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Abstract 
 
This work aimed to determine the appropriate plot size for field experiments in sesame. We performed a complete randomized 
block design experiment, using 14 sesame varieties and four replicates. The plots were composed of four rows of 0.8 m long, 
spaced 0.6 m apart, and 0.1 m between plants. The useful plot area (0.72 m

2
), which was the two central rows, was divided into 12 

basic units with one plant (0.06 m
2
) each. The measures of sesame production were taken from the useful plot area. The 

appropriate size of the experimental plot was estimated using the intraclass correlation coefficient method and calculated the 
detectable difference between treatments. The optimum plot size for evaluation of sesame seed yield was 0.18 m

2
 (useful area), 

taking into account the one-row border on the sides. Gains in experimental precision (12%) were occurred with increments in plot 
size up to eight basic units (0.48 m

2
), using five replicates and four or more varieties. The increase in the number of replicates and 

plot size was more efficient than the increase in varieties number to increase the experimental precision. 
 
Key words: Sesamum indicum L, Intraclass correlation coefficient, Experimental precision, Experimental unit. 
Abbreviations: ρ _intraclass correlation coefficient method; d_detectable difference between treatments. 

 
Introduction 
 
Sesame (Sesamum indicum L.) is the ninth most cultivated 
oilseed in the world and its cultivation has great economic 
potential, due to the possibilities of exploitation, both in the 
national and international market (Mesquita et al., 2013). 
World production is estimated at 3.16 million tons, obtained 
on eight million hectares, with a productivity of 481.4 kg ha

-

1
. Brazil is characterized as a small sesame producer with 15 

thousand tons produced in an area of 25 thousand hectares 
and yields around 600.0 kg ha

-1
, as it is planted in poor soils 

(Queiroga et al., 2007). After the fall in cotton production 
caused by the cotton boll weevil (Anthonomus grandis) 
cotton's breeding program is developing sesame studies to 
recommend varieties suitable for cultivation in the 
Northeast region (Queiroz and Beltrão, 2013). However, for 
a breeding program success, it is necessary to detect small 
variations among varieties during experiments, since the 
tendency is to decrease the difference among the new 
varieties. The challenge of breeders is to increase the 
experiment precision, allowing for genetic advances and, 
consequently, more productive and better quality materials 
(Silva, 2009). Thus, the execution of high precision 
experiments requires planning. Therefore, one of the 

fundamental questions is the appropriate size of the plot or 
experimental units. 
Plot sizes tend to increase with the progress of the breeding 
program, whereas the more advanced populations need 
larger plot size for experiments. With the advancement of 
generations, there is a reduction in the variation between 
the selected materials, requiring a higher number of plants 
to detect variation and make the selection. When the 
increase of plot size does not result in more precision, 
additional increases in accuracy will be obtained with the 
use of more replicates (Cargnelutti Filho et al., 2012). 
Several factors are involved in choosing the size and shape 
of experimental plots. Among them, soil heterogeneity is a 
crucial factor. Thus it is essential to have information about 
the area, in which the experiments will be carried out (Storck 
et al., 2016). 
Several methods have been used to estimate the optimal 
plot size, such as the modified maximum curvature method 
and the linear model segmented with plateau (Ferreira, 
2007), either from uniformity assays or experiments that 
include treatment effects. The intraclass correlation 
coefficient method stands out among the estimation 
methods that take advantage of experimental data from 
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trials with treatments (Pimentel Gomes, 1984). This method 
was initially applied to trees, but the theory also applies to 
annual plants. In this method researcher considers single 
subplots or lines instead of trees, and the number of unit 
subplots may be pointed out from the intraclass correlation 
coefficient, giving the minimum variance of the average in a 
treatment.  
The literature on plot size comprises many cultures and 
distinct situations. However, no studies were found on the 
subject for the sesame crops. This work aimed to define the 
ideal plot size for experiments in sesame using the method 
proposed by Pimentel Gomes (1984). 
 
Results and discussion 
 
The analysis of variance (Table 2) calculated the intraclass 
correlation coefficient ( ), and then we estimated the 

optimal number of useful basic units per plot (Table 3). 
Significant reductions in d values (gains in experimental 
accuracy) was occurred with increases size of small plots 
(Table 4). 
The mean square of residue between plots was higher than 
within the plots (Table 4), showing more variability between 
plots than among the basic units (BU) within the plot, which 

resulted in a positive and non-close to zero value ( ̂  = 

0.4852) of intraclass correlation coefficient ( ̂ ) for the basic 

units within plot. This result reveals some correlation 
between the basic units within the plot, suggesting the use 
of reasonably small plots, in this case with 3.00 useful BU 
(0.18 m

2
). 

