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Abstract 
 
This paper aims to study the reflectance signature information of infested and non-infested sorghum leaves (Sorghum vulgare L.) by 
sugarcane aphid (Melanaphis sacchari) to discriminate infested sorghum. The study treatments were 0 (0 aphids/leaf), 1 (1-20 
aphids/leaf), 2 (21-50 aphids/leaf), 3 (> = 51 aphids/leaf), 4 (> = 51 aphids/leaf + visible damage), 5 (abiotic stress) and 6 (> = 51 
aphids/leaf + abiotic stress). An Ocean Optics

TM
 HR4000 spectrometer was used. The multifactor ANOVA and Kruskal-Wallis tests at 95% 

confidence indicated that the reflectance at 402.95, 528.43, 658.36, 788.13, and 965.14 nm wavelengths have significant differences 
between treatments and with the control. Also Kernel Discriminant analysis was carried out and the combination of the wavelengths 
centered at 788.17 and 965.14 nm allows 70 % of correct classification of treatments. The results indicate that it is possible to detect M. 
sacchari infested sorghum by using the spectral information of some specific wavelengths. This study may enable the research of an 
aerial sensor to make recommendation maps of application pesticides. 
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Introduction 
 
Agricultural pests are considered an important factor that 
negatively impacts crop yields. Aphids are among the pests 
causing major damage to crop. They feed from suctioned sap 
and excrete honeydew on the leaves, which in combination 
with the environmental dust create an environment conducive 
to fungal growth. This reduces the photosynthetic capacity of 
the plant by blocking the absorption of certain lengths of the 
electromagnetic spectrum in the region of chlorophyll 
production (550-650 nm). Therefore, the visible effects of the 
pest on the crops occur when the infestation exceeds the 
economic threshold of the pest (50 aphids/leaf/plant) (Bowling 
et al., 2016). This is necessary to carry out continuous 
monitoring in the production fields to avoid the spread of the 
pest on the entire crop. 
As it is known, sorghum is the fifth most important cereal in 
the world by production volume and acreage. Sorghum is used 
to feed livestock and produced as food for humans. The 
sugarcane aphid pest (Melanaphis sacchari) present in 

sorghum is of special interest. The pest has the peculiarity to 
settle down on the underside of the leaves of sorghum, which 
makes the detection, monitoring, and the control tasks more 
difficult. By exceeding the economic threshold, M. sacchari 
causes sorghum to change the color of the leaves to a purple 
color, followed by chlorosis, necrosis, null growth, delayed 
flowering, and poor grain filling. Also M. sacchari causes losses 
in the quality and yield of the crop (Singh et al., 2004). The 
detection, monitoring, and control in early stages of 
infestation are important activities to avoid large qualitative 
and quantitative losses of cultivation. 
Conventional monitoring of sugarcane aphid is based on 
physical inspection on the growing and surrounding areas, and 
pest trapping in the field (Buoro and Imamichi, 2018). 
Monitoring and control of large areas are integrated activities 
and represent high costs of economic and human resources. 
Once the presence of the pest in the crop is detected, 
pesticides are applied uniformly. The environmental impact of 
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traditional control lies mainly in applied pesticides that do not 
differentiate between pests and beneficial insects. For this 
reason, insect populations that help the natural control of 
pests are reduced. On the economic perspective, the uniform 
application of pesticides implies a greater expense for the 
producer thus reducing the profits of the crop (Ding and 
Taylor, 2016). Hence, farmers must have new technologies 
that allow them to detect pests even before they reach the 
economic threshold. A promising area to detect pests on large 
locations and reduce costs is Remote Sensing. With the help of 
the Global Positioning System (GPS) and Geographic 
Information Systems (GIS), variable crop and pest information 
can be obtained without physical contact. Another advantage 
of Remote Sensing in agriculture is to detect the presence of 
the pest even before the first signs appear in the early 
infestation stage (Zhang and Kovacs, 2012).  Well known 
techniques of remote sensing studies are the multispectral and 
hyperspectral reflectance of the vegetation. The techniques 
have sensors with 4 to 20 spectral bands and sensors with 
more than 20 spectral bands, respectively.  
Remote Sensing has shown results in crops such as wheat, for 
spectrometric detection at certain wavelengths that allow the 
identification of greenbug aphid (Schizaphis graminum 
Rondani) and Russian wheat aphid (Diuraphis noxia) 
(Homoptera : Aphididae) infestations  (Riedell and Blackmer, 
1999; Yang et al., 2005; Mirik et al., 2006a; Mirik et al., 2006b; 
Elliot et al., 2009; Luo et al., 2011; Mirik et al., 2012). Between 
the 720 to 740 nm range and central lengths at 694 and 800 
nm the pest, S. graminum, can be detected. The D. noxia can 
be detected in visible and near-infrared regions between 460 -
710 nm and 760-935 nm. Also, the spectral reflectance of 
infested and non-infested leaves by aphids in crops such as 
cotton and mustard have been studied (Reisig and Godfrey, 
2007; Kumar et al., 2013). In cotton crops, the pest was 
detected at the reflectance of 850 nm, compared to mustard 
crops that pest was detected at 550-560 nm, 700-1250 nm, 
and 1950-2450 nm. The latter wavelength range allowed to 
differentiate the levels of infestation in mustard. In addition, 
the use of spectral vegetation indices such as NDVI (Eq. 1) 
(Rouse et al., 1973), are extensively studied to discriminate 
between infested and non-infested crops. 

