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Abstract: Predicting the yield components of advanced lines based on the genotyping of plants 
in the initial generations can help to reduce the segregating lines that are carried forward in 
soybean breeding programs, especially for developing cultivars with high yields under Asian 
soybean rust (ASR) pressure. This study aimed to predict the average soybean yield components 
in the F2:3 and F2:5 families, as well as the top 50% lines of each F2:5 family [F2:5(50%] under 
ASR pressure based on genotyping of the F2 generation from a cross of two elite breeding lines. 
These lines have indeterminate growth habit and belong to maturity group 6. Phenotypes 
included seed yield per plant, 50-seed weight, days to maturity, and plant height. The genomic 
prediction models were G-BLUP, principal component regression, Bagging, and Bayes-C𝜋. 
Bagging and Bayes-C𝜋 most often showed the highest predictive ability. Phenotyping of F2:3 as 
opposed to F2 only increased the predictive abilities of models for 50-seed weight. Phenotyping 
of F2:5 and F2:5 (50%) resulted in predictive abilities greater than 0.50 for all the traits. 
Therefore, F2 genotyping and genomic selection enabled prediction of soybean yield components 
in populations that are genetically similar to the target population and allowed optimizing the 
mechanical and financial resources of breeding programs to develop soybean cultivars with 
higher yields under ASR pressure.  

 
Keywords: days to maturity; Glycine max L.; plant height; predictive ability; seed weight; seed yield  
Abbreviations: ASR_Asian soybean rust; ASRS_ASR severity; CR_call rate, DM_days to maturity; GEBV_genomic estimated 
breeding value; PH_plant height; MAF_minor allele frequency; RB lesion_ reddish-brown lesion; SY_seed yield per plant or 
line; TAN lesion_tan lesion; 50SW_50-seed weight. 
 
Introduction 
 
Asian soybean rust (ASR), caused by Phakopsora 
pachyrhizi, is one of the most important diseases of 
soybean (Glycine max L. Merrill) and occurs in several 
producing regions of the world, where damage can reach 
up to 90% (Hartman et al., 2015; Godoy et al., 2016; 
Zambolim et al., 2022). The limited number of fungicides 
available to control susceptible populations and the 
presence of a large number of races (pathotypes) that 
make the control difficult by vertical genetic resistance, 
increase the importance of developing productive 
cultivars under disease pressure, even if they show 
susceptibility symptoms (Godoy et al., 2016; Zambolim et 
al., 2022).  
The selection of new productive cultivars in breeding 
programs has its basis mainly on the phenotype, and it 
deals with limitations such as low accuracy in the initial 
stages of advancement and the high number of genotypes 
evaluated in more advanced stages. This process is very 

