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Abstract 
 
Unlike models based on simple linear regressions, segmented models can better assess the adaptability and stability of genotypes, 
demonstrating a nonlinear response pattern over environmental variation. However, these methods can be under statistical 
limitations, such as the Type Error II increase and biased estimates. Therefore, this work aimed to transpose the concepts of 
adaptability and stability from the statistical analysis of a segmented model to the discriminatory potential of an artificial neural 
network (ANN) and use it to classify soybean (Glycine max (L.) Merr.) genotypes. An ANN training was carried out with the grain 
yield of 7,200 soybean genotypes simulated in 15 different environments. The ANN topology chosen was the one that had less than 
1% of error in the testing phase with 1,800 simulated genotypes. A total of 9,000 simulated soybean genotypes were previously 
arranged in 18 different classes, which represented the combination of nine classes of adaptability by the Verma and collaborators 
(VCM) method and two classes of stability (invariability concept) by the Finlay & Wilkinson (FW) method. Finally, the grain 
production of ten real soybean genotypes was inputted into the ANN-trained model, and the classification regarding adaptability 
and stability was obtained. There was 90% agreement between the ANN and VCM analyses regarding the adaptability classification 
and 20% regarding stability. With the methods presented in this work, it was demonstrated that the potential of using ANNs to 
assess the adaptability of genotypes is strong. In addition, since stability was introduced in the ANN as a different concept from that 
used to classify the genotypes by the statistical method, such classification needs to be reviewed and further improved. 
 
Keywords: Glycine max; artificial intelligence, genotypes × environments interaction; data simulation, bioinformatics. 
Abbreviations: ANN_artificial neural networks; MET_multi-environmental trials; VCM_Verma et al. (1978); FW_Finlay and 
Wilkinson (1963); MSE_Mean square Error; ER_Eberhart and Russell (1966); NID_Normally Independently Distributed. 
 
Introduction 
 
The use of methods based on machine learning in 
agronomy, such as artificial neural networks (ANN), is 
increasing (Sousa et al., 2022). Briefly, ANN are models that 
work as a network of biological neurons capable of 
processing a large amount of data using self-learning 
(Haykin, 2009). Compared with a statistical framework, ANN 
have the advantage of not requiring prior assumptions about 
the model, which allows their adjustment to the most 
diversified problems (Rosado et al., 2022). 
Therefore, it is unsurprising that ANN models have been 
used in breeding programs to predict the genetic values of 
animals and plants (Abdollahi-Arpanahi et al., 2020; Rosado 
et al., 2020). Still, in the context of plant breeding, the use of 
ANN models has also become an interesting approach to 
dealing with the interaction between genotypes and 
environments in multi-environmental trials (MET) (Alves et 
al., 2019; Nascimento et al., 2013). For example, Nascimento 
et al. (2013) proposed a methodology of adaptability and 
phenotypic stability based on the training of an ANN, 

considering the methodology of Eberhart and Russell (ER). 
The authors chose the ER method, which is widely used 
because of its simplicity and efficiency in analyzing MET 
(Janick, 2003). 
Although attractive, the ER is based on the fit of simple 
linear regression models (Cruz et al., 2012). Therefore, it 
does not allow to study the potential nonlinear pattern of 
genotype responses throughout the environmental variation 
(Nascimento et al., 2020) and makes ER-based ANN models 
equally deficient in assessing the adaptability and stability of 
genotypes. On the other hand, segmented regression 
models like the one proposed by Verma et al. (1978) (VCM) 
can distinctly evaluate the performance of genotypes in 
unfavorable and favorable environments. This allows such 
model to find the “ideal” genotype, which should present 
low sensitivity to adverse conditions and increasing yield as 
the environment improves, besides high stability. 
As mentioned in previous works, the use of ANN models to 
assess adaptability and stability is preferred to avoid the 
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statistical limitations of the simpler methods, such as biases 
in the estimates of regression coefficients and the increase 
of Type Error II (Nascimento et al., 2013; Teodoro et al., 
2015). Thus, by joining the improvement aspects of the VCM 
method with an ANN approach, a new method can be 
established to remove the limitations described above. In 
addition, as proposed by Nascimento et al. (2013), the ANN 
approach can also include an adapted method based on the 
Finlay and Wilkinson (1963) method (FW) to assess stability, 
which is based on the invariant classification of a given 
genotype after data linearization. 
Therefore, because of the issues raised above, this study (1) 
proposed the development of an ANN-based segmented 
model to evaluate the adaptability and stability of genotypes 
and (2) the application of such model for the classification of 
soybean (Glycine max (L.) Merr.) genotypes using real data. 
Finally, the soybean genotypes' classification regarding their 
adaptability and stability could be compared with that from 
regular statistical analysis, i.e., that upon which the neural 
network was based. 
 