𝑁𝐷𝑉𝐼 =
𝑅𝑁𝐼𝑅−𝑅𝐵𝑅

𝑅𝑁𝐼𝑅+𝑅𝐵𝑅
 (Eq. 1) 

Where, NDVI is the normalized difference of vegetation index; 
RNIR is the reflectance in the near-infrared; and RBR is the 
reflectance in the visible red. 
The NDVI results showed variation and temporal inconsistency 
due to the influence of soil spectral reflectance (Yang et al., 
2005; Mirik et al., 2006a; Mirik et al., 2006b; Mirik et al., 2012; 
Reisig and Godfrey, 2007). 
However, spectral indices are not the only way to detect 
vegetation stress factors through multi or hyperspectral data. 
In this sense, Ray et al. (2010), prove the application of 
mathematical methods, such as stepwise discriminant analysis 
(SDA).  They found the optimum bandwidth differs for 
different wavelength regions for crop. 
Remote Sensing has also been used for the detection of the 
sugarcane aphid (Melanaphis sacchari) pest in sorghum crop 
(Elliot et al., 2015; Backoulou et al., 2015; Stanton et al., 2017; 
Backoulou et al., 2018a; Backoulou et al., 2018b). These 
studies use multispectral cameras that are mounted on drones 

to obtain aerial images of sorghum crops. When the images 
are analyzed either by the NDVI spectral index or the Spatial 
Patterns the areas of pest infestation are obtained in those 
images. However, there is no previous work on the analysis of 
the spectral reflectance of infested and non-infested leaves to 
detect the wavelengths where the M. sacchari pest generates 
changes in the spectral curve of the sorghum crop.  
This study aims to differentiate amongst non-infested and 
infested sorghum leaves by Melanaphis sacchari Zehntner, 
1897 (Hemiptera: Aphididae) through the information 
obtained in the hyperspectral reflectance. The application of 
mathematical methods such as Kernel Discriminant Analysis 
(KDA) and the Discrimination Analysis by Partial Least Squares 
(PLS-DA) could demonstrate their functionality in the 
classification of spectral information, for differentiating 
between levels of infestation.  
 