laborious (Michel et al., 2018). Therefore, developing 
strategies to provide selection gain increases and 
mechanical and financial resources optimization of 
breeding programs is essential to increase 
competitiveness and help long-term viability.  
Several studies on various crops have shown that 
genomic prediction and selection hold the potential to 
increase efficiency, allowing not only the optimization of 
existing resources but also the reduction of the preceding 
requirements (Duangjit et al., 2016; Matei et al., 2018; 
Gebremedhin et al., 2024). The adoption of this 
methodology has been facilitated by a reduction in the 
cost of genotyping, the development and adoption of 
statistical models capable of fitting genome-wide marker 
data, and the increased data processing capacity (Wartha 
and Lorenz, 2021; Wu, 2011). 
The implementation of genomic prediction and selection 
requires phenotyping and genotyping of plants to create 
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training and validation populations, which are suited to 
train and validate a genomic prediction model that 
applies to a target population, which can simply be 
genotyped without the need for phenotyping (Meuwissen 
et al., 2001; Duhnen et al., 2017). Penalized regression, 
dimensionality reduction, machine learning, and 
Bayesian analysis are some approaches underlying these 
models (Sousa et al., 2019; Costa et al., 2022; Miller et al., 
2023). 
New strategies to increase selection gains and reduce 
costs need constant development or improvement, even 
with the advances already achieved through genotyping. 
Selection in the F2 generation for seed yield is uncommon 
in breeding programs due to the heritabilities of single-
plant phenotypes, and consequently, the low predictive 
ability of the models generated (Costa et al., 2022). 
Strategies to increase the predictive ability and generate 
information about advanced generations from genotyped 
F2 plants could allow increased selection accuracy and 
reduce the number of segregating lines conducted in 
breeding programs. Additionally, measuring seed yield 
under ASR pressure can be laborious and requires 
satisfactory climatic conditions for pathogen 
development (Godoy et al., 2006; Bock et al., 2022). 
Obtaining these environmental conditions across large 
experimental areas is challenging and depends on the 
number of lines under testing. Thus, one alternative is to 
obtain and validate genomic prediction models in a small 
population, which can be used for early-generation 
selection in a larger target population from the same 
cross or populations that shares a similar genetic 
background with the target population. Modeling can be 
done using phenotypic data from advanced generations 
and genotypic data from the F2 generation. Reducing the 
number of genotypes in the target population after using 
predictive models allows better establishment of 
satisfactory climatic conditions for pathogen 
development, optimizes the mechanical and financial 
resources of a breeding program, improves the likelihood 
of selecting high-yielding soybean genotypes under ASR 
pressure in more advanced stages, and enhances 
selection gains. 
From this perspective, the current study aimed to predict 
the average soybean yield components in the F2:3 and 
F2:5 families, as well as the top 50% lines of each F2:5 
family [F2:5(50%)], under ASR pressure based on 
genotyping of the F2 generation from the cross of two 
elite breeding lines. 
 
Results 
 
ASR symptoms and severity  
All plants of the parental lines BRQ16-5409 and BR13-
9499 and the segregating generations (F2, F2:3, and F2:5) 
resulting from their crosses showed tan (TAN) lesions 
under ASR pressure. The levels of ASR severity (ASRS) in 
the parents and the average levels in the populations 
were below 30% in the first evaluation and above 70% in 
the fourth evaluation for all generations (Figure A; 
Supplementary data). 
The controls BRS 523 and BRS 531 were additionally 
evaluated in F2:5 and showed TAN and reddish-brown 
(RB) lesions typical of plants susceptible and resistant to 

ASR, respectively. ASRS in the parents and the population 
average was similar to that observed in the susceptible 
control in each of the four assessments (Figure Ac, 
supplementary data). The severity of the resistant 
cultivar BRS 531 was lower than that of the non-resistant 
plants and did not increase much between the ratings, 
ranging from 7.9 ± 2.9 (first evaluation) to 17.4 ± 3.7 
(fourth evaluation). Its severity in the fourth evaluation 
was slightly higher than the severity of non-resistant 
plants in the first evaluation. 
 
