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Abstract 

 

Old Yellow Enzyme (OYE) is a flavin mononucleotide-dependent oxidoreductase. 12-oxophytodienoic acid reductases (OPRs) are 
OYE homologs and are represented by multigene families in plants. OPRs catalyze the reduction of double bonds in α,β-unsaturated 

aldehydes or ketones. They belong to the octadecanoid pathway, which converts linolenic acid to jasmonic acid (JA). Individual OPR 

family members may have distinct functions due to their different substrate specificity, subcellular localization, tissue distribution, 
and differential regulation of their expression in response to specific environmental cues. Based on their differential preferences for 

12-oxophytodienoate (OPDA) stereoisomers, these enzymes are classified into two subgroups: OPRI and OPRII. OPRI enzymes 

preferentially catalyze the reduction of cis-(−)OPDA over the JA precursor cis-(+)OPDA , and therefore, they are not involved in JA 

biosynthesis. Although a significant progress has been made to understand the exact physiological roles of OPR enzymes, the 
function of OPRI subgroup members in plants remains largely unknown. Enzymes belonging to this subgroup are possibly involved 

in defense responses and signaling. The members of the OPRII subgroup are required for JA biosynthesis because they catalyze the 

reduction of the JA precursor cis-(+)OPDA. This review will highlight some characteristics of this family in Arabidopsis and other 

species and discuss the physiological role of OPR family members in plants. 
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compound; defense response. 

Abbreviations: JA_jasmonic acid; OPDA_oxophytodienoate; OPR_oxophytodienoic acid reductase; OYE_old yellow enzyme. 
 

Introduction 

 

Old Yellow Enzyme (OYE) is a flavin mononucleotide-
dependent oxidoreductase (Raine et al., 1994) and was 

initially isolated from brewer’s bottom yeast (Warburg and 

Christian, 1932). Oxophytodienoate reductases (OPRs) are a 

small group of flavin-dependent oxidoreductases in plants 
and belong to a class of enzymes closely related to the yeast 

OYE (Williams and Bruce, 2002). Plant OPRs are usually 

encoded by a multigene family. To date, several OPR 

isozymes have been identified in various plant species 
(Strassner et al., 1999; Sanders et al., 2000; Schaller et al., 

2000; Stintzi and Browse, 2000; Strassner et al., 2002; 

Agrawal et al., 2003; Matsui et al., 2004; Zhang et al., 2005). 

Early biochemical studies of the enzymatic activity of OPRs 
in Arabidopsis and tomato have led to their classification into 

two subgroups (OPRI and OPRII), based on their differential 

preferences for 12-oxophytodienoate (OPDA) stereoisomers 

(Schaller et al., 1998; Strassner et al., 1999; Schaller et al., 
2000). Members of the OPRI subgroup have a rather broad 

substrate specificity and catalyze the reduction of double 

bonds in α,β-unsaturated aldehydes or ketones (Uchida, 

2003). Moreover, OPRI enzymes preferentially catalyze the 
reduction of cis-(−)OPDA over cis-(+)OPDA, and therefore, 

they are not involved in jasmonic acid (JA) biosynthesis. The 

members of the OPRII subgroup are required for JA 

biosynthesis because they catalyze the reduction of the JA 
precursor cis-(+)OPDA (Schaller et al., 1998). Biochemical 

and genetic studies in Arabidopsis and other plant species 

have significantly advanced the understanding of the OPR 

function. However, unequivocal biological functions have 
been demonstrated for only a few (OPRII) members of this 

family in a limited number of species (Schaller and Weiler, 

1997b; Schaller et al., 1998; Biesgen and Weiler, 1999; 

Strassner et al., 1999; Schaller et al., 2000; Stintzi and 
Browse, 2000; Strassner et al., 2002). As mentioned above, 

the members of the OPRII subgroup are the only enzymes in 

the family that participate in the octadecanoid pathway 

yielding JA (Liechti and Farmer, 2006). The biosynthesis of 
JA was first elucidated by Vick and Zimmermann (1984). 