Results and Discussion 
 
Spectral signature of sorghum leaves infested and non-
infested 
 
The average spectral signatures by infestation levels are shown 
in Figure 1. As it can be observed, there are important 
differences between the spectral signature of each infestation 
level. Due to the complexity of the curve, it is not possible to 
observe a visual relationship between reflectance curves and 
infestation levels. However, it can be said that the reflectance 
of healthy leaves (non-infested) in the visible range of the 
electromagnetic spectrum is close to 18% at 550 nm. While in 
the near-infrared the reflectance peak occurs at 790 nm with a 
value of 51%. When the infestation is in the early stages T1 
and T2, the reflectance peak at 550 nm was decreased to 17% 
and 14%, respectively. While at 790 nm the values are 56% and 
48%. When the infestation is highest at T3, 60% of reflectance 
in the near-infrared (790 nm) is obtained, however, there are 
no signs of stress in the plant. In stage T4, the reflectance at 
550 and 790 nm have values of 24% and 52%, respectively. The 
stages T5 and T6 show greater reflectance at 550 nm with 
values of 21% and 38% and lower reflectance at 790 nm with 
values of 45% and 47 %, respectively. 
Therefore, the results show the infestation of M. sacchari 
modifies the spectral curve behavior of the sorghum crop in 
the early stages. 
 
Spectral sensitivity by T/T0 ratio to discriminate between 
infested and non-infested sorghum leaves 
 
To find the wavelengths that represent important changes of 
reflectance towards the presence of the pest, the spectral 
sensitivity T/T0 ratio was calculated (Figure 2). 
The resulting sensitivity curve is an easy way to detect 
important differences in the reflectance of any infestation 
level in comparison to non-infested level. When the 
reflectance (Figure 1) of any infestation level is greater than 
the reflectance of T0, the sensitivity value (Figure 2) is greater 
than the baseline (T0/T0). On the contrary, the sensitivity 
value is less than the baseline when the reflectance value is 
lower than the reflectance of T0.  
Figure 2 shows that major changes in sensitivity, for all 
infestation levels and abiotic factors, occur from the 260 to 
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740 nm. The spectral sensitivity curves did not show a uniform 
behavior in any wavelength range that is useful to derive 
prediction models of the infestation levels of the pest. The 
spectral sensitivity peak for all treatments was observed near 
the wavelength of 415 nm. At approximately 520 nm, a peak is 
found that corresponds to treatments T5 and T6. Near the 640 
nm, there is a peak in spectral sensitivity for treatments T4, T5, 
and T6. Graphs for treatments T1, T2, and T3 have a flatten 
behavior, which does not clearly show the sensitivity of the 
evaluated wavelengths. Overall, the results indicate the 
possibility of differentiating between two groups of treatments 
T0, T1, T2 and T3; and treatments T4, T5, and T6. The statistical 
analysis must test this assumption.    
 
Coefficient of determination of first derivative reflectance 
curve at the measured wavelengths and infestation levels 
 
Figure 3 shows the values of R

2
 calculated from the first 

derivative (∂𝜌/∂𝜆). From this data, the highest values of R
2
 

were located. The highest coefficients of correlation between 
the wavelength and the aphid infestation were found at 
402.95, 528.43, 658.36, 788.13, and 965.14 nm.  
 
ANOVA and Kruskal-Wallis of first derivative of reflectance 
 
Based on the five highest R

2
 found for the first derivative of 

levels of infestation and abiotic factors, statistical analyses 
were performed in the Statgraphics™ Centurion program. 
According to the methodology described by Ray et al. (2010), 
the average of 10 nm from the first derivative of the 
reflectance, with center at 402.95, 528.43, 658.36, 788.13, 
965.14 nm, respectively, were obtained. The normality tests of 
those data were performed. The results suggest the data at 
402.95 and 658.36 nm come from a non-normal distribution. 
Therefore, for spectral reflectance at such wavelengths, the 
non-parametric Kruskal-Wallis test was performed. On the 
other hand, the remaining 3 wavelengths came from normal 
data and thus, a multifactor ANOVA analysis was used.  
Table 1 shows the results of ANOVA and Kruskal-Wallis analysis 
that indicate statistically significant differences (P > 0.95) 
amongst reflectance values for at least two of the infestation 
levels or abiotic factors affecting the sorghum leaves. 
Table 2 summarizes a detailed comparison of significant 
differences at the 95% confidence for all infestation levels and 
abiotic factors. The results show, at 402.95 nm, the reflectance 
values allow to discriminate T0 from T4 through T6. Also, at 
788.13 nm, reflectance allows to discriminate T0 from T2 
through T5 except leaves from T1 or T6. Also, by using the 
reflectance at wavelengths of 788.13 and 965.14 nm, 71% of 
pair combinations of infestation levels and abiotic factors can 
be discriminated. Thus, by using the reflectance at the five 
wavelengths, it is possible to discriminate amongst any pair of 
combinations. The results indicate that the “Infestation Level” 
factor significantly influences the dependent variable, “The 
first derivative”. The “Replication” factor did not significantly 
influence the dependent variable. The results indicate the 
feasibility of the method to detect early stages of sugarcane 
aphid infestation. 

