelli and 
Boileau, 2020). In the literature of machine learning,  the 
analysis of classifier behavior includes tests of sensitivity 
(recall), specificity, accuracy, and precision, as derived from 
the confusion matrix (Goutte and Gaussier, 2005; Nazarenko 
et al., 2016). The relevant equations are presented in Table 
3. 
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              Table 1. Confusion matrix based on the algorithm for NFA classification. 

                           Predicted Class 

   Background Leaf with lesion Healthy leaf 

True class Background 12903 1525 1237 

Leaf with lesion 1278 3086 390 

Healthy leaf 1782 794 1267 

 

 
Figure 1. Histogram of the manual labeling of the classes in the dataset. This figure shows an imbalance of data between classes, 
with the fund class contributing more than 60% of the data, while healthy sheet contributes just over 15% of the data. 
 
              Table 2. Breakdown of confusion matrix 

Variable Background Leaf with Lesion Healthy leaf 

TP 12903 3086 1267 

FP 3060 2319 1627 

FN 2762 1668 2576 

TN 4393 14170 15989 

Overall accuracy = 71,1% 
In the table, the following variables are included: true positive (TP), referring to an image correctly predicted to be in the target class; true negative 
(TN) for images which are correctly predicted as not belonging to the target class; False positive (FP) for images incorrectlypredicted as belonging to 
the target class, and False Negative (FN) for images belonging to the target class which were predicted to be in another class. 
 
 

 
                         Figure 2. Comparison of performance metrics obtained with the hybrid NFA classifier. 
 

Table 3. Performance measures derived from the confusion matrix. 

Performance metric Equation 

Sensitivity (Recall) TP/(TP+FN) 

Specificity TN/(TN+FP) 

Overall accuracy (TP+TN)/(TP+FP+TN+FN) 

Precision TP/(TP+FP) 

F-Score (2*Precision*Recall)/(Precision+Recall) 

0
.8

0
8

 

0
.7

4
8

 

0
.2

5
2

 

0
.8

2
4

 

0
.8

1
6

 

0
.5

7
1

 

0
.8

1
2

 

0
.8

2
1

 

0
.6

4
9

 

0
.6

0
8

 

0
.4

3
8

 

0
.8

0
4

 

0
.9

2
7

 

0
.3

3
 

0
.3

7
6

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P R E C I S I O N  O V E R A L L  
A C C U R A C Y  

S P E C I F I C I T Y  S E N S I T I V I T Y  
( R E C A L L )  

F - S C O R E  

Background Leaf with lesions Healthy leaf



1180 

 

 
Figure 3. Fluxogram of system of recognition of lesions on cotton leaves. 

 
Table 4. Proposed algorithm  

//Input: digital image of leaf 
//Saída: Diagnosis of the presence of the plant in the image and leaf status (healthy or injured) 
 
//Algorithm for detection of leasions in cotton leaves 
 
Function – diagnosisofplant(){ 
  //Step 1 – loading of image 
  image <- read archive (image) 
 
  //Step 2 – Preparation of image – PDI  
  image processed <-  Process digital image (image) 
 
  // Extraction of characteristics – PDI 
 vector of characteristic <- extract data (processed image) 
 
  //Step 3 - Analysis of image 
  answer[3] <- analyze image (vector of characteristics) 
 
  //Step 4 - Show answers 
  print " Confirmation of presence of plant in image":*, answer[1]   //Positive or Negative 
  print " status of plant leaf":*, answer[2]                         //Lesioned or healthy 
  print " Probability of correct answer (precision)":*, answer[3]    //Precision of analysis 
} 
Function process_digital image (image)  { 
  //Segmentacion of images 
  image <- subdivision(image,[102 102]) 
  //Dessaturation 
  image <- convert_RGB_to_gray(imagem) 
  // Return  Image processed 
  return image_processed 
} 
 
Function extract_data(){ 
  // Descriptors of chareacteristics 
  descriptor[N] <- STATXTURE, SIFT, SURF, HOG, PHOW, HAAR,... 
  //Extract Characteristics 
  for descriptive index from 0 to N { 
    vector_characteristic <- vector_characteristic + apply_descriptor[processed image, descriptor[descriptive index]] 
  } 
  return vector_characteristic 
} 
 
  Function analyze_image(vector_characteristic){ 
    //Load trained data bank - Dataset 
    data_base <-read_archive (set_trained_data) 
    //recognize Image 
    answer[3] <- classify(vector_characteristic, set_trained_data) 
    //Return array with answers 
    return answer 
  } 
} 
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Figure 4. Pre-processing of images and manual identification of patterns: (a) grid for the formation of sub-images with a resolution 
of 102 x 102 pixels; (b) sub-image of background, (c) sub-image of a lesion, and (d) sub-image of healthy area of leaf. 