Results 
 
Analysis of variance 
The analysis of variance indicated that the soybean 
genotypes presented distinguished performances in the face 
of different environmental conditions, which is attested by 
the significant interaction (P ≤ 0.01) between genotypes and 
environments. The existence of genetic variability between 
genotypes for grain production was also verified (Table 2). 
 
Neural network construction 
Since the genotypes should be analyzed in unfavorable and 
favorable environments, the variance analyses were also 
performed considering these two conditions to implement 
the proposal. In these separate analyses, the MSE for 
unfavorable and favorable environments were 50,141.65 
(degree of freedom (df) = 108) and 43,471.95 (df = 162). 
These results were used to implement the normally 
distributed random deviations into the grain production and 
test the angular coefficients of the estimated ER models of 
the simulated genotypes (these analyses are not shown 
since they are not required to interpret the results but to 
provide estimates for data simulation).  
With the simulated data set, ANN models were trained and 
tested. A model with 15 neurons in the single hidden layer 
and 0.94% errors in the testing phase, which converged after 
528 iterations, was selected, and subsequently used to 
classify the real soybean genotypes regarding adaptability 
and stability. 
 
Phenotypic adaptability and stability analysis 
Out of the ten soybean genotypes, none was considered 
“ideal” among those that presented productivity above the 
overall mean of the environments (4,074.78 kg ha−1) (Table 
3). The best scenarios were found for the genotypes CZ 
26B36 IPRO, DM 66I68 RSF IPRO, and ST 644 IPRO, which 
were classified as having general adaptability and high 
stability/invariability by the ANN output. In addition, the M 
6210 IPRO genotype was considered exclusively responsive 
to favorable environments by the VCM method and the ANN 
(Table 3). 
The ANN showed 90% agreement with the VCM method to 
discriminate the adaptability of soybean genotypes, 
however, only 20% agreement on stability (Table 3).  