Discriminant analysis by partial least square of first derivative 
of reflectance 
 
Figure 4 shows the results of the PLS-DA for the analyzed 
cases. The results show the comparison of the PLS-DA models 
using the Prediction Error Sum of Squares (PRESS). The PRESS 
value begins with a high variation in components 1 and 2 
followed by a decrease in variation. Table 3 shows the five 
components for the model PLS-DA of infestation levels. This 
supports Figure 4, because components 1 and 2 have the 
highest value under PRESS Random Prediction R

2
. This model 

explains approximately 70% of the variation that is consistent 
with the results presented in Table 2. 
 
Kernel discriminant analysis of first derivative of reflectance 
 
The results of the Kernel discriminant analysis (KDA) are 
presented in Table 4 and 5. In Table 4 the Wilks’ Lambda 
showed that the first and second discriminant functions have 
the best performance prediction of the infestation level. In 
addition, the 3 and 4 discriminant functions have the 
possibility to discriminate and predict the infestation level. The 
values of Eigenvalue, Relative percentage, and Canonical 
correlation are high and corroborate with the Wilks’ Lambda 
results. Table 5 shows the model using the first discriminant 
function centered on the wavelengths of 402.95, 528.43, 
658.36, 788.13, and 965.14 nm. This has 71.43% of cases 
correctly classified. Table 5 is consistent with the results of the 
multifactor ANOVA, Kruskal-Wallis, and PLS-DA analysis. 
Therefore, this confirms the feasibility of using hyperspectral 
data for the detection of stress caused by M. sacchari, along 
with the early stages of infestation.  
 
Final analysis of results 
 
The spectral information from the wavelengths with a width of 
10 nm and centered at 402.95, 528.43, 658.36, 788.13 and 
965.14 nm, allows the classification of the stress caused to the 
sorghum crop due to different levels of M. sacchari 
infestations and abiotic factors. In addition, the wavelengths 
allowed to differentiate in low infestation levels, before 
reaching the economic threshold of the pest at 50 aphids per 
leaf per plant. Previous studies tested multispectral aerial 
images to detect the sugarcane aphid (Elliot et al., 2015; 
Backoulou et al., 2015; Stanton et al., 2017; Backoulou et al., 
2018a; Backoulou et al., 2018b). The cameras used in those 
studies do not have the sensors that correspond precisely at 
the wavelengths to detect and discriminate the infested zones 
with sugarcane aphids. Also, other research studies have used 
the NDVI as a classification index, however the results suggest 
temporal inconsistency in the data generated (Riedell and 
Blackmer, 1999; Yang et al., 2005; Mirik et al., 2006a; Mirik et 
al., 2006b; Mirik et al., 2012; Yang et al., 2009; Reisig and 
Godfrey, 2007; Kumar et al., 2013). Therefore, the present 
study results offer an alternative solution from spectral indices 
of vegetation, showing the feasibility of using mathematical 
methods such as PLS-DA regression and KDA. 
On the other hand, the design of a sensor with at least two of 
the five centered wavelengths (788.13 and 965.14 nm) as 
previously mentioned may help the producer obtain  
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Table 1. Summary of ANOVA multifactorial and Kruskal-Wallis. Factors: Infestation Level and Replication. Dependent variable: First 
derivative reflectance at the given wavelength. 

Wavelength (nm) Data type Statistical Analysis p-value 

402.95 Non-normal Kruskal-Wallis *0.000142789 

528.43 Normal Multifactor ANOVA *<0.05 

658.36 Non-normal Kruskal-Wallis *0.0000096571 

788.13 Normal Multifactor ANOVA *0.0044 

965.14 Normal Multifactor ANOVA *0.0001 

* p < 0.5. 