Phenotypic selection in F2 and F2:3 
In this study, we evaluated the efficiency of phenotypic 
selection by calculating the correlations between F2 and 
F2:3 with F2:5(50%) and the percentage of F2 plants and 
F2:3 families that resulted in the best F2:5 families. This 
efficiency allows us to verify the possibility of using 
marker information in breeding programs. When 
phenotypic selection is not efficient, the use of marker 
information can increase selection accuracy and lead to 
greater genetic gains. 
The phenotypic correlations between F2 and F2:5(50%) 
for seed yield per plant or line (SY), days to maturity 
(DM), plant height (PH), and 50-seed weight (50SW) were 
-0.23, 0.74, 0.67, and 0.56, respectively. By adopting a 
selection percentage of 20% in F2 and F2:5(50%), seven 
of the 46 F2 plants with higher SY resulted in the best 
F2:5(50%) families. Thus, only 15.21% of the plants 
selected in F2 resulted in families selected in F2:5(50%). 
It contrasts with DM, PH, and 50SW, whose selection in F2 
resulted in 60.86%, 56.52%, and 43.47% of the lines 
selected in F2:5(50%), respectively. The highest number 
of families selected in F2:5(50%) from selection in F2 
usually occurred for traits with higher heritability. The 
narrow-sense individual-level heritabilities for DM and 
PH were 0.79 and 0.84, respectively. Although the 
heritabilities of SY and 50SW were similar (0.59 and 0.53, 
respectively), the number of families selected in 
F2:5(50%) from phenotypic selection in F2 was higher 
for 50SW. 
Another way of selection was to use the average of plants 
from F2:3 families to replace the phenotype of F2 plants. 
The correlations between F2:3 and F2:5(50%) for SY, DM, 
PH, and 50SW were -0.19, 0.85, 0.80, and 0.68, 
respectively. By adopting a selection percentage of 20% 
in F2:3 and F2:5(50%), for example, two of the 46 F2:3 
plants with higher SY resulted in the best F2:5(50%) 
families. Thus, only 0.04% of the families selected in F2:3 
resulted in families selected in F2:5(50%). That was a 
lower percentage than when the selection was on F2 
plants (15.21%). The heritability at the level of the F3 
family mean in the narrow-sense was 0.43, lower than 
that obtained at the individual level in F2 (0.59). On the 
other hand, the percentages of families selected for DM, 
PH, and 50SW (65.21%, 56.52%, and 47.82%, 
respectively) in F2:3 that resulted in families selected in 
F2:5(50%) were similar or slightly higher than those 
obtained in F2 (60.86%, 56.52% and 43.47% 
respectively). The heritabilities at the level of the F3 
family mean in the narrow-sense for these traits were 
0.95, 0.93, and 0.84, respectively. These heritabilities 
were higher than the individual-level heritability 
obtained for F2 (0.79, 0.84 and 0.53). In contrast to F2,  
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Fig 1. Predictive ability of models under different approaches (GBLUP-A: additive model, GBLUP-AD: dominant-additive 
model, GBLUP-AE: epistatic-additive model, Bagging, PCR: principal component regression, Bayes-C𝜋: Bayes-C𝜋 with 
additive-dominant model) for seed yield per plant or line evaluated in a segregating soybean population under Asian rust 
pressure. Approaches within the same generation and with the same uppercase letter do not differ by Tukey's test at 5% 
probability. The same approach between generations and with the same lowercase letter do not differ by Tukey's test at 5% 
probability. 
 
the heritability in F3 (0.84) for 50SW was higher than that 
obtained for SY (0.43). On the other hand, the percentages 
of families selected for DM, PH and 50SW (65.21%, 
56.52%, and 47.82%, respectively) in F2:3, that resulted 
in families selected in F2:5(50%), were similar or slightly 
higher than those obtained in F2 (60.86%, 56.52%, and 
43.47% respectively). 
 
Analysis of variance 
Significant Generation x Approach interaction (p ≤ 0.05) 
was observed for SY, HP, and 50SW but was not 
significant for DM (Table 1, Supplementary data). Tukey's 
test comparing approaches within the same generation 
and generations within the same approach was 
performed, when there was a significant Generation x 
Approach interaction (p ≤ 0.05) (Figures 1, 3, and 4). 
When the interaction was not significant, comparisons 
were made between generations and between 
approaches (Figure 2). 
 
Predictive ability of models for soybean yield 
components in F2 and F2:3  
A total of 1763 SNPs were used in the genomic selection, 
after eliminating markers with a call rate (CR) of less than 
90%, and a minor allele frequency (MAF) of less than 5%, 
as well as those with genotype ratios significantly 
different from the expected 1:2:1 ratio [with Bonferroni 
protection (α = 20%)]. Different predictive models were 
used to estimate the genomic estimated breeding value 
(GEBV) for various soybean yield components in an F2 
population under ASR pressure (Figures 1 to 4). The 
models Bayes-C𝜋 and Bagging generally produced the 
highest predictive abilities, while the PCR yielded the 
lowest. Traits with greater heritabilities showed higher 
predictive ability. Traits with narrow-sense individual 
level heritabilities close to 0.55 (0.59 for SY and 0.53 for 
50SW) had a predictive ability close to 0.35 and traits  
 