Discussion 
 
The significance observed between the variance component 
related to genotype, and environmental effect indicates 
differential genotypic responses to environmental effects. 
The edaphoclimatic conditions of each environment (Figure 
1), situated in different biomes and present differences in 
latitude, longitude, and climatic effects, such as rainfall and 
temperature, can be used to corroborate this result. Under 
such a situation, studies of adaptability and stability become 
necessary to detail the behavior of each genotype within the 
different environments evaluated, as Cruz et al. (2012) 
pointed out. 
The use of methods based on Computational Intelligence, 
such as artificial neural networks (ANN), is increasing in 
agronomy (González-Camacho et al., 2016; Sousa et al., 
2020; Kujawa et al., 2021, Costa et al., 2022). Specifically, 
the first proposal to study the phenotypic adaptability and 
stability used Eberhart and Russell (ER) methodology as prior 
information to construct an ANN and recommend genotypes 
(Nascimento et al., 2013). This approach was successfully 
used to evaluate the phenotypic adaptability and stability in 
cowpea genotypes (Teodoro et al., 2015), soybean (Alves et 
al., 2019; Oda et al., 2022), and cotton (Carvalho et al., 2015) 
avoids statistical limitations of the simpler methods, such as 
biases in the estimates of regression coefficients and the 
increase of Type Error II provides by small sample sizes 
(Teodoro et al., 2015). However, different from the ANN 
proposed by Nascimento et al. (2013), the proposed 
methodology in this manuscript allows to study the pattern 
nonlinear of genotype responses to environmental variation, 
that is, to find the “ideal” genotype defined by Verma et al. 
(1978). Considering the soybean data set, none evaluated 
considered genotype presented low sensitivity to adverse 
conditions and increasing yield as the environment 
improves, that is, the behavior of an “ideal” genotype. 
Specifically, three of the five genotypes with productivity 
above the overall mean (CZ 26B36 IPRO, DM 66I68 RSF IPRO, 
M 6210 IPRO, M 6410 IPRO, ST 644 IPRO) were classified as 
general adaptability. This result is expected since the 
evaluated genotype set is composed of released cultivars 
recommended for several environments.  
It is interesting to highlight that although sophisticated 
methodologies, for example, GGE Biplot (Yan et al., 2000), 
AMMI (Gauch, 2006), and Centroid methods (Nascimento et 
al., 2009a, b) are presented in the literature, none of them 
can find the “ideal” genotype. 
The low agreement between the results obtained by ANN 
and the VCM method in terms of the stability parameter can 
be explained by the difference in the concept of this 
parameter used in each of these approaches, one based on 
invariance and the other based on regression deviations. 
Precisely, the VCM method mirrors the concept of stability 
from its auxiliary method, i.e., the ER method, which is 
applied separately in unfavorable and favorable 
environments. Its stability concept is based on the 
predictability of genotype behavior (simplified in Table 1). 
On the other hand, this stability concept differs from that 
used by ANN, which was based on the invariance of 
genotype behavior after linearization of the data, adapting 
the FW method. However, a comparison with the FW 
method is not feasible as it is not a bi-segmented regression. 
The presented results showed that the proposed 
methodology that uses Computational intelligence with a 
segment  regression  (Verma  et al.,  1978)  can  recommend  
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Table 1. Adaptability and stability classes of genotypes based on, respectively, the arrangement of the 𝛽1𝑖  and 𝜎𝑑𝑖

2  parametric 

values according to the Verma et al. (1978) method. 

Adaptability Classes Parametric values of 𝛽1𝑖    Adaptability1 

Unfavorable Favorable 

1 𝛽1𝑖 =  1 𝛽1𝑖 = 1 Overall 

2 𝛽1𝑖 <  1 𝛽1𝑖 <  1 Specific for unfavorable environments 

3 𝛽1𝑖 >  1 𝛽1𝑖 >  1 Specific for favorable environments 

4 𝛽1𝑖 =  1 𝛽1𝑖 <  1 Not recommended 

5 𝛽1𝑖 <  1 𝛽1𝑖 >  1 Ideal 

6 𝛽1𝑖 >  1 𝛽1𝑖 = 1 Not recommended 

7 𝛽1𝑖 =  1 𝛽1𝑖 >  1 Specific for favorable environments 

8 𝛽1𝑖 <  1 𝛽1𝑖 = 1 Specific for unfavorable environments 

9 𝛽1𝑖 >  1 𝛽1𝑖 <  1 Not recommended 

Stability Classes Parametric values of 𝜎𝑑𝑖

2  Stability1 

Unfavorable Favorable 

1 𝜎𝑑𝑖

2 =  0 𝜎𝑑𝑖

2 =  0 High 

2 𝜎𝑑𝑖

2 =  0 𝜎𝑑𝑖

2 >  0 Low 

3 𝜎𝑑𝑖

2 >  0 𝜎𝑑𝑖

2 =  0 Low 

4 𝜎𝑑𝑖

2 >  0 𝜎𝑑𝑖

2 >  0 Low 
1Simplified adaptability and stability classes of the genotypes throughout both unfavorable and favorable environments. 
 