 
Fig 1. Comparison between mean spectral signatures of sorghum leaves for the treatments of infestation levels and control after the 
MatLab ™ filter. 
 
Table 2. Summary of statistically significant differences between treatments, at 95% confidence. 

Waveleng
th (nm) 

Infestation level 

0-
1 

0-
2 

0-
3 

0-
4 

0-
5 

0-
6 

1-
2 

1-
3 

1-
4 

1-
5 

1-
6 

2-
3 

2-
4 

2-
5 

2-
6 

3-
4 

3-
5 

3-
6 

4-
5 

4-
6 

5-
6 

402.95  - -  - * * * - - * * * -  - - * - - * - * * 

528.43  -  -  -  - * *  -  -  - * *  -  - * *  - *  - *  - * 

658.36  -  -  - * * *  -  - * * *  - *  - *  -  - *  - * * 

788.13  - * * * *  -  - * * *  -  - -   -  -  -  -  -  -  - * 

965.14 *  -  -  - *  - * * *  - * *  -  -  -  - * * *  -  - 

* p < 0.5 

 
Fig 2. Spectral sensitivity by wavelength between the spectral reflectance of infested leaves and reflectance of the healthy leaf (control).  
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Table 3. Model PLS-DA for Infestation level.  

Component % Variation on 
Y 

R-square  Medium square 
PRESS 

Prediction 
R-square 

PRESS Random 
Prediction  
R-square 

1 70.1271 70.1271  31.5821 69.6326 69.6326 

2 0.998862 71.126  32.0157 69.2157 69.2157 

3 0.0715524 71.1975  34.2711 67.047 67.047 

4 0.0324379 71.23  35.2017 66.1522 66.1522 

5 0.00236786 71.2324  35.2652 66.0911 66.0911 

p < 0.5 Cases: 49, Cross-validation: delete every 2. 
 

 
Fig 3. Coefficient of determination for the first derivative of the reflectance curve at the measured wavelength and infestation levels.  
 
                   Table 4. KDA summary. Cases: 49, Infestation levels: 7, Discriminant function: 5.  

Discriminant 
function 

Eigenvalue Relative 
percentage 

Canonical 
correlation 

Wilks’ 
Lambda 

p-value 

1 11.4116 78.75 0.95887 0.0107392 *<0.05 
2 1.67487 11.56 0.79130 0.133291 *<0.05 
3 1.03788 7.16 0.71365 0.356536 *<0.05 
4 0.335735 2.32 0.50135 0.726578 *0.0369 
5 0.0303803 0.21 0.17171 0.970515 0.5334 

                   *p < 0.5. 
 

 
Fig 4. Comparison of the PLS-DA model to determine the number of components by using the PRESS to find the greater variation 
between levels of the infestation. 



229 
 

               Table 5. KDA results, percentage of correctly classified cases: 71.43%. 

Current 
Treatment 

Group 
Size 

% Foretold 
Treatment 

0 1 2 3 4 5 6 

0 7 6 0 1 0 0 0 0 

(85.7%) (0.0%) (14.3%) (0.0%) (0.0%) (0.0%) (0.0%) 

1 7 1 4 2 0 0 0 0 
  (14.3%) (57.1%) (28.6%) (0.0%) (0.0%) (0.0%) (0.0%) 

2 7 1 1 4 0 1 0 0 
  (14.3%) (14.3%) (57.1%) (0.0%) (14.3%) (0.0%) (0.0%) 

3 7 0 0 0 6 1 0 0 
  (0.0%) (0.0%) (0.0%) (85.7%) (14.3%) (0.0%) (0.0%) 

4 7 0 0 2 2 2 1 0 
  (0.0%) (0.0%) (28.6%) (28.6%) (28.6%) (14.2%) (0.0%) 

5 7 0 0 0 0 1 6 0 
  (0.0%) (0.0%) (0.0%) (0.0%) (14.3%) (85.7%) (0.0%) 

6 7 0 0 0 0 0 0 7 
  (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (0.0%) (100.0%) 

 
 

 
Fig 5. Example of regrown sorghum with infestation of sugarcane aphid (M. sacchari), which was used to infest the sorghum plants in 
this study. 
 