Jasmonates such as JA, methyl jasmonate, OPDA, and 

related cyclopentenones are ubiquitous, lipid-derived 

compounds with signaling functions in plant development. In 
addition, they are involved in responses to biotic and abiotic 

stresses (Wasternack, 2007; Wasternack et al., 2012). 

Although significant progress has been made towards the 

understanding of the physiological importance of OPR 
enzymes, the function of OPRI enzymes in plants remains 

unclear. Several studies have examined the expression levels 

of the OPR genes under different growth conditions and 

treatments. Some biotic and abiotic stress factors and 
signaling molecules have been shown to enhance the 

expression of OPRI genes (Biesgen and Weiler, 1999; Zhang 

et al., 2005; Li et al., 2011). Therefore, the enzymes of the 

OPRI subgroup are likely to be involved in defense responses 
and signaling (Biesgen and Weiler, 1999; Zhang et al., 2005; 

Li et al., 2011). OPRI subgroup members catalyze the 

reduction of α,β-unsaturated compounds, which are mostly 
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formed as a result of oxidative damage to the cell (Strassner 

et al., 1999; Tani et al., 2008). Beynon et al. (2009) have 

suggested a role for Arabidopsis AtOPR1 and AtOPR2, which 

are OPRI enzymes, in xenobiotic detoxification toward 
trinitrotoluene (TNT). The enzymatic activity and expression 

patterns of these proteins clearly indicate a role of OPRI 

subgroup in defense responses. 

 

OYE and its homologs 

 

Flavoenzymes are oxidoreductases that form a diverse family 

of redox proteins that typically use either flavin adenine 
dinucleotide (FAD) or flavin mononucleotide (FMN) as 

cofactors (Spencer et al., 1976). Flavoenzymes catalyze a 

wide range of essential biochemical reactions, including 

electron transfer, dehydrogenation, and hydroxylation 
reactions, involving many different types of compounds 

(Williams and Bruce, 2002; Trotter et al., 2006). OYE (EC 

1.6.99.1) was the first flavoenzyme to be identified (reviewed 

by Breithaupt et al., 2009). OYE is a flavin mononucleotide-
dependent oxidoreductase (Raine et al., 1994) and was 

initially isolated from brewer’s bottom yeast (Warburg and 

Christian, 1932). OYE is a dimer protein with a molecular 

weight of approximately 45 kDa and an overall structure of 
an α/β barrel (Fox and Karplus, 1994). 

A rapidly growing family of OYE homologs has been 

identified in organisms of both prokaryotic and eukaryotic 

origins (Buckman and Miller, 1998). OYE and its homologs 
from bacteria, yeast, and plants can reduce the olefinic bond 

of α,β-unsaturated carbonyl compounds, which is an activity 

that is rather uncommon for flavoenzymes (Williams and 

Bruce, 2002; Stuermer et al., 2007). The reaction catalyzed 
by OYEs proceeds via a ping-pong bi-bi mechanism 

including NAD(P)H binding, reduction of FMN, release of 

NAD(P)+, substrate binding, and reduction (Massey and 

Schopfer, 1986). Previous reports have indicated the 
induction of OYE during oxidative stress in fungi (Trotter et  

al., 2006; Nizam et al., 2014). OYE homologs function in 

xenobiotic detoxification (Beynon et al., 2009). They 

detoxify the breakdown products of lipid peroxidation and 
other toxic electrophilic compounds (Williams and Bruce, 

2002; Trotter et al., 2006). 

Several OYE homologs have been identified in both 

monocotyledonous and dicotyledonous plant species 
(Schaller et al., 1998; Strassner et al., 1999; Sanders et al., 

2000; Schaller et al., 2000; Stintzi and Browse, 2000; 

Strassner et al., 2002; Agrawal et al., 2003; Zhang et al., 

2005). These plant homologs are referred to as OPRs. 
 

Oxophytodienoate reductases (OPR) 

 

OPRs are a small group of flavin-dependent oxidoreductases. 