 

 
Figure 1. Location of the state of Mato Grosso do Sul in South America, with its respective biomes (Pantanal, Cerrado, and Mata 
Atlântica). 
 
 
Table 2. Variance analysis of the real soybean genotypes' grain yield (kg ha-1) (G. max). 

FV GL SQ QM       F 

Blocks/Environments 30 4252146.55 141738.22 
 

Genotypes 9 8535633.04 948403.67 6.56** 

Environments 14 90127512.44 6437679.46 45.42** 

Genotypes × Environments 126 18211847.33 144538.47 3.13** 

Error 270 12457753.65 46139.83   

TOTAL 449 133584893.00     

**Significant at 1% probability by F test. The coefficient of variation was 5.27 %. 
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Table 3. Mean grain yield and classification regarding adaptability and stability of 10 soybean genotypes (G. max) evaluated in 15 
environments in the State of Mato Grosso do Sul by the methods of Verma et al. (1978) and artificial neural networks (ANN). 

  Grain yield 
 (kg ha-1)1 

Verma, Chahal & Murty ANN 

Genotype Adaptabilty2 Stability3 Adaptabilty2  Stability4 

  (Unf. | Fav.) (Both) (Unf. | Fav.) (Both) 

AS 3680 IPRO 3993.02 (=1 | =1) High (=1 | =1) High 

BRASMAX GARRA IPRO 3942.01 (>1 | =1) Low (>1 | =1) High 

BMX POTÊNCIA RR 3919.56 (=1 | =1) Low (=1 | =1) High 

BS 2606 IPRO 3958.68 (<1 | =1) Low (=1 | =1) Low 

CZ 26B36 IPRO 4075.17 (=1 | =1) Low (=1 | =1) High 

DM 66I68 RSF IPRO 4301.00 (=1 | =1) Low (=1 | =1) High 

M 6210 IPRO 4152.15 (=1 | >1) Low (=1 | >1) High 

M 6410 IPRO 4269.23 (=1 | <1) Low (=1 | <1) High 

ST 644 IPRO 4196.45 (=1 | =1) Low (=1 | =1) High 

TEC 7022 IPRO 3940.54 (=1 | =1) Low (=1 | =1) High 

Overall mean 4074.78         
1Average of the genotype above the overall mean of the experiment is in bold. 2Adaptability based on the method of Verma, Chahal & Murty (1978) in terms of β1i values, respectively, for 
unfavorable (left) and favorable (right) environments. 3Stability based on reclassification for both environments according to Table 1. 4Stability based on invariability after data linearization (adapted 
from Finlay & Wilkinson method). 
 
 

 
genotypes considering potential nonlinear patterns of 
genotype responses to environmental variation. 
Additionally, it is interesting to highlight that using neural 
networks to assess phenotypic adaptability and stability 
allows simulating genotypes based on different 
methodologies. In this way, it is possible to create networks 
that classify genotypes based on different concepts 
according to the researcher's interest. 
 
Material and methods 
 
Firstly, it is worth mentioning that to establish the ANN 
based on VCM and FW methods as proposed in this work; 
real data must be present, followed by statistical analysis in 
which some estimated parameters were used to simulate 
the training and testing data used by the ANN models. 
 