 
Fig 6. Measurement equipment. A. HR-4000 UV-VIS spectrometer; B. Deuterium and Halogen light sources; C. Optical fiber for 
reflectance; D. 45 ° fiber carrier; E. Spectralon WS-1 Ocean Optics. 
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Fig 7. Flowchart for the program in MatLab™. 

 
 
information about the crop’s health status related with the 
behavior and location of the sugarcane aphid.  
 
Materials and Methods 
 
Experiment location and sampling 
 
The experiment was carried out under macro tunnel 
conditions in the Life Sciences Division, University of 
Guanajuato, with coordinates 20° 44' 21.28'' N and 101° 19' 
36.41'' W. The study was conducted in the Bajio 
Guanajuatense region, which ranks second nationwide in the 
production of sorghum (FIRA, 2019).  
The sorghum was sown in the spring-summer of 2018 
agricultural cycle and used 20 kg/ha of seed, on three areas of 
18 m

2
 with 2 m row and separation of 0.75 cm between them. 

The sown depth was 3 cm. The base fertilization was sown 
with 400 kg/ha of the Nutrimax™ NPK physical mix (20-12-14 + 
micros). The appropriate agronomic activities were performed, 
except the application of insecticides. A 40 x 26 thread/inch 
anti-aphids mesh was placed over the crop, to prevent the 
spread of the pest to the surrounding crop fields. For the 
infestation, host plants with the presence of the pest, 
Johnsongrass (Sorghum halepense), and regrowth of sorghum 
were searched and collected (Figure 5). 
The infested plants were cut with scissors and placed in a 
paper bag. Then, placed in an ice cooler under the shade to 
reduce the movement of aphids (Jiménez, 2015). Infested 
plants were placed on the cultivation in the macro tunnel so 
that the aphids migrate towards the standing crop. Five 
infested plants were placed on the 2 m groove. 
Hyperspectral measurements were performed between the 
phenological stages 4 and 5 of the crops, at 50 to 60 days after 
emergence. Based on the appearance and number of aphids 
per leaf, these were classified into six different infestation 
levels and abiotic factors. The experiment was completely 
random. 
The sugarcane aphid number was estimated according to the 
following classification, where the aphid threshold population 
per leaf per plant was 50 (Bowling et al., 2016): 
T0 – Leaves without aphid, 0 aphids per leaf.              
T1 – Leaves with low aphid density, 1-20 aphids per leaf.              
T2 – Leaves with a medium density of aphid: 21-50 aphids per 
leaf.              
T3 – Leaves with a high density of aphid: 51 and more aphids 
per leaf.            
T4 – Leaves with honeydew of aphid: 51 and more aphids per 
leaf, honeydew, and visible damage.      
T5 – Leaves with abiotic stress: leaves stressed by water 
excess, without fertilization and visible damage.               

T6 – Leaves with very high aphid density and abiotic stress, 51 
or more aphids per leaf and abiotic stress.              
The leaves previously classified at the infestation level were 
cleaned by removing the aphids and placing them in plastic 
bags. The removed aphids were returned to the macro tunnel. 
A total of 49 leaves were collected from different plants, which 
represents 7 replications by treatment.         
 
Spectral data measurement 
 
The measurements were taken between October 22 through 
October 25, 2018. The spectral reflectance curves of the leaves 
were obtained with an Ocean Optics™ HR4000 UV-VIS 
spectrometer (Ocean Optics, Inc.). The spectral resolution of 
the spectrometer was 0.26 nm in the range of 190 to 1100 nm. 
The optical fiber for reflectance was used and placed in a 45° 
fiber carrier with respect to the horizontal plane. The light 
source was preheated approximately 1 h before starting the 
measurements. This is due to the Deuterium and Halogen 
lamps reaching the same temperature thus avoiding spectral 
noise. The Spectralon WS-1 Ocean Optics™ (Ocean Optics, Inc.) 
was used as the reflectance standard (Figure 6). The 
spectrometer was configured to perform 10 scans of each leaf 
before giving an average reading. The measurements were 
made between 1200 and 1700 local time in central Mexico. 
Seven replications of each infestation level, including control 
(T0), were made. Three measurements in the middle of each 
leaf were performed. A total of 147 signatures of spectral 
reflectance of vegetation were obtained. 
The data was collected and stored in text format with the 
Spectra Suite program (Ocean Optics, Inc.). The spectral 
signatures of the leaves were processed and analyzed using 
Excel™ (Microsoft, 2019), MatLab™ R20017a and 
Statgraphics™ Centurion XVI.I (Statgraphics Technologies, Inc., 
The Plains, Virginia). 
 
