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Abstract: Nitrogen (N) is the most limiting factor for crop yield, especially in acidic soils. A 
biological approach should be taken as the usage of chemical N fertilizer is expensive and 
harmful to both human health and the environment. Therefore, the current study aimed at 
isolating a promising N2-fixing bacteria (NFB) that can provide IAA as an indicator of a plant 
growth promoter. The origin of isolation was in the mountainous areas in the North of Vietnam. 
The finest isolate according to IAA and N-fixing. Then, the biochemical and genomic traits of the 
selected isolate were determined. Eight of the twelve NFB strains identified in the study were 
able to produce IAA. The IAA-producing NFB showed an amount of 18.882–109.381 NH4+ and 
4.321–22.158 IAA (µg/ml). The NL1 strain was chosen because of its exceptional performance 
compared to the other strains. The morphology and biochemical processes of the NL1 strain were 
determined. Its growth condition was as follows: duration (A) of 5.22 days, temperature (B) of 
31.73°C, and pH (C) of 6.61 at the maximum bacteria density of 3.12159 × 108 CFU/ml. After that, 
the NL1 strain was identified as Azospirillum sp. and contained 12 N2-fixing genes and 4 IAA-
producing genes. This indicates the potential of the Azospirillum sp. NL1 strain as an N2 fixer and 
an IAA producer. Thus, to increase soil fertility and crop productivity, and partially replace 
chemical fertilizer for sustainable agriculture, it should be further investigated in greenhouse 
and field studies. 
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Introduction 
 
Nitrogen (N) use efficiency is extremely important to agriculture and the environment (Govindasamy et al., 2023). N is an 
irreplaceable element for plant growth and yield (Shehu, 2025). To improve crop yield, farmers often use chemical N 
fertilizers containing urea [CO(NH₂)₂] (Chen et al., 2024). Given the high demand for food from the world's expanding 
population, chemical N fertilizer use is unavoidable and growing ever more essential (Santos et al., 2021). However, when 
N fertilizer leaks into the soil and water, the NUE can be lowered by 50% (Yadav et al., 2023), which is called nitrate 
pollution, affecting human and soil health (Craswell, 2021). Furthermore, N fertilizer may contribute to greenhouse gas 
emissions, which would contribute to climate change (Aryal et al., 2022; Filonchyk et al., 2024). Therefore, the overuse of N 
fertilizers causes pollution in soil, underground water, we well as air, food contamination, and climate change (Ali, 2025).  
Nevertheless, using less chemical N fertilizer reduces crop yield and lowers farmers' income (Van Wesenbeeck et al., 2021), 
while using it too much causes environmental problems (Tyagi et al., 2022), especially in regions featuring poor soil fertility 
(Naorem et al., 2023). Vietnam's Thai Nguyen province is a typical instance, where the soil is classified as Kanhaplustult 
ultisoils (Huu Chien et al., 2018; Minh and Anderson, 2021), i.e. the soil has low pH and low nutrient content, including N. 
Additionally, in an acidic environment, the availability of nutrients such as N, phosphorus (P), calcium, potassium (K), and 
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magnesium decreases while the toxicities of Al, Fe, and Mn increase (Shetty et al., 2021; Wang X et al., 2023). Furthermore, 
long-term N fertilization can only marginally increase the soil's overall N content, which can negatively impact its overall P 
and K levels in addition to causing environmental issues (Nguyen et al., 2001).  
To address these issues, there have been many approaches, such as slow-release N fertilizer (Priya et al., 2024), a 
combination of N fertilizer with organic materials (Wan et al., 2021), and N2-fixing bacteria (NFB) (Shalaby et al., 2023). Of 
these approaches, the usage of NFB is regarded to be more sustainable and eco-friendly (Alomari et al., 2024). The principle 
of N2 fixation is the reduction of free N2 molecules in the atmosphere to NH4+ under microaerobic conditions by the 
facilitation of suitable enzymes, also called nitrogenases (Rodelas, 2021). These nitrogenases have three types, including 
Mo-, V-, and Fe- nitrogenase (Chanderban et al., 2023). These N-fixing enzymes are reported to be found in some plants, 
especially the legume (Wang Q et al., 2023), which has been reported to intercrop with rice (Wang S et al., 2022), maize 
(Sahoo et al. 2023), and wheat (Liu et al., 2023), i.e. these plants can fix N2. Their symbiotic connection with the rhizospheric 
and endophytic NFB is the main reason for this (Aziz et al., 2022). Some well-known NFB are rhizobia, cyanobacteria, and 
Frankia (Sepp et al., 2023). Furthermore, by increasing plants' resistance to stress, these bacterial species can encourage 
plant development as well (Aasfar et al., 2021) and synthesize plant growth-promoting substances (PGPS), e.g., indole acetic 
acid (IAA) (Isti’anah et al., 2021), gibberellins (Nett et al., 2022), and cytokinin (Singh et al., 2024). Among these PGPS, IAA 
is well-known for promoting plant height and root length (Gao et al., 2022) and can be used as an indicator to evaluate the 
plant growth-promoting capacity of a bacterial strain (Van Dinh et al., 2024). It is vital to find an NFB candidate to partially 
replace chemical N fertilizer; therefore, IAA and NH4+ productions are useful criteria to screen for better strains (Dabban 
et al., 2024). 
To enhance soil health and plant productivity for sustainable agriculture, an indigenous NFB strain should be chosen and 
described in light of the challenges with NUE worldwide, and specifically in Thai Nguyen, Vietnam. Thus, the current study 
was conducted to determine good NFB strains in Thai Nguyen soils, identify the best strain based on its production of IAA 
and NH4+, and then analyze the identified strain based on its morphological, biochemical, and genomic characteristics.  
 