In a previous experiment, researchers used plots with a 
useful area of 2.00 m² to evaluate the growth and 
productivity of sesame (Mesquita et al., 2013). However, 
according to our results, the size of the plot could be 
significantly reduced without compromising the information 
obtained, since plots with 0.18 m² of useful area were 
satisfactory for evaluation of the production of sesame 
seeds. 
When ρ≤ 0.15, the solutions are excellent, while low positive 
values (ρ≤ 0.15) may overestimate the number of useful 
plants per plot of optimum size. Then, one may need to 
estimate useful rows as well (Pimentel Gomes, 1988). Silva 
et al. (2003) confirmed the information above, when 
performed clonal tests of eucalyptus. They attributed the 
possibility of inconsistent values to the presence of a single 
coefficient (ρ), when plot effectively analyzed. Such 
procedure may underestimate useful plants in the plot, 
confusing the expected intraclass correlation coefficient in 
an experiment with a small number of trees and a different 
degree of competition concerning the plot used in the 
calculation of ρ. 
On the other hand, the increase in accuracy was slight with 
the increase in areas of large plots. Our results corroborate 
with those obtained by several authors (Henriques Neto et 
al., 2004; Martin et al., 2004; Brum et al., 2008; Donato et 
al., 2008; Lúcio et al., 2011; Lúcio et al., 2012; Santos et al., 
2012; Sousa et al., 2015). 
The highest gains in experimental accuracy (reduction of d 
values) with increments in plot size were occurred up to 8 
BU (0.48 m²). Differences around 20% between cultivar 
means can be detected using plots with 4 BU (0.24 m²), 5 
replicates, and 4 cultivars; or plots with 6 BU (0.36 m²), 3 
replications and 4 and 8 cultivars. Differences around 15% 
can be detected in plots with 4 BU (0.24 m²), 7 replicates, 

and 4 or more cultivars; plots with 6 BU (0.36 m²), 5 
replicates, and 4 or more cultivars; 8 BU (0.48 m²), 3 
replicates, and 8 or more cultivars; 10 BU (0.60 m²), 3 
replicates, and 4 and 8 cultivars; or 12 BU (0.72) and 3 
replicates. 
The increase in number of replicates was more efficient in 
reducing the value of d (increase of the experimental 
accuracy) when compared to the addition in number of 
cultivars, a fact also shown by Storck, Bisognin and Oliveira 
(2006), Storck et al. (2007), Donato et al. (2008) and Sousa et 
al. (2015). 
 
Materials and methods 
 
Place of study 
 
The data collection was occurred in an experiment carried 
out in the city of Barbalha, CE, located 415 meters high, with 
geographical coordinates 7°18'20"S and 39°18'9"W. 
We developed an experiment in a randomized block design 
with 14 sesame cultivars and four replicates. The plots 
comprised of four rows of 0.8 meters in length each, with an 
area of 1.92 m² (2.4 m x 0.8 m). The row spacing was 0.6 m 
and between plants 0.1 m. The plot area consisted of two 
central rows, eliminating a plant from the ends, making up 
an area of 0.72 m² (1.2 m x 0.6 m). To collect data on the 
production of sesame seeds, we divided the plot area into 12 
basic units, each consisting of one plant in the row, with an 
area of 0.06 m². 
Based on Pimentel Gomes (1984), the following statistical 
model was assumed: 

ijkijjiijk eebcmY      (1) 

where k = number of samples (basic units) per plot, Yijk = the 
seed yield in the K basic unit, of the i cultivar, in j block; m = 
general average; ci = effect of cultivar i (i = 1, 2, ..., I 
cultivars); bj = effect of block j (j = 1, 2, ..., J blocks); eij = 
experimental error between plots; and eijk = experimental 
error between basic units within the plot (k = 1, 2, ..., K basic 
units per plot). From the statistical model, the analysis of 
variance was performed, considering the experimental error 
between plots (residue (a)) and between basic units within 
the plot (residue (b)) (Table 1). 
1
V1 = mean square of residue between plots; V2 = mean 

square of residue within the plot; 2σ  variance relative to 

the experimental error between the basic units within the 
plot; ρ= intraclass correlation coefficient due to the basic 
units within the plot. 
From the analysis of variance (Table 1), the intraclass 
correlation coefficient was estimated equalizing the residual 
mean squares to the respective mathematical expectations, 
obtaining the following formula: 
 

  21
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      (2) 

Where; = estimation of the intraclass correlation 
coefficient; V1 = mean square of the residue between plots; 
V2 = average square of the residue between basic units 
within the plot; and K = number of basic plot units (12 basic 
units). 
Pimentel Gomes (1984) proposes to choose the optimal plot 
size from plots with K basic units, complete border, and a 
double  line  of  useful  plants.  In  this  case,  the number of 
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       Table 1. Design of the analysis of variance with K basic units per plot and mathematical expectation of mean squares. 