Data analysis 
 
Since the spectrometer noise/signal ratio was high, a filter was 
developed in MatLab ™ to reduce unwanted noise (Figure 7). 
After filtering, the data was analyzed by 4 different statistical 
methods. The methods are described as followed. 
 
Spectral sensitivity by T/T0 ratio to discriminate between 
infested and non-infested sorghum leaves 
 
The spectral sensitivity was carried out in MS Excel ™ by 
dividing spectral reflectance at each wavelength of the spectral 
curve of each infestation level from T1 through T6, and 
reflectance of T0 infestation level (Eq. 2).  
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𝑆(𝜆𝑖) =
𝑅𝑇𝑛(𝜆𝑖)

𝑅𝑇0(𝜆𝑖)
      (Eq. 2) 

 
Where, S (𝜆𝑖) is the spectral sensitivity value at 𝜆𝑖 wavelength; 
RTn (𝜆𝑖) is the spectral reflectance measured at 𝜆𝑖 wavelength 
for the n level of infestation (which can be T1, T2, T3, T4, T5, 
T6); RT0 (𝜆𝑖) is the reflectance of the non-infested leaves (T0); 
and i is the i-th position of the wavelength into the spectral 
curve. The ratio was calculated by using the reflectance 
average of the seven replications of each infestation treatment 
and the reflectance average of the seven replications of T0 
(Reidell and Blackmer, 1999).  
 
Coefficient of determination of the first derivative reflectance 
curves and levels of infestation 
 
The first derivative of the reflectance curve (∂𝜌/∂𝜆) was the 
difference of reflectance between two consecutive 
wavelengths, which was computed and assigned to the minor 
wavelength (Toral, 2002). 
The coefficient of determination (R

2
), in this study, represents 

the proportion of the variance in the levels of infestation that 
is predictable from the reflectance measured values at a 
certain wavelength. 

The coefficient of determination 𝑅𝑖
2 was calculated according 

to Eq. 3 as follows: 

𝑅𝑖
2 =

∑ (𝑇̂𝑖−𝑇̅)𝑛
𝑖=1

∑ (𝑇𝑖−𝑇̅)𝑛
𝑖=1

 (Eq. 3) 

Where, 𝑅𝑖
2is the coefficient of determination at the i-th 

wavelength in the reflectance spectral curves; 𝑇̂𝑖 is the 
estimated level of infestation according to Eqs. 4, 5 and 6; 𝑇 is 

the average of infestation levels; 𝑇𝑖  is the i-th infestation level 
number; and n is the number of measured reflectance values, 
which also corresponds to the number of wavelength bands in 

the spectral curves. The eq. 4 allows estimating  𝑇̂𝑖 and comes 
from the linear correlation of infestation levels (Eq. 5 and Eq. 
6), and reflectance values (𝜌𝑖) at a given i-th wavelength of the 
spectral curves.   