They belong to a class of enzymes closely related to the yeast 

OYE (Williams and Bruce, 2002). The name “OPR” is 

derived from the only member with an established function, 

i.e., OPR3 (from Arabidopsis thaliana). OPR3 catalyzes the 
reduction of the cyclopentenone (9S,13S)-12-

oxophytodienoate [(9S,13S)-OPDA] to the corresponding 

cyclopentanone in the JA biosynthetic pathway (Vick and 
Zimmerman, 1984; Schaller, 2001; Schaller et al., 2004; 

Liechti and Farmer, 2006). The OPR enzyme was first 

purified from cell cultures of Corydalis sempervirens 

(Schaller and Weiler, 1997a) and the homologous cDNA was 
later cloned from A. thaliana and named AtOPR1 (Schaller 

and Weiler, 1997b). Two highly related, differentially 

expressed genes, opr1 and opr2, have been found in the 

genome of A. thaliana (Biesgen and Weiler, 1999). Plant 

OPRs are usually encoded by a multigene family. Several 

OPR isozymes have been identified in various plant species; 

three isoforms exist in Solanum lycopersicon (tomato) 

(Strassner et al., 1999; Strassner et al., 2002) and six in A. 
thaliana (thale cress) (Sanders et al., 2000; Schaller et al., 

2000; Stintzi and Browse, 2000). Among the cereal crops, 13 

OPR genes were identified in rice (Oryza sativa) genome 

(Agrawal et al., 2003) and eight in the maize (Zea mays) 
genome (Zhang et al., 2005). Recently, two members of the 

OPR gene family (OPR subgroup I) have been cloned and 

characterized in barley (Abu-Romman, 2012; Al-Momany 

and Abu-Romman, 2014). In peas, six members of just one 
OPR gene subgroup (OPRI subgroup) have been cloned and 

biochemically characterized, suggesting that the pea genome 

encodes more than six OPR genes (Matsui et al., 2004) 

(Figure 1). 

 

OPR subgroup I and subgroup II 
 

The early biochemical studies of the enzymatic activity of 
OPRs in Arabidopsis and tomato have shown that these 

enzymes could be classified into two subgroups: OPRI and 

OPRII. This classification is based on differential preferences 

of these enzymes for OPDA stereoisomers (Schaller et al., 
1998; Strassner et al., 1999; Schaller et al., 2000). Members 

of the OPRI subgroup have broad substrate specificity. They 

catalyze the reduction of double bonds in α,β-unsaturated 

aldehydes or ketones (Uchida, 2003). Moreover, OPRI 
subgroup enzymes preferentially catalyze the reduction of 

(9R,13R)-12-oxo-10, 15(Z)-octadecatrienoic acid (9R,13R-

OPDA) cis-(−)OPDA over (9S,13S)-12-oxo-10,15(Z)-

octadecatrienoic acid (9S,13S-OPDA) cis-(+)OPDA, the only 
natural precursor of JA. Therefore, they are not involved in 

JA biosynthesis. In contrast, the members of the OPRII 

subgroup take part in JA biosynthesis catalyzing the 

reduction of (9S,13S)-12-oxo-10,15(Z)-octadecatrienoic acid 
(9S,13S-OPDA) cis-(+)OPDA, the only natural precursor of 

A (Schaller et al., 1998). AtOPR3 of Arabidopsis and 

SlOPR3 of tomato (subgroup II) efficiently reduce the natural 

isomer 9S,13S-OPDA to 3-oxo-2(2'(Z)-pentenyl)-
cyclopentane-1-octanoic acid (OPC 8:0), the precursor of JA 

(Schaller and Weiler, 1997b; Schaller et al., 1998; Biesgen 

and Weiler, 1999; Strassner et al., 1999; Schaller et al., 2000; 

Stintzi and Browse, 2000; Strassner et al., 2002). AtOPR1, 
AtOPR2, pea PsOPR enzymes PsOPR1 to PsOPR6, rice 

OsOPR1, and tomato SlOPR1 and SlOPR2 belong to 

subgroup I. These enzymes cannot catalyze this step and 

therefore, are not a part of the JA biosynthetic pathway 
(Schaller and Weiler, 1997b; Schaller et al., 1998; Biesgen 

and Weiler, 1999; Sobajima et al., 2003; Matsui et al., 2004). 