Results 
 
Nitrogen fixing bacteria (NFB) isolation 
Table 1 demonstrates that 12 NFB strains have been isolated from Thai Nguyen province's seven communes. Among the 
NFB, eight strains can produce IAA. Table 2 shows the results of further testing on these strains to determine their 
production of IAA and NH4+. The NH4+ production ranged from 24.61 μg/ml, while the IAA production was recorded as 
11.33-119.13 μg/ml. Among them, the greatest amount of NH4+ and IAA belonged to the NL1 strain. Therefore, this strain 
was chosen for the following experiment. This agrees with previous studies, where some NFB strains were reported to 
produce IAA (Isti’anah et al., 2021; Gang et al., 2021, Ouyang et al., 2022). For example, in the study by Zhang X et al. (2022), 
an NFB strain of Curtobacterium sp. A02 isolated from cassava roots can produce 13.38 mg L−1 of N and 1.56 mg L−1 of IAA, 
which results in plant growth improvement. However, in the study by Uzma et al. (2022), the results were 0.18 and 116 mg 
L−1, respectively, by the Pseudomonas aeruginosa strain. As can be seen, there are differences among NH4+ and IAA 
productions of different NFB. Therefore, the isolation and selection of newly indigenous NFB are necessary to fully exploit 
the potential of these NFB.  
 

Table 1. Results of the isolation of bacteria capable of nitrogen fixation and IAA synthesis 

STT Strain symbol Sampling location 
Nitrogen fixation 
capacity 

IAA Aggregation 
Capabilities 

1 NL1 On Luong Commune + + 

2 NL33 On Luong Commune + - 

3 NL35 Co Lung Commune + + 

4 NL38 Co Lung Commune + + 

5 NL39 Dong Dat Commune + - 

6 NL321 Hop Thanh Commune + + 

7 NL335 Hop Thanh Commune + + 

8 NL336 Phan Me Commune + - 

9 NL338 Phan Me Commune + + 

10 NL324 Yen Ninh Commune + + 

11 NL331 Yen Ninh Commune + - 

12 NL341 Yen Trach Commune + + 
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Table 2. Comparison of nitrogen fixation and IAA synthesis of 12 isolated strains 