Experimental data 
The data used here were obtained from experiments carried 
out by the Phytotechnics sector of the Fundação MS para 
Pesquisa e Difusão de Tecnologias Agropecuárias with ten 
soybean cultivars named AS 3680 IPRO, BRASMAX GARRA 
IPRO (63i64RSF IPRO), BMX POTÊNCIA RR, BS 2606 IPRO, CZ 
26B36 IPRO, DM 66I68 RSF IPRO, M 6210 IPRO, M 6410 
IPRO, ST 644 IPRO, and TEC 7022 IPRO. The cultivars were 
planted in the crop year 2020/2021 in 15 different 
experimental areas distributed among nine municipalities 
(Anaurilândia (22°08’S; 52°45’W; 370 msnm), Antônio João 
(22°10’S; 55°46’W; 630 msnm), Caarapó (22°45’S; 54°47’W; 
390 msnm), Itaporã (22°03’S; 54°55’W; 400 msnm), 
Ivinhema (22°20’S; 53°39’W; 370 msnm), Maracaju (21°38’S; 
55°06’W; 360 msnm), Navirai (22°59’S; 54°06’W; 370 
msnm), Rio Brilhante (21°50’S; 54°32’W; 310 msnm) and 
Sidrolândia (21°00’S; 54°59’W; 450 msnm)) of the State of 
Mato Grosso do Sul, Brazil. The experiments were carried 
out under randomized blocks (3 replicates), and the 
experimental unit consisted of four 5.0 m long rows spaced 
0.5 m from each other. The useful area of each plot was 4.0 
m2, with the two central rows being harvested, discounting 
0.50 m of the border at the ends to obtain the production 
per plot. With this result, it was obtained the yield 
productivity in kg ha-1. 
 

Analyses of variance 
The soybean yield (kg ha−1) data were submitted to a joint 
analysis of variance in the software Genes (Cruz, 2013). The 
model adopted for the analysis was 𝑌𝑖𝑗𝑘  =  µ +  𝑅/𝐸𝑘(𝑗)  +

 𝐺𝑖  +  𝐸𝑗  +  𝐺𝐸𝑖𝑗  +  𝜉𝑖𝑗𝑘 , where 𝑌𝑖𝑗𝑘   is the phenotypic 

mean; µ is the general mean; 𝑅/𝐸𝑘(𝑗) is the effect of the kth 

repetition (block) in the jth environment; 𝐺𝑖 is the fixed 
effect of the ith genotype; 𝐸𝑗  is the effect of the jth 

environment Normally Independently Distributed (NID); 
𝐺𝐸𝑖𝑗 is the effect of the interaction of the ith genotype in 

the jth environment NID with mean equal to 0 and variance 
denoted by 𝜎𝑔𝑒

2 ; and 𝜉𝑖𝑗𝑘  is the experimental error NID with 

mean equal to 0 and variance denoted by 𝜎𝑒
2. In addition, 

variance analyses considering the same model as above-
mentioned were carried out with the data, which were 
previously split into according to unfavorable and favorable 
environments (more details are given below). 
 
Segmented model for adaptability evaluation 
The VCM method characterizes the adaptability and stability 
of genotypes by the interpretation of the angular 
coefficients and the regression deviation of two simple 
linear regressions, which are estimated for each genotype in 
unfavorable and favorable environments. Then, initially, it is 
necessary to recognize the unfavorable and favorable 
environments through the environmental index (𝐼𝑗) given by 

𝐼𝑗 =
1

𝑔
∑ 𝑌𝑖𝑗

𝑔
𝑖 −

1

𝑔𝑎
∑ ∑ 𝑌𝑖𝑗

𝑎
𝑗

𝑔
𝑖 . Once the environments are 

identified, the response of each genotype to environmental 
variations can be analyzed within two distinct groups of 
environments (unfavorable and favorable) through a simple 
regression model, which, in this case, is based on the ER 
method. The statistical model considered by these authors is 
defined by 𝑌𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝐼𝑗 + 𝜓𝑖𝑗;  where 𝑌𝑖𝑗 is the mean of 

the ith genotype in the jth environment; 𝛽0𝑖  is the regression 
coefficient that measures the response of the ith genotype 
throughout the environments; 𝐼𝑗  is the environmental index; 