 
with heritabilities close to 0.80 (0.79 for DM and 0.84 for 
PH) had a predictive ability close to 0.75.  
Like the F2 generation, the predictive abilities for 
soybean yield components in F2:3 were generally higher 
with Bayes-C𝜋 and Bagging and lower with PCR (Figures 
1 to 4). Except for SY in F2:3, there were no significant 
differences (p ≤ 0.05) between the predictive abilities 
obtained in GBLUP with additive, additive-dominant, and 
additive-epistatic models for all yield components in F2 
and F2:3. The predictive ability of the model for SY in F2:3 
using Bagging was similar to that obtained in F2 using 
Bayes-C𝜋 (Figure 1). However, using the same approach, 
the predictive ability in F2:3 was generally lower than in 
F2, which corresponds to a reduction in heritability from 
0.59 (F2) to 0.43 (F2:3). This difference between 
generations was much less pronounced for DM and PH, 
when comparing the best prediction models for each 
generation or considering the same approach (Figures 2 
and 3). On the other hand, the predictive capacity in F2:3 
for 50SW was higher than that obtained in F2 for all 
approaches (Figure 4). That followed the increase in 
heritability from 0.53 (F2) to 0.85 (F3). 
 
Predictive ability of models for soybean yield 
components in F2:5  
Predictive abilities for soybean yield components in F2:5 
were generally highest with Bagging and Bayes-C𝜋 and 
lowest with PCR (Figures 1 to 4). The predictive ability 
using the average of six lines as a phenotype for SY in F2:5 
was higher than F2:3 using the average of six individuals. 
That was unverified for the other traits, where similar or 
higher values in F2:3 were obtained.  
Also, averages of the 50% best lines of each F2:5 family 
were predicted. Similar to F2:5, the predictive abilities for 
soybean yield components in F2:5(50%) were generally 
highest with Bagging and Bayes-C𝜋 and lowest with PCR 
(Figures 1 to 4). These predictive abilities were slightly 
lower than those obtained for F2:5. The Pearson  
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Fig 2. Predictive ability of models under different approaches (GBLUP-A: additive model, GBLUP-AD: dominant-additive 
model, GBLUP-AE: epistatic-additive model, Bagging, PCR: principal component regression, Bayes-C𝜋: Bayes-C𝜋 with 
additive-dominant model) for days to maturity evaluated in a segregating soybean population under Asian rust pressure. 
Approaches within the same generation and with the same uppercase letter do not differ by Tukey's test at 5% probability. 
The same approach between generations and with the same lowercase letter do not differ by Tukey's test at 5% probability. 
 
correlations between F2:5 and F2:5(50%) for SY, DM, PH 
and 50SW were 0.95, 0.94, 0.95 and 0.97, respectively.  
 
Discussion 
 
ASR development in the field  
In this study, the line BRQ16-5409 crossed with the line 
BR13-9499, where both developed by the breeding 
program of Embrapa Soybean in Brazil through selection 
for good productivity, even presenting TAN lesions 
(susceptibility lesion) in the presence of ASR. All the 
plants in the F2, F2:3, and F2:5 from this cross, showed 
symptoms of TAN lesion, and the progression of severity 
in the parents and segregating generations was different 
from that shown by the resistant cultivar BRS 531 in F2:5 
(Figure Ac, supplementary data), indicating the absence 
of major resistance genes in the studied population. 
In addition to resistance, tolerant cultivars avoid 
productivity losses caused by ASR. Tolerance can be 
defined as the ability of the plant to support the pathogen 
development without presenting a significant decrease in 
productivity (Schafer, 1971). Usually, yield losses are 
employed to assess tolerance, and the lower the loss, the 
higher the tolerance (Zambolim et al., 2022). Losses are 
calculated by the difference in productivity between 
severely infected and uninfected plots (Zadocks, 1985). 
Zambolin et al. (2022) reported that rust-tolerant lines 
can be selected from segregating populations, growing  