No. Strain label 
Nitrogen fixation 
capacity (μg/ml) 

IAA synthesis capacity 
(μg/ml) 

1 NL1 22.158 109.381 
2 NL33 3.213 - 
3 NL35 11.465 68.981 
4 NL38 7.865 35.421 
5 NL39 2.146 - 
6 NL321 15.843 72.684 
7 NL335 9.472 26.347 
8 NL336 2.163 - 
9 NL338 12.615 56.782 
10 NL324 4.321 18.882 
11 NL331 3.113 - 
12 NL341 8.918 23.112 

 
Besides NH4+ and IAA, these NFB can also function as P solubilizer (Maulida et al., 2024), K solubilizer (Devi et al., 2022), 
and siderophore producer (Zhang Y et al., 2025). Therefore, these functions should be further investigated. 
 
NFB morphological description 
Among the above 12 NFB strains, 8 strains with greater NH4+ and IAA productions were chosen for the morphological 
description, including NL1, NL35, NL38, NL321, NL335, NL338, NL324, and NL341. All eight strains had an oval, shiny, and 
slimy surface and were white or almost white in color overall (Fig. S2, S3; Table S1). This is consistent with previous studies 
describing the morphology of NFB, which is Gram-negative with white colonies (Liang et al., 2023; Seidu et al., 2025). 
Especially for the NL1 strain, its morphology is consistent with that of the Azospirillum spp. described by Ogunniyi et al. 
(2023) and Ali (2024). The NL1 strain was further investigated for biochemical traits based on the NH4+ and IAA 
productions. Fig. 1 displays the strain NL1's growth curve. 
 

Cultur
e time 
(days) 

UV 
Absor
ption 

Bacterial 
density x 
108 
(CFU/ml) 

 

0 0.007 0.002 
1 0.013 0.062 
2 0.024 0.172 
3 0.042 0.352 
4 0.125 1.182 
5 0.296 2.892 
6 0.295 2.882 
7 0.291 2.842 
8 0.253 2.462 
9 0.231 2.242 

               Fig 1. Growth curve of strain NL1. 
 
NL1 strain growth according to pH and temperature 
 
Effects of temperature and pH on NL1 strain growth 
The growth of the NL1 strain ranged from 0.002 to 2.942 x 108 CFU/ml and from 0.012 to 3.002 x 108 CFU/ml according to 
the temperature and pH factors, respectively (Tables 3 and 4). The ideal temperature and pH were 32°C and 6.5, 
respectively. This is consistent with the optimal conditions of Azospirillum spp. described in the study by Romero-Perdomo 
et al. (2015), in which the optimal conditions were roughly 32°C in temperature and 6.8 in pH. 
 
Growth function of the NL1 strain according to Box-Behnken modal. 
Table 5 illustrates that three factors were evaluated: culture duration (A), temperature (B), and pH (C). The bacterial density 
equation was found as follows: Y = + 2.94 + 0.62*A + 0.023*B + 0.58*C + 0.12*A*B + 0.47*A*C – 0.15*B*C – 0.76*A2 – 0.84*B2 
– 1.1*C2. While the temperature and pH conditions reduced the bacterial density, the time in conjunction with either 
temperature or pH indicated a positive bacterial density. 
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Table 3. Effect of culture temperature on strains. 

Strain symbol 

Cell density (x 108 CFU/ml) after 5 days of culture at temperature  
Corresponding Survey 

28°C 30°C 32°C 34°C 36°C 38°C 40°C 42°C 

NL1 2.882 2.892 2.942 2.802 1.362 0.972 0.142 0.002 

 
Table 4. Effect of environmental pH on strain growth. 