 
 

 
Figure 5. Pertinent functions resulting from the supervised learning of the NFA classifier. The adopted adaptive neuro-fuzzy 
classifier uses language barriers capable of changing the primary meaning of membership functions to a secondary meaning. 
 
The performance metrics used in the analysis of the 
behavior of machine learning are defined as follows. 
Precision is the ratio of the images correctly classified as 
belonging to a class in relation to all the images predicted to 
be of this class.  Accuracy is the proportion of images 
identified correctly as to class. Sensitivity or recall measures 
the fraction of the actual number of images in a class 
correctly identified as being of that class (a value which 
makes it possible to identify the class for which the method 
is least sensitive). Specificity measures the ratio of the 
images correctly identified as not belonging to a class in 
relation to those actually not in that class. The F-Score 
makes an equilibrated analysis of the system possible, 
whether or not the data are balanced, since it involves the 
relation between the actual members of the class as 
identified (precision) and those identified as being of that 
class  in  relation  to  actual  number existing (recall). Figure 2 
compares the classes in relation to the values obtained for 

sensitivity, specificity, precision and accuracy, as well as F-
Score, using the hybrid adaptive neuro-fuzzy classifier (NFA) 
algorithm for the recognition of lesions on cotton leaves. 
As shown by the confusion matrix (Tables 1 and 2) and 
reinforced by the grouping of the data (Figure 3), it seems 
that the proposed system is most accurate for identification 
of background images (80.8%), i.e., the predictions for this 
class present low dispersion. However, for the predictions 
indicating whether or not the leaves are healthy, the results 
for precision and the F score are less than the 71.1% 
obtained for overall accuracy (Table 2). 
The equilibrated analysis of data shows that images with 
regions showing background information are correctly 
identified 25% more of the time than those with information 
about lesions and 54% more than those of healthy leaves. 
This compromises the use of the system for the 
identification of lesions in images of cotton leaves in 
complex scenarios. 

 
(a) (b) 

 
(c) (d) 
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It is the overall accuracy which measures how promising a 
system is for predicting the identification of classes in the 
images, since in addition to true positives it also considers 
true negatives. This value suggests that the system proposed 
is indeed promising for the identification of lesions on 
leaves, as well as healthy regions and background 
information, with rates of 81.2%, 80.4%, and 74.8%, 
respectively.  
 
Materials and Methods 
 
Based on the theory of the processing of images presented 
in Gonzalez and Woods (2018), the proposed system is 
divided into the stages of image acquisition, pre-processing, 
attribute extraction, training, and classification.  
 
Image acquisition 
The images of cotton leaves, both healthy and non-healthy 
(those with lesions) were captured using a digital Nikon 
camera (Model D5500) with an automatic setting. Images in 
the JPEG format, RGB color space, and a resolution of 4000 x 
6000 pixels were selected and stored in a digital data bank 
for processing and attribute extraction.  
The system presented here considers statistical attributes of 
texture to describe the classes of leaves (healthy or with 
lesions). A hybrid classifier obtained by the integration of 
fuzzy logic with artificial neural networks was implemented 
(Cetişli, 2010, Azar et al., 2015). Table 4 describes the 
algorithm proposed, followed by the fluxogram of the 
classification process (Figure 3).  
The implementation of image processing and machine 
learning algorithms was performed using the Toolbox of 
Image Processing and Computer Vision and Toolbox of 
Machine Learning of the Matlab R2018a (Mathworks) 
software, installed on an HP Z800 computer with two Intel® 
Xeon® X5650 Cache processors. 12M, 2.66GHz, 6.40 GT/s 
Intel® QPI, 128Gb Ram, Nvidea Quadro FX 3800 graphics 
based on Windows 10 operating system. 
 
Pre-processing 
The pre-processing of the system proposed here consists of 
two steps. In the first, an attempt is made to identify lesions 
on cotton leaves, whatever the size in pixels. For this, each 
of the images stored in the data bank was divided into sub-
images of 102 x 102 pixels. 
In the second step, the sub-images were grouped into three 
classes: Class I sub-images (SBC1), Class 2 sub-images (SBC2) 
and Class 3 sub-images (SBC3). SBC1 corresponding to the 
information about soil and straw and any other background 
elements other than leaves; SBC2 corresponded to the area 
of leaves with lesions caused by agricultural pests and 
disease, and SBC3 corresponded to areas of healthy leaves 
(Figure 4). 
 