 

Physiological role of OPRs 
 

The biochemical and genetic studies in Arabidopsis and other 

plant species have improved our understanding of the OPR 

function. However, the exact biological roles are known for 
only a few OPRII members of this family and in a limited 

number of species. The biological significance of many 

OPRs is still largely unknown (Strassner et al., 2002; 
Agrawal et al., 2003; Zhang et al., 2005). Moreover, the 

differences between family sizes in eukaryotes pose many 

questions about the evolution and functional divergence of 

the OPR gene family. Therefore, extensive comparative 
genome studies will be necessary to elucidate the evolution 

and function of this gene family in plants (Li et al., 2009). 

The individual OPR family members may have distinct 

functions   due   to   their  different  substrate  specificities,  



586 
 

 
Fig 1. Maximum-likelihood phylogenetic tree of deduced amino acid sequences of plant OPRs generated with MEGA 5 software. 

The OPRs in the phylogenetic tree include Arabidopsis (At), barley (Hv), foxtail millet (Si), maize (Zm), pea (Ps), rice (Os), wheat 

(Ta), and tomato (Sl). The percentage of 1000 bootstrap replicates is given above each branch. The bar represents an evolutionary 

distance. The OYE 1 of Saccharomyces cerevisiae (ScOYE1) was included as the outgroup. 
 

 

subcellular localization, tissue distribution, and differ in the 

regulation of their expression upon specific environmental 
cues (Strassner et al., 2002; Zhang et al., 2005). 

 

Jasmonic acid biosynthesis 
 
The OPRII subgroup enzymes are the only members of the 

family that participate in the octadecanoid pathway yielding 

JA (Liechti and Farmer, 2006). The involvement of OPRII 

members in JA biosynthesis has been further proven using 
reverse genetic analysis. Knockout mutants in genes 

encoding OPRII enzymes are deficient in JA biosynthesis and 

show impaired jasmonate-dependent gene expression 

(Sanders et al., 2000; Stintzi and Browse, 2000). Arabidopsis 
AtOPR3 mutant was shown to be impaired in JA biosynthesis 

and is male-sterile. This phenotype can be complemented 

biochemically by exogenous JA (Stintzi and Browse, 2000) 
or genetically by overexpression of an OPRII gene in the 

mutant background (Tani et al., 2008). The biosynthesis of 

JA was first described by Vick and Zimmermann (1984). The 

JA biosynthetic pathway (Figure 2) starts with the release of 
α-linolenic acid (α-LeA) from chloroplast membranes by 

specific lipases, a process that can be triggered by wounding 

(Conconi et al., 1996) or local and systemic signals (Narváes-

Vásquez et al., 1999). α-LeA is then converted to a fatty acid 
hydroperoxide (9Z,11E, 13S, 15Z)-13-hydroxy-

9,11,15 -octadecatrienoic acid (13-HPOT) in a reaction 

catalyzed by 13-lipoxygenase (13-LOX) (Feussner and 

Wasternack, 2002). 13-HPOT is dehydrated to the unstable 
allene oxide 12, 13(S)-epoxy-9(Z), 11, 15, (Z)- octadecatrienoic 
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Fig 2.The jasmonic acid biosynthesis pathway (Howe, 2001). 

Copyright (2011) National Academy of Science, U.S.A. 
 

acid (12,13-EOT) by the action of allene oxide synthase. 

Allene oxide cyclase hydrolyzes 12,13-EOT giving rise to 

OPDA, the final product of the plastid-located part of JA 
biosynthesis (Howe, 2001). The subsequent steps in the 

pathway occur in the peroxisomes (Strassner et al., 2002). 