Strain symbol 

Cell density (x 108 CFU/ml) after 5 days of culture at the pH of 
corresponding survey environment 

pH = 4.0 pH = 4.5 pH = 5.0 pH = 5.5 pH = 6.0 pH = 6.5 

NL1 

- 0.012 1.052 1.942 2.742 3.002 

pH = 7.0 pH = 7.5 pH = 8.0 pH = 8.5 pH = 9.0 

2.942 2.852 2.272 1.092 0.022 

 
The data in Table 6 were analyzed to test the model's significance and compatibility. ANOVA analysis showed that the 
probability value of the model P-value < 0.0001 < 0.05. Therefore, the selected model was significant with a regression 
coefficient R2 = 0.9965. This outcome demonstrates that 99.65% of the experimental data agrees with the model's expected 
data. 43 options were identified when the density of NL1 cells acquired from the culture procedure was optimized using the 
expectation function method utilizing Design-Expert software (DX 7.1.5). The best option predicted to maximize the 
objective function was: culture time 5.22 days, temperature 31.73 °C, pH = 6.61 (Fig S4). Then the NL1 cell density achieved 
under the above conditions was calculated to be 3.12159 x 108 CFU/ mL (Fig. S5). This result is highly compatible with the 
experimental test results, presented in Fig. S5. 
 

Table 5. Three-factor Box-Behnken experimental matrix and NL1 cell density under different culture conditions. 

No. 

Transformation 
Azospirillum Cell Density 
(108CFU/ml) 

A – 
incubation 
time 

B- Culture 
temperature 

C-pH Culture 

1 4.00 30.00 6.50 0.7093 

2 6.00 30.00 6.50 1.8141 

3 4.00 34.00 6.50 0.6396 

4 6.00 34.00 6.50 2.2211 

5 4.00 32.00 6.00 0.4186 

6 6.00 32.00 6.00 0.6279 

7 4.00 32.00 7.00 0.5931 

8 6.00 32.00 7.00 2.6862 

9 5.00 30.00 6.00 0.2907 

10 5.00 34.00 6.00 0.5117 

11 5.00 30.00 7.00 1.7908 

12 5.00 34.00 7.00 1.4187 

13 5.00 32.00 6.50 2.9072 

14 5.00 32.00 6.50 3.0002 

15 5.00 32.00 6.50 3.0002 

16 5.00 32.00 6.50 2.9072 

17 5.00 32.00 6.50 2.8839 

                         Notes: A: Culture time (days); B: Culture temperature (°C); C: Culture pH. 
 

Table 6. ANOVA variance analysis results of the NL1 strain culture model. 

Source Standard F P Value 

Model 222.61 <0.0001 

Lack of Fit 5.53 0.066 

R2 0.9965 

Note: Standard F: Fisher Standard; "Lack of Fit": A standard for evaluating the incompatibility of a model with experiments.  
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Enzyme production by the NL1 strain 
Table S2 shows that the NL1 strain can produce 11 of the 20 enzymes examined in the current study. The enzymes produced 
were alkaline phosphatase, esterase (C4), esterase lipase (C8), lipase (C14), leucine arylamidase, valine arylamidase, acid 
phosphatase, naphthol-AS-BI-phosphohydrolase, ß-glucuronidase, and N-acetyl-ß-glucosaminidase. It can be concluded 
that the NF3 strain can conduct protein, carbohydrate, and lipid hydrolysis and dephosphorylation (Cuatlayotl-Olarte et al., 
2023). Table S3 further illustrates the NL1 strain's biochemical characteristics. 
 