 
under conditions of severe ASR attack, simply by 
selection for productivity. However, plants with TAN 
lesions in the F2, F2:3, and F2:5 (Figure A; Supplementary 
data), but with good productivity, may not be tolerant. As 
we evaluate segregating generations, we do not have 
information on the loss of productivity of each genotype 
to know its tolerance level. In addition, one genotype may 
be more productive than another under disease pressure 
and have less tolerance. For example, a genotype ‘A’ may 
produce 2,000 kg/ha in the absence of the disease and 
1,900 kg/ha under disease pressure, resulting in a 100 
kg/ha yield reduction. Contrarily, genotype ‘B’ may 
produce 1,800 kg/ha in the absence of the disease and 
1,750 kg/ha under disease pressure, resulting in a 50 
kg/ha reduction. Thus, genotype A is more productive 
under disease pressure even though it is less tolerant 
than genotype B. Here, the study focuses on more 
selecting productive genotypes under disease pressure, 
without distinguishing whether they are more or less 
tolerant (or non-tolerant) compared to those that are not 
selected. 
 Plants may also have an escape mechanism, showing 
rapid phenological development before the disease 
becomes severe and causes physiological damage 
(Zambolim et al., 2022). Although all plants had ASRS 
greater than 70% at the fourth evaluation in all 
generations (Figure A, supplementary data), earlier 
plants spent less time suffering the effects of rust attack.  
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Fig 3. Predictive ability of models under different approaches (GBLUP-A: additive model, GBLUP-AD: dominant-additive 
model, GBLUP-AE: epistatic-additive model, Bagging, PCR: principal component regression, Bayes-C𝜋: Bayes-C𝜋 with 
additive-dominant model) for plant height evaluated in a segregating soybean population under Asian rust pressure. 
Approaches within the same generation and with the same uppercase letter do not differ by Tukey's test at 5% probability. 
The same approach between generations and with the same lowercase letter do not differ by Tukey's test at 5% probability.  
 
The escape mechanism was most evident in F2:5, where 
the correlations between SY and 50SW with DM were -
0.77 and -0.75, respectively. In F2, although the Pearson 
correlation between 50SW and DM was -0.54, the 
correlation between SY and DM was non-negative (0.34). 
The behavior of disease severity progression in 
generations in 2019, 2020, and 2022 (Figure A; 
Supplementary data) was similar to that found by Lima et 
al. (2012), with an increase of more than 40% in severity 
level between the first and last evaluation, indicating that 
there were sufficient climatic conditions for disease 
development in the field. ASRS of more than 70% in the 
fourth evaluation observed in the F2, F2:3, and F2:5 
generations (Figure A; Supplementary data) allowed the 
construction of models to predict the GEBV of soybean 
plants for yield components under disease pressure 
(Figures 1 to 4). 
 
Early-generation selection 
The phenotypic selection was efficient in selecting 50SW, 
but mainly for DM and PH, which had higher heritabilities 
(0.79 and 0.84, respectively). However, it was 
unsuccessful for SY, whose correlation between F2 and 
F2:5 was low (r = -0.23). Several studies have indicated 
genomic selection use for traits with lower heritability to 
increase selection gains in soybeans (Duhnen et al., 2017; 
Matei et al., 2018; Bandillo et al., 2022; Miller et al., 2023). 
For this, models obtained from the training and validation 
populations can be used to predict GEBV of a target 
population (Meuwissen et al., 2001; Sousa et al., 2019; 
Costa et al., 2022; Miller et al., 2023). In this study, models 
were obtained from the training and validation 
populations due to the low accuracy of phenotypic 
selection for SY (Figures 1 to 4). For this, the phenotyping 
of yield components of the F2:3 and F2:5 generations and 
the genotyping of the F2 generation from the crossing of  
 