They involve the reduction of the cyclopentenone ring of 

OPDA by a peroxisomal NADPH-dependent OPDA 

reductase (OPR3; Schaller et al., 2000; Stintzi and Browse, 

2000; Strassner et al., 2002) to yield 3-oxo-2-(2’)(Z)-

pentenyl-cyclopentane-1-octanoid (OPC 8:0), which in turn 

undergoes three rounds of β-oxidation to form JA (Delker et 
al., 2007). Jasmonates such as JA, methyl jasmonate, OPDA, 

and related cyclopentenones (oxylipins) are ubiquitous, lipid-

derived compounds with signaling functions during plant 

responses to biotic and abiotic stresses (Breithaupt et al., 
2006; Wasternack, 2014; Dar et al., 2015). JA levels increase 

dramatically upon wounding. This increase contributes to the 

resistance against insect herbivore damage by activating 

indirect (release of volatile organic compounds) or direct 
(production of defense proteins) defense responses (Farmer 

and Ryan, 1990; Creelman et al., 1992; Menke et al., 1999; 

Howe, 2004). Studies of Arabidopsis mutants defective in 

either JA accumulation or perception have demonstrated that 

these mutants are highly susceptible to insect predators 

(McConn et al., 1997). Numerous experiments have 
supported the role of JA as a major signaling molecule in 

defense responses to necrotrophic pathogens (reviewed in 

Farmer et al., 2003) and biotrophic fungi (Thaler et al., 

2004). Exogenous application of methyl jasmonate alleviates 
the adverse effect of drought stress in cauliflower (Wu et al., 

2012) and salt stress in barley and soybean (Walia et al., 

2007; Yoon et al., 2009). This response might be facilitated 

by the enhanced transcript levels and activities of antioxidant 
enzymes (e.g., ascorbate peroxidases and glutathione 

peroxidases) (Soares et al., 2010). 

Besides its role in plant stress responses, JA acts as a plant-

growth regulator. It affects a variety of developmental 
processes such as fruit ripening (Creelman and Mullet, 1997), 

root growth (Staswick et al., 1992), tendril coiling (Stelmach 

et al., 1999), tuber formation (Yoshihara et al., 1989), flower 

development, pollen maturation (Sanders et al., 2000; Stintzi 
and Browse, 2000), seed development (Wasternack et al., 

2012), and senescence (Parthier, 1990). OPDA is the 

precursor of JA and belongs to an important class of 

jasmonates. Until recently, no tools have been available to 
permit the genetic separation of OPDA and JA effects in 

vivo. However, the studies of Arabidopsis plants lacking a 

functional opr3 gene (Stintzi and Browse, 2000) have 

demonstrated that OPDA could be a biologically active 
substance. JA-deficient opr3 plants are still capable of 

resistance to both the dipteran insect Bradysia impatiens and 

the fungal pathogen Alternaria brassicicola. This observation 

suggests that in the absence of JA, OPDA can regulate the 
plant defense response (Stintzi et al., 2001). Furthermore, the 

Arabidopsis opr3 mutant accumulates OPDA after wounding 

in the absence of JA. These results demonstrate that OPDA is 

a potent gene regulator during the wound response in the 
absence of JA (Stintzi et al., 2001). 

OPDA induces expression of a subset of genes that are not 

induced by JA (Farmer and Ryan, 1992; Stintzi et al., 2001; 

Taki et al., 2005; Ribot et al., 2008). Using a mini-array 
system consisting of 150 defense genes, Stintzi et al. (2001) 

have shown that OPDA not only upregulates the genes 

induced by JA, but also several genes that do not respond to 

JA. The authors have suggested that OPDA cooperates with 
JAs to regulate the expression of defense response genes 

(Stintzi et al., 2001). More recently, using an oligonucleotide 

array containing 21,500 Arabidopsis genes, Taki et al. (2005) 

have shown that a set of approximately 150 genes is induced 
by exogenous OPDA, but not by exogenous JA or Me-JA. 

They have found that approximately half of these OPDA-

specific response genes are induced by wounding. These 

results have supplied another clue to the role of OPDA in the 

plant defense system. Moreover, OPDA is involved in the 

regulation of embryo development (Goetz et al., 2012), seed 

germination (Dave and Graham, 2012), and stomatal opening 

(Ohashi et al., 2005). 
 