Results of genome analysis, nitrogen fixation-related functional gene analysis, and IAA synthesis of the NL1 strain 
Genomic sequencing of the NL1 strain  
The raw sequences were purified to exclude adapters, low-quality nucleotides, and duplicate reads to provide a full genome 
sequence of strain NL1 with excellent quality for further investigations. Table S4 demonstrates the quality results before 
and after purification. The total number of sequences before and after purification showed that the Illumina sequencing 
data had a %Q30 index > 80%, meeting the requirements to start the de novo assembly step. 
Table S5 demonstrates the assembly results, showing that the total length of the contigs is 8,071,173, consistent with the 
Azospirillum genome size of 7-8 Mb. The largest contig has a length of 2,813,755 bp, accounting for 34.86% of the total 
length of the contigs; the G+C% ratio is 67.23%. Detailed results are shown in the analysis result files shown in Table 5. The 
numbers of coding sequences (CDS), tRNAs, and rRNAs of strain NL1 are 7313, 79, and 26, respectively. Azospirillum species 
are plant growth-supporting bacteria belonging to the alpha subclass of Proteobacteria. The report of Martin-Didonet et al 
(2000) determined that the genome size of Azospirillum species, including A. brasilense, A. lipoferum, A. amazonense, A. 
irakense, A. halopraeferens, and A. largimobile, ranged from 4.8 to 9.7 Mbp. Thus, the results of this study are consistent with 
the genome size of the genus Azospirillum. 
The genome map of strain NL1 was also constructed (Fig. 2). The analysis results show that from the center outward, circle 
1 illustrates the GC slope. Circle 2 shows the GC content (peaks outside/inside the circle indicate values higher or lower 
than the average G+C content, respectively). Circle 3 represents the ncRNA genes. Circles 4, 5, and 6 represent the CDSs, 
with colors corresponding to the COG, KEGG, and GO categories, respectively. Circle 7 shows the protein coding sequence 
with predicted function. 

 
Fig 2. Genome map of the NL1 strain. 

 
 
According to Fig. 3, the current Azospirillum sp. NL1 strain was identified with the accession number of OR125575 and is 
close to the strain Azospirillum lipoferum NCIMB 11861T (Xia et al., 1994) the most. 
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Fig 3. Evolutionary relationships of taxa. 

 
Preliminary analysis of the functional genome structure capable of nitrogen fixation and IAA biosynthesis of 
Azospirillum sp. NL1 
29 genes related to nitrogen fixation were identified based on the genome sequence of strain NL1. The results are presented 
in Table S6 and Fig. 9, with the genes nif and fix directly involved in the nitrogen fixation process. In addition, the genome 
analysis of strain NL1 also revealed 04 genes involved in the IAA metabolism pathway referenced on the MetaCyc database 
(Table S6 and Fig. 10). 
 Table S6 demonstrates that the Azospirillum sp. NL1 strain has 29 genes involving N2 fixation, the pathway of which is 
illustrated in Fig. S6. The N2 fixation of the Azospirillum sp. NL1 strain was performed by nif and fix genes. This agrees with 
the studies by Potrich et al. (2001) and Sperotto et al. (2004). The Azospirillum sp. NL1 strain also provides 4 genes involving 
IAA metabolism (Table S6 and Fig. S7). This is consistent with the study by Yusfi et al. (2004). 
 
Materials and Methods 
 
Bacterial isolation and selection 
Because maize has been reported to contain NFB, soil was collected from maize fields in seven communes in Thai Nguyen 
province, Vietnam, including On Luong, Co Lung, Dong Dat, Hop Thanh, Phan Me, Yen Ninh, and Yen Trach. The soil was 
collected near maize plants at a depth of 0–20cm (Hou et al., 2023). 
Ashby medium was used to determine NFB. The Ashby medium consisted of 20.0 g/L Mannitol, 0.2 g/L K2HPO4, 0.2 g/L 
MgSO₄, 0.2 g/L NaCl, 0.1g/L K2SO4, and 5.0 g/L CaCO₃ in distilled water (Wei et al., 2023). Bacterial strains that lived and 
grew in the Ashby medium were selected. The NH4+ production was measured in the Ashby broth at 30°C and shaken at 150 
rpm for 7 days. The 7-day culture was then mixed with Nessler indicator and measured according to UV absorbance. 
To determine IAA-producing NFB, the collected NFB were re-cultured in L-tryptophan (0.1%) – supplied Ashby medium. 
Since L-tryptophan is the precursor of IAA, IAA-producing bacteria can produce IAA in the medium containing L-tryptophan. 
Therefore, the method of Glickmann and Dessaux (1995) was used to determine IAA-producing NFB by changes in the color 
of the Salkowski indicator. The bacteria were cultured in Ashby medium (supplemented with Tryptophan 0.1%) at 30°C 
and shaken at 150 rpm for 7 days. The standard curve of standard IAA solutions reacting with the Salkowski indicator and 
being measured by a spectrophotometer served as the basis for the IAA production (Fig. S1).  
 