Attribute extraction 
Given the characteristics of the lesions and the promising 
results found in various studies of image processing (Hlaing e 
Zaw, 2017; Patil and Kumar, 2017; Pires et al., 2016), the 
extractors utilized here characterized the texture based on 
statistical measurement. The simplest aspect (primitive) of a 
digital image in grayscale space is a pixel, with the 
concentration of gray varying as a function of the depth of 
color of the image (Gonzalez et al., 2003). 
The distribution of shades of gray of the pixels, or a 
histogram of these shades, defines the texture of the image. 
In this paper the statistical averages of the average texture 

of the shade of grey, the standard deviation, correlation, 
third moment, uniformity, and entropy are considered. 
The average (m) refers to the average intensity of each 
region, despite the texture as such in not described.  

  ∑  

   

   

 (  )                                            ti     

Where Zi is a random variable indicating light intensity; p(zi) 
is the histogram of the level of intensity of the region, and L 
is the possible number of levels or shades of grey for each 
pixel. 
The standard deviation (  ) corresponds to information 
about the average texture of contrast, i.e., the average of 
the variation in the shade of grey of the image, obtained 
fr m the s   re r  t  f the “sec  d m me t” 
(  )              
 

  √  ( )  √ 
                                    ti   2 

The attribute R measures the relative softness of the shades 
of grey in a region. R is 0 for a region with a constant 
intensity and 1 for those with great variation in grayscale. 
For practical purposes, the variance used in the 
measurement is normalized between 0 and 1. 

    
 

    
                                               ti     

The “third m me t” (  ) measures the asymmetry of the 
histogram. This attribute is 0 for symmetrical histograms, 
positive for those which are symmetrical, but dislocated to 
the right (above average) and negative for those dislocated 
to the left. The resultant values are normalized between 0 
and 1. 

   ∑(    )
 

   

   

 (  )                              ti     

The measure of uniformity is at its maximum when all the 
shades of grey are the same (maximum uniformity) and 
decreases as variations in shades of gray are introduced. 

  ∑  (  )

   

   

                                              ti     

Entropy furnishes dispersion, i.e., randomness in the level of 
the grey in the image.  

   ∑ (  )    

   

   

 (  )                          ti     

 
Classification 
The process of classification begins by the random division of 
the images into two sub-sets, one for training (60% of the 
images) and the other for testing (40% of the images). 
In this paper, the adaptive neuro-fuzzy classifier proposed by 
Cetişli (20 0) w s  sed. The i   v ti    f this kind of 
classifier results from its hybrid nature, since it combines the 
flexibility of fuzzy logic with the speed and adaptability of 
artificial neural networks (Ghosh et al., 2009; Pradhan, 2013; 
Khoshnevisan et al., 2014). 
The adaptive Neuro-fuzzy classifier adopted here utilizes 
linguistic barriers capable of reducing the principal 
significance of pertinent functions (Figure 5). 
To improve the meaning of the fuzzy rules and the accuracy 
of the classifier, a layer defining linguistic barriers was added 
to the neural network proposed. The linguistic barriers were 
trained with other parameters of the network using a 
conjugated gradient training algorithm, with the values of 
the linguistic barriers tuned (syntonized) to those of the 
fuzzy sets, thus making the sets more flexible and improving 
the r te  f disti cti   fr m  verlyi g cl sses (Cetişli, 20 0).
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The evaluation of the technical applicability of the proposed 
algorithm for the identification of lesions on cotton leaves 
was made using an analysis of the confusion matrix and 
other metrics derived from it, such as overall accuracy, 
precision, sensitivity, specificity, and F-Score. 
 
Conclusion 
 
A system using an adaptive neuro-fuzzy classifier for the 
processing of digital images based on data of texture was 
developed (https://github.com/rafaeufg/Cotton-diseases). A 
hit rate of 71.1% of correct identifications was obtained, a 
performance considered satisfactory for use as a tool to 
assist making decisions for integrated management of a 
cotton crop in presence of agricultural pests and disease. 
The system proved to be sensitive in relation to the 
identification of background information. It was least 
sensitive for healthy areas of the leaves. The performance 
for images containing areas with lesions was better in terms 
of overall accuracy.  
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