Other possible functions 

 
As we mentioned in the previous section, the OPRII 

subgroup members are involved in the JA biosynthetic 

pathway. However, the function of OPRI enzymes in plants 

remains obscure. Several studies have examined the 
expression levels of the OPRI genes under different growth 

conditions and treatments. The members of this subgroup 

exhibit organ-specific expression and are differentially 

expressed during development. Biesgen and Weiler (1999) 
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have reported that Arabidopsis AtOPR1 and AtOPR2 (both 

OPRI) are transcribed in the roots and leaves but not in the 

flowers. The rice OsOPR11 transcript is abundant in callus, 

leaf, and panicle tissues, while OsOPR10 transcript is more 
common in the callus and stem than in the leaves and panicle. 

OsOPR6 expression is weak in almost all rice tissues except 

for the leaves. OsOPR8 gene is expressed in most rice tissues 

but not in the stems or panicles (Li et al., 2011). Zhang et al. 
(2005) have reported that the maize ZmOPR1 transcript 

levels in roots, kernels, and ovaries are lower than the levels 

of the ZmOPR2 transcript. 

Several biotic and abiotic stress factors and signaling 
molecules enhance the expression of OPRI genes. It is likely 

that the enzymes of the OPRI subgroup are involved in 

defense responses and signaling. Arabidopsis AtOPR1 and 

AtOPR2 genes are upregulated in response to wounding and 
ultraviolet irradiation (Biesgen and Weiler, 1999). Weber et 

al. (2004) have reported that AtOPR1 is upregulated in 

response to malondialdehyde, one of the best-known products 

of lipid oxidation. Zhang et al. (2005) have demonstrated that 
maize ZmOPR1 and ZmOPR2 are induced following 

inoculation with Fusarium verticillioides spores and after 

treatment with SA. The rice OsOPR10 gene expression is 

upregulated in roots after JA and ABA treatment, while 
OsOPR8 is strongly expressed under drought conditions, JA 

treatment, and wounding in shoot tissues (Li et al., 2011). 

Polyethylene glycol-induced drought stress upregulates the 

expression of foxtail millet gene SiOPR1 in the roots only. Its 
expression level increases with the increasing water loss 

(Zhang et al., 2007). More recently, Dong et al. (2013) have 

reported that the overexpression of TaOPR1 significantly 

enhances the salinity tolerance in wheat. The heterologous 
expression of this gene in Arabidopsis alleviates root growth 

restriction in the presence of NaCl and hydrogen peroxide 

and raises the sensitivity to ABA. These results suggest that 

OPRI genes could be used in genetic engineering to enhance 
the plant stress tolerance. OPRs also participate in the 

detoxification of exogenous xenobiotic compounds (Mezzari 

et al., 2005; Skipsey et al., 2011). Beynon et al. (2009) have 

suggested that Arabidopsis AtOPR1 and AtOPR2 play a role 
in the xenobiotic detoxification process. Recombinant 

AtOPR1 and AtOPR2 proteins react with TNT in vitro, 

transforming it into nitro-reduced TNT derivatives. 

Furthermore, Arabidopsis plants overexpressing OPR1 
remove TNT from the liquid culture faster and produce more 

TNT transformation products than the wild-type plants. It has 

been reported that OPRI members catalyze the reduction of 

several α,β-unsaturated compounds (Hall et al., 2007), which 
are mostly formed as a result of oxidative damages to the cell 

(Strassner et al., 1999; Tani et al., 2008). This enzymatic 

activity and the expression patterns of OPRI indicate that this 

subgroup might be involved in the defense responses. 

 

Conclusions and future perspectives 

 

The OPR gene family is important in the biosynthesis of JA 
and in the responses to both biotic and abiotic stress factors. 

The functions of OPR subgroup II have been analyzed in 

depth in the available publications. However, the functions of 
the members of OPRI subgroup remain largely unexplored. 

Most of the studies investigating these enzymes deal with 

gene cloning and expression changes in response to 

hormones and environmental stimuli. Future research should 
explore the function of OPRI subgroup members in detail, 

taking advantage of the available tools for reverse genetics, 

bioinformatics, and various omics technologies. 
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