Characterization of the selected IAA-producing NFB 
Bacterial morphology 
The morphology of the bacterial colonies was observed under a Scanning Electron Microscope (SEM) at a focal distance of 
5 μm.  
 
Response of the bacteria to temperature and pH 
The bacterial culture had its temperature and pH adjusted and lasted for 5 days. The temperature ranged from 28°C to 42°C 
with 2°C intervals. The pH was from 4.0 to 9.0 with 0.5 intervals, which were obtained by the buffer solutions of Na2HPO4 
and KH2PO4.  
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A spectrophotometer set to 610 nm wavelength was used to measure the bacterial density after five days of culture. From 
that, an optimal temperature and pH were calculated by the model of Box-Behnken with 17 combinations and 3 replications. 
The factors (-1, 0, and +1) included culture duration (A; 4, 5, and 6 days), the culture temperature (B; 30°C, 32°C, and 34°C), 
and culture pH (C; 6.0, 6.5, and 7.0). Thus, after the regression analysis, a multivariate model function of the cell density was 
obtained.  
 
Enzyme production and biochemical functions by the bacteria 
The enzyme production consisted of Phosphatase alkaline, Esterase (C4), Esterase Lipase (C8), Lipase (C14), Leucine 
arylamidase, Valine arylamidase, Cystine arylamidase, Trypsine, D-chymotrypsine, Acid phosphatase, Naphtol-AS-BI-
phosphohydrolase, D-galactosidase, ß-galactosidase, ß-glucuronidase, D-glucosidase, ß-glucosidase, N-acetyl-ß-
glucosaminidase, D-mannosidase, and D-fucosidase, and was tested by KIT API ZYM.  
The biochemical functions consisted of Nitrate to nitrite conversion, Indole generation, D-glucose fermentation, L-arginine 
assimilation, Urea assimilation, Esculin ferric citrate assimilation, Gelatin assimilation, 4-nitrophenyl-β D-
galactopyranoside assimilation, D-glucose assimilation, L-arabinose assimilation, D-mannnose assimilation, D-mannitol 
assimilation, N-acetyl-glucosamine assimilation, D-maltose assimilation, Potassium gluconate assimilation, Capric acid 
assimilation, Adipic acid assimilation, Malic acid assimilation, Trisodium citrate assimilation, Phenylacetic acid assimilation, 
L-rhamnose assimilation, D-ribose assimilation, Inositol assimilation, D-saccharose assimilation, Itaconic acid assimilation, 
Suberic acid assimilation, Sodium malonate assimilation, Sodium acetate assimilation, Lactic acid assimilation, L-alanine 
assimilation, Potassium 5-ketogluconate, Glycogen assimilation, 3-hydroxybenzoic acid assimilation, L-serine assimilation, 
Salicin assimilation, D-melibiose assimilation. 
L-fucose assimilation, D-sorbitol assimilation, Propionic acid assimilation, Valeric acid assimilation, L-histidine assimilation, 
Potassium 2-ketogluconate assimilation, 3-hydroxybutyric acid assimilation, 4-hydroxybenzoic acid assimilation, L-proline 
assimilation, D-xylose assimilation, D-fructose assimilation, Lactose assimilation, Catalase activity, Oxidase activity, Methyl 
red reaction, Voges-Proskauer reaction, H2S production. These functions were tested by the KIT API. 
 