Sources of Variation Degrees of Freedom 
Mean Square 
(MS) 

Expectation (MS) 

Blocks J-1   
Cultivars I-1   
Residue (a) (J-1)(I-1) V1   ρ1K1σ2 

 
Residue (b) JI(K-1) V2  ρ1σ2 

 

 
            Table 2. Summary of analysis of variance of the production of sesame seeds. 

Sources of Variation Degrees of Freedom Mean Squares 

Blocks 3 232.66** 
Cultivars 13 800.43** 
Residue (a) 39 688.52 
Residue (b) 616 55.94 

                              1**: significant at 1% probability according to the F test. 

 
Table 3. Optimum plot size in basic units (BU) for the production of sesame seeds, estimated by the intraclass correlation 
coefficient method

1
. 

Mean Square of Residual 
Between Parcels 

Mean Square of Residual 
Inside Plot 

Intraclass Correlation 
Coefficient ( ) 

Optimum Number of 
Useful Basic Units per Plot 

(k) 

688.52 55.94 0.4852 3.00 
                1Basic unit = 0.6 m x 0.1 m. 

 
 
Table 4. Difference between averages of two cultivars (% of the mean) expected to be detected in the evaluation of the sesame 
production, considering different plot sizes (BU), cultivar numbers and replicates, estimated by the Hatheway method

1
. 

  
Number of Cultivars 

BU 

4 8 12 16 

Number of replicates Number of replicates Number of replicates Number of replicates 

3 5 7 3 5 7 3 5 7 3 5 7 

 Differences Between Cultivar Average in % of Mean (d) 

2 39.91 28.14 23.26 35.86 26.76 22.36 34.90 26.42 22.18 34.47 26.26 22.11 
4 26.63 18.77 15.52 23.93 17.86 14.92 23.28 17.63 14.80 23.00 17.52 14.75 
6 21.01 14.82 12.25 18.88 14.09 11.78 18.38 13.91 11.68 18.15 13.83 11.64 
8 17.77 12.53 10.35 15.96 11.91 9.95 15.53 11.76 9.87 15.34 11.69 9.84 
10 15.60 11.00 9.09 14.01 10.46 8.74 13.64 10.33 8.67 13.47 10.26 8.64 
12 14.02 9.89 8.17 12.60 9.40 7.86 12.26 9.28 7.79 12.11 9.22 7.77 

                             1BU (Basic Unit) = 0.06 m2 (0.6 m x 0.1 m); b (coefficient of soil heterogeneity) = 1.1676; CV of plots with 1 BU of size = 21.85%. 

 
useful basic units (k) was: a) If 50.0ˆ  , so k = 2; b) 

if 50.0ˆ0   , use the equation: 






ˆ
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2k                         (3)

 

Where; k is a natural number or one of the values of k 
natural numbers even closer to the value of the root; c) 
when p < 0, k should be as large as possible, compatible with 
a reasonable number of degrees of freedom for the residue 
(usually at least 10 df). 
The difference between two cultivar averages were 
expressed as a percentage of the mean expected to be 
detected was calculated using the Hatheway (1961) method:  
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Where; t1 is the critical value of t in Student's distribution at 
the 5% level, t2 is the t-value from the table at level 2(1-P), P 
the probability of obtaining a significant result (80%), CV1 
the coefficient of variation of plots with 1 BU (basic unit), r 
the number of repetitions, and b the coefficient of soil 
heterogeneity, obtained after the linearization of the 
equation of Smith (1938):

 
b
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x
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Where; 
xV  is the variance per unit area of plots made up of 

X BU of size, 
1V  is the variance of the plots constituted of 1 

BU, and X is the number of BU that make up the plot (plot 
size). The value of b and CV1 were estimated in each of the 
56 plots (14 cultivars and four replicates), using the 12 BU of 
the plot area.  
To estimate the detectable difference (d), we experimented 
with a randomized block design comprising 4, 8, 12, and 16 
cultivars; 3, 5, and 7 replicates; and parcel sizes of 2, 4, 6, 8, 
10, and 12 BU. 
 
Conclusions 
 
The optimum plot size for evaluating the yield of sesame 
seeds was 0.18 m² (useful area), considering a one-row 
border on the sides. This size is smaller than the one 
generally used in research with the sesame crop (2.00 m²). 
The highest gains in experimental precision (12%) with 
increments in plot size was occurred up to 8 Basic Units 
(0.48 m²), using 5 replicates, and 4 or more cultivars. 
The Increase in number of replicates and plot size were 
more efficient to increase experimental accuracy than the 
increase in the number of cultivars. 
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