and 𝜓𝑖𝑗 is the random effect, which is decomposed as 

follows 𝜓𝑖𝑗 = 𝛿𝑖𝑗 + 𝜀𝑖̅𝑗, where 𝛿𝑖𝑗 is the regression deviation 

and 𝜀𝑖̅𝑗 is the mean experimental error. The estimators of 

the adaptability and stability parameters are defined, 

respectively, by 𝛽̂1𝑖 =
∑ 𝑌𝑖𝑗𝑗

∑ 𝐼𝑗
2

𝑗
 and 𝜎̂𝑑

2
𝑖

=
𝑀𝑆𝐷𝑖−𝑀𝑆𝐸

𝑟
 , 
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where 𝑀𝑆𝐷𝑖 is the mean square deviation of the ith 
genotype, 𝑀𝑆𝐸 is the mean square of the error and, 𝑟 is the 
number of repetitions. In this case, since the ER method is 
applied in two groups of environments, the 𝑗 number of 
environments has size 𝑎𝑢 and 𝑎𝑓, denoting, respectively, the 

number of unfavorable and favorable environments. In 
addition, thirty-six classes of genotypes are possible to be 
generated from the arrangement [i.e., (3 × 3) × (2 × 2)] 

among parametric values of 𝛽1𝑖 and 𝜎𝑑
2

𝑖
 (Table 1), which are 

tested under the respective hypotheses: 𝐻0(𝛽1):  𝛽1𝑖 = 1 

versus 𝐻1(𝛽1):  𝛽1𝑖 ≠  1 (Student's t-test) and 𝐻0(𝜎𝑑
2)

:  𝜎𝑑𝑖
2 =

0 versus 𝐻1(𝜎𝑑
2):  𝜎𝑑𝑖

2 > 0 (F-test). 

 
Artificial neural networks based on segmented model 
Initially, aiming to expand the data set for the training and 
testing of the network, yield data were simulated based on 
the information from the experiment data under study. 
Therefore, the values of 𝐼𝑗  were firstly estimated for each 

environment, and then, from its sign (positive or negative), 
two sets of environments were defined, one containing six 
unfavorable environments (i.e., 𝑎𝑢 = 6 with negative 
values) and the other containing nine favorable ones (i.e., 
𝑎𝑓 = 9 with positive values). Posteriorly, 500 vectors 

containing values of 𝑌𝑖𝑗 were simulated by the application of 

the ER model considering each possible parametric value of 
𝛽1𝑖  (i.e., 𝛽1𝑖 < 1, 𝛽1𝑖 = 1 and 𝛽1𝑖 > 1) for each set of the 
previously categorized environments; i.e., vectors 
representing grain yield in unfavorable environments had six 
values of 𝑌𝑖𝑗 simulated from the three possible values of 𝛽1𝑖  

and, vectors representing grain yield in favorable 
environments had nine values of 𝑌𝑖𝑗 simulated from the 

three possible values of 𝛽1𝑖. Finally, the groups of vectors 
were arranged in nine classes by concatenating the vectors 
(without changing the order) obtained from each value of 
𝛽1𝑖  for both sets of favorable and favorable environments. 
This procedure created a set of 4,500 simulated genotypes 
representing their production behavior throughout 15 
environments. 
The parametric values used to simulate each value of 𝑌𝑖𝑗 

according to the model 𝑌𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝐼𝑗 + 𝜓𝑖𝑗 were 𝛽0𝑖 =

𝑋̅𝐺  (general average of the grain yield data of the real 
soybean genotypes); 𝛽1𝑖 = a random value generated from a 
uniform distribution with the parameters 𝑎 and 𝑏 (i.e.,  
𝑈[𝑎; 𝑏]), where 𝑈[0.90; 1.10], 𝑈[0.00; 0.89] and 
𝑈[1.11; 2.00] were used to the respective classes 𝛽1𝑖 = 1, 
𝛽1𝑖 < 1 ou 𝛽1𝑖 > 1 and, 𝜓𝑖𝑗 = a random value of a Normal 

distribution 𝑁(0, 𝜎̂2) for the ith genotype in the jth 
environment, where 𝜎̂2 was 𝜎̂𝑢

2, whether it was the 
estimated MSE from the variance analysis carried out with 

only unfavorable environments and, 𝜎̂2 was 𝜎̂𝑓
2, whether it 

was the estimated MSE from the variance analysis carried 
out with only favorable environments. In addition, simulated 
𝑌𝑖𝑗 values were included in the dataset of the 4,500 

genotypes only if, a bilateral t test, under the hypotheses 
𝐻0:  𝛽1𝑖 = 1 versus 𝐻1:  𝛽1𝑖 ≠ 1, indicated the belonging of 