Genomic analysis of the bacteria 
Crude sequences were purified to remove adapters, low-quality nucleotides, and repetitive sequences to gather the whole 
genome of the chosen bacteria. The selected bacterial culture was incubated for 2 days. Then, 2 mL of the culture was 
centrifuged for 5 min at 10,000 rpm and had its DNA extracted by a DNA extraction kit (Genomic DNA Prep Kit, BioFACTTM). 
The extracted genomic DNA underwent a 1.0% w/v agarose gel electrophoresis and was checked under UV light for 
concentration and purity. The confirmed DNA was sequenced according to Whole Genome Sequencing via the next-
generation sequencing by the Ktest sequencing service (Vietnam). 
The raw sequencing data were quality-filtered using Fastp v0.23.1 (Chen et al., 2018). Nucleotides with poor sequencing 
quality, unreliable bases, or undetermined nucleotides (denoted as N) were removed based on the Phred quality scores 
(Illumina). The cleaned reads were subsequently assembled de novo using both Unicycler v0.4.8 (Wick et al., 2017) and the 
Flye–Medaka–Polca pipeline (Krasnov et al., 2020; Zimin and Salzberg, 2020). After comparing the outcomes of the two 
assembly techniques, the highest-quality assembly was chosen for taxonomic identification and annotation. The de novo 
assembly quality was assessed using QUAST v5.2.0 (Gurevich et al., 2013) and local read-to-contig alignments, which 
enabled the detection of regions with unusually low coverage depth compared to adjacent regions—an important indicator 
of potential assembly issues. CheckM v1.2.1 (Parks, et al., 2015) was employed to evaluate the quality and completeness of 
the assembly. The selected genome assembly was then annotated using the PATRIC annotation system v3.6.12 (Davis et al., 
2020), which integrates a taxon-specific database for the target bacterial genus. PATRIC employs the RASTtk toolkit to 
annotate contig sequences. Taxonomic identification of the target bacterium was performed using GTDB-Tk v2.1.1 with the 
latest version of the Genome Taxonomy Database (GTDB), specifically curated for prokaryotes (Chaumeil et al., 2022; Jain 
et al., 2018). 
 
Statistical analysis 
The established model and the relationships between the variables influencing bacterial density were assessed using 
variance analysis (ANOVA). The expectation function method was applied to optimize the bacteria density obtained from 
the culture process by Design-Expert software (DX 7.1.5). 
The evolutionary history was inferred using the Neighbor-Joining method (Saitou and Nei, 1987). The optimal tree with the 
sum of branch length = 0.22270683 is shown. The percentage of replicate trees in which the associated taxa clustered 
together in the bootstrap test (1000 replicates) is shown next to the branches (Felsenstein, 1985). The tree is drawn to 
scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The 
Jukes-Cantor method was used to calculate the evolutionary distances (Jukes and Cantor, 1969), and they are in units of the 
number of base substitutions per site. 19 nucleotide sequences were analyzed. Codon positions included were 1st+2nd+3rd. 
All positions containing gaps and missing data were eliminated. The final dataset had 1183 positions in total. Evolutionary 
analyses were conducted in MEGA7 (Kumar et al., 2016). 
 
Conclusion 
 
12 potent NFB candidates were isolated from 7 communes in Thai Nguyen, Vietnam. Among them, 8 isolates can synthesize 
IAA. The IAA and NH4+ productions were roughly 18.882–109.381 and 4.321–22.158 µg/ml, respectively. Therein, the NL1 
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strain showed the best performance. Thus, it was further characterized. The NL1 strain grew best under a duration of 5.22 
days, temperature of 31.73°C, and pH of 6.61 to achieve a maximum cell density of 3.12159 × 108 CFU/ml as per the Box-
Behnken-based growth function: Y = +2.94 + 0.62*A + 0.023*B + 0.58*C + 0.12*A*B + 0.47*A*C – 0.15*B*C – 0.76*A2 – 
0.84*B2 – 1.1*C2. Furthermore, the biochemical processes of the N1 strain were also detected. Moreover, the NL1 strain was 
identified as Azospirillum sp. with 12 N2-fixing genes and 4 IAA-producing genes. Therefore, the Azospirillum sp. NL1 strain 
is promising to be a good N2 fixer and IAA producer for ameliorations in soil fertility and crop productivity, which can 
ultimately replace a portion of chemical fertilizer for sustainable agriculture. 
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