𝑇̂𝑖 = 𝑚𝑖𝜌𝑖 + 𝑏𝑖 + 𝜀0  (Eq. 4) 

𝑚𝑖 =
𝑝 ∑ 𝜌𝑗,𝑖𝑗−∑ 𝜌𝑗,𝑖

𝑝
𝑗=0

𝑝
𝑗=0 ∑ 𝑗

𝑝
𝑗=0

𝑝 ∑ 𝜌𝑗,𝑖
2𝑝

𝑗=1
−(∑ 𝜌𝑗,𝑖

𝑝
𝑗=0

)
2  (Eq. 5) 

𝑏𝑖 =
∑ 𝑗−𝑚𝑖 ∑ 𝜌𝑗,𝑖

𝑝
𝑗=0

𝑝
𝑗=0

𝑝
   (Eq. 6) 

 
Where, 𝑚𝑖 is the slope of the linear equation; 𝑏𝑖 is the y-axis 
intercept constant; and ε0 is the random error of the model; p 
is the number of infestation levels; 𝜌𝑗,𝑖 is the reflectance value 

at the i-th wavelength in the spectral curve for the j-th 
infestation level. 
 
ANOVA and Kruskal Wallis 
 
For these analyses, five wavelengths were chosen under the 
consideration to obtain the greatest R

2
 values. The average of 

10 nm from the first derivative range were estimated and 
applied towards the analyses (Ray et al., 2010). The normality 
of the data at the five wavelengths for all infestation levels 
were verified. Hence, statistical analyses of multifactor ANOVA 
or Kruskal-Wallis were applied to the reflectance data. Both 
statistics were evaluated at p < 0.05.  
 

Discriminant Analysis by Partial Least Squares regression 
 
PLS-DA regression is a method used when a property of a 
physical system is related in some way with an opto-electronic 
signal. In this study, the infestation levels were predicted as a 
function of reflectance data PLS-DA regression to find the 
principal wavelengths. The linear model from PLS regression is 
represented by Eq. 7: 
𝑦 = 𝛽0 + 𝛽1𝜌1 + 𝛽2𝜌2 + ⋯ + 𝛽𝑛𝜌𝑛 + 𝜀1 (Eq. 7) 
Where, 𝑦 is the predicted level of infestation; 𝛽0 is the 
constant initial value of the model; 𝛽1through 𝛽𝑛 are the linear 
coefficients that relates the reflectance values of the spectral 
curve; 𝜌1through 𝜌𝑛, are the reflectance at the spectral curve; 
and𝜀1is the random error of the model. 
The 𝛽 is estimated by Eq. 8 as follows: 

𝛽̂ = (𝑃𝑇𝑃)−1𝑃𝑇𝑦   (Eq. 8) 
 

Where, 𝛽̂ is the matrix of linear coefficients of the model; 𝑃is 
the matrix of reflectance measurement values of all infestation 
levels; 𝑃𝑇 is the transposed of 𝑃; and 𝑦 is the matrix of 
infestation levels. More details can be found in Pérez and 
Narasimhan (2018). Due to time limitation, PLS-DA was carried 
out for the first derivative of the reflectance at the 402.95, 
528.43, 658.36, 788.13, 965.14 nm.  
 
Kernel Discriminant Analysis 
 
The KDA constructs a linear combination of the p input 
variables observed quantitatively. These linear combinations 
are functions to help discriminate amongst groups. The KDA 
was implemented to find model predictions on the infestation 
levels (group or class) for new sets of reflectance data from 
sorghum leaves. The KDA used in this study is the Linear 
discriminant analysis (LDA). More information of LDA can be 
found at Bandos et al., 2009. 
 
Conclusion 
 
This study shows the variation in the spectral reflectance of 
sorghum leaves caused by M. sacchari infestation. The 
reflectance at wavelengths with 10 nm bandwidth and 
centered at 402.95, 528.43, 658.36, 788.13 and 965.14 nm 
have the sensitivity to discriminate amongst infestation levels 
of sugarcane aphids in sorghum leaves. The statistical PLS-DA 
regression method achieved 70% of correct classifications of 
infestation levels with two spectral bands at 788.13 and 965.14 
nm. The KDA method also reached this percentage by using 
the five mentioned spectral bands. This allows us to conclude 
that the M. sacchari pest causes spectral changes in the leaves 
of sorghum crops in the early stages of infestation.  This 
suggests the pest can be detected and discriminated remotely 
to aid producers in locating the pest on the fields, eventually 
making decisions on pesticides applications. However, this 
information must be extrapolated to the field with the design 
and construction of a sensor installed in a drone capable of 
measuring the mentioned wavelengths. 
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