𝛽̂1𝑖 in the possible three classes of the parameter 𝛽1𝑖 . 
The ANN, used this set of 4,500 simulated soybean 
genotypes to classify the real genotypes according to the 
nine classes of adaptability coming from Table 1. However, 
since simulated values of 𝑌𝑖𝑗 identifying the four classes of 

stability in (Table 1) may overlap each other when 

considering 𝜎𝑑𝑖

2 = 0 and 𝜎𝑑𝑖

2 > 0, the phenotypic stability 

classification by the ANN was carried out via an adapted 

concept of stability, which is the invariance of results after 
data linearization. Thus, the simulated values of 𝑌𝑖𝑗 of the 

4,500 genotypes were submitted to a logarithmic 
transformation producing a linearization in which regression 
deviations are expected to be zero (Nascimento et al., 2013). 
These linearized 𝑌𝑖𝑗 values were added to the set of 4,500 

previously simulated genotypes (totaling 9,000 genotypes) 
so that an adapted concept of invariance of genotype 
behavior could be inserted, as proposed by Finlay and 
Wilkinson (1963). Therefore, the ANN could classify a 
genotype of high stability/invariability if, after linearization, 
the classification matched the origin class before 
linearization. In contrast, if the classification was another, 
the genotype was considered of low stability/invariability 
(Nascimento et al., 2013).  
Since linearization was performed simultaneously in 𝑌𝑖𝑗 

values representing the total of the 15 environments for 
each simulated genotype, only two classes (high and low) of 
adapted stability/invariability could be generated (i.e., not 
for each set of unfavorable and favorable environments); 
therefore, the ANN classification output was compared to 
those two simplified stability classes of Table 1 and 18 
classes of genotypes were then generated by data 
simulation. Finally, from the 9,000 simulated genotypes, 
80% (i.e., 400 per class) were randomly chosen and used for 
the training of ANN models, and the remaining 20% (i.e., 100 
per class) were used for the testing phase. 
The ANN models were built by single-layer backpropagation 
neural networks (Hastie et al., 2009), in which the variables 
𝑍𝑖 are weighted functions of the input variables 𝑋𝑖. The 
outputs 𝑌𝑘 are modeled as functions of these combinations. 
The sigmoid activation function was used in the single-layer, 
and the “softmax” function was used as the output function. 
The estimation of network parameters (weights) was 
performed by minimizing the sum of squares of the errors 
using the gradient descent algorithm. 
For the training of the ANN models with the simulated 
dataset, auxiliary parameters were also defined as the 
learning rate (𝐿 =  0.0005), and the maximum number of 
iterations (𝐼𝑡𝑒𝑟𝑚𝑎𝑥. = 5,000), the initialization interval of 
weights [-0.0002; 0.0002] and the number of hidden layer 
neurons that varied from 4 to 15 in each ANN convergence 
attempt. These auxiliary parameters were used in an 
algorithm programmed in the R software using the nnet 
function of the nnet package (Venables and Ripley, 2002) to 
find an ANN configuration whose maximum classification 
error in the testing phase was 1%. After choosing the ANN 
model with the smallest error, the set of real soybean 
genotypes was submitted to it for classification in terms of 
adaptability and stability. The R codes used in this 
manuscript are available at https://github.com/licaeufv. 
 
Conclusion 
 
An ANN based on a segmented model as the VCM model 
was powerful for classifying soybean genotypes regarding 
their adaptability and, possibly, can help breeders interpret 
data from the behavior of any cultivar in the face of 
environmental variations considering adapted ANN models 
for each situation. In addition, since stability was introduced 
in the ANN as a different concept from that used to classify 
the genotypes by the (VCM) statistical method, such 
classification needs to be reviewed and further improved. 
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