 
the lines BRQ16-5409 and BR13-9499 were performed in 
soybean plants under ASR pressure.  
F2:3 phenotyping and F2 genotyping may be beneficial in 
generating models if their predictive abilities are greater 
than those generated by models using phenotyping and 
genotyping in F2. The use of F2:3 in predicting SY, DM, 
and HP was not advantageous, because the predictive 
abilities of the best models using F2 and F2:3 were similar 
or lower than those obtained when using phenotyping 
and genotyping in F2 (Figures 1 to 3). On the other hand, 
the predictive abilities of models using phenotyping in 
F2:3 for 50SW were higher than those obtained in F2 
(Figure 4). The greater this superiority, the more 
advantageous the use of F2:3 phenotyping may be, 
increasing the possibility of higher selection gains. 
Although it is necessary to advance one generation and 
increase the number of phenotyped plants to build the 
models, this strategy does not increase the cost of 
genotyping, as this activity is performed in the F2 
generation. The results presented in Figures 1 to 4 are 
related to the heritability differences estimated between 
generations. The difference in heritabilities for SY (0.59, 
0.43, respectively), DM (0.79, 0.95), and PH (0.84, 0.93) in 
F2 and F2:3 were closer to those found for 50SW (0.53, 
0.84). Heritabilities were estimated at the individual level 
for F2 and at the family average level for F2:3, reflecting 
the use of individual data in F2 and family mean data in 
F3 for model estimation. Costa et al. (2022) also found 
increased predictive ability with increasing heritability. 
The authors simulated data from F2 populations for 
twelve traits with heritabilities ranging from 0.5 to 0.8. 
The predictive capacity of the model generated for a trait 
with a heritability of 0.8 was 81% greater than that with 
a heritability of 0.5. 
For construction of the predictive models, replacing the 
phenotype of the F2 plants by the average of the lines of 
each F2:5 and F2:5(50%) family enabled us to obtain  
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Fig 4. Predictive ability of models under different approaches (GBLUP-A: additive model, GBLUP-AD: dominant-additive 
model, GBLUP-AE: epistatic-additive model, Bagging, PCR: principal component regression, Bayes-C𝜋: Bayes-C𝜋 with 
additive-dominant model) for 50-seed weight evaluated in a segregating soybean population under Asian rust pressure. 
Approaches within the same generation and with the same uppercase letter do not differ by Tukey's test at 5% probability. 
The same approach between generations and with the same lowercase letter do not differ by Tukey's test at 5% probability.   
 
their predictive ability between 0.61 ± 0.01 to 0.84 ± 0.01 
in F2:5 and 0.57 ± 0.03 to 0.79 ± 0.02 in F2:5(50%), 
depending on the evaluated trait (Figures 1 to 4). The 
selection of the best F2:5 families for a yield component 
considered only the average of their lines. However, two 
families can have the same average but exhibit different 
standard deviations. When this occurs, the family with the 
higher deviation will have a higher probability of having 
superior lines (Zhong and Jannink, 2007). In this study, 
the superiority was verified in the selection of families, 
using F2:5(50%). For instance, consider one of the 
analyses of two F2:5 families under selection for grain 
yield. The first family had six lines, each producing 200, 
389, 391, 250, 279, and 269 grams of seeds per line, 
respectively. The second family also had six lines, 
producing individually 363, 253, 291, 355, 247, and 271 
grams of seeds per line. Both families had an average yield 
of approximately 296 grams of seeds per line. However, 
the standard deviation of the first family was 78 grams of 
seeds per line, while the standard deviation of the second 
family was 51 grams of seeds per line. When we selected 
the top 50% of lines from each family [F2:5(50%)], the 
average yield of the first family was 353 grams of seeds 
per line, and the average yield of the second family was 
336 grams of seeds per line. Then, the analysis of the 
F2:5(50%) families considered both the means and 
variances of the F2:5 families and consequently selected 
families that generated lines with higher phenotypic 
values of SY. 
Models using different approaches showed different 
predictive abilities (Figures 1 to 4), as confirmed in other 
genomic selection studies (Azevedo et al., 2013; Duhnen 
et al., 2017; Costa et al., 2022; Gebremedhin et al., 2024). 
However, regardless of these differences, the models 
were able to detect the same inter-generational 
variations, such as the increase in predictive ability in 
F2:3 for 50SW, the increase in predictive ability in F2:5 
and F2:5(50%) for SY, and the similar inter-generational 
predictive abilities for DM and HP. 
 

 
Breeding program 
Although the F2, F2:3, and F2:5 evaluations in both the 
training and validation populations were conducted 
under field conditions (Figures 1 to 4), and the F2:4 
generation was assessed in a greenhouse, this does not 
preclude the generation of F2:5(50%) models in breeding 
programs. These models can be developed by growing the 
earlier generations (F2, F2:3, and F2:4) in a greenhouse 
and evaluating only the F2:5 generation in the field, 
particularly for yield components under ASR pressure. 
This can reduce the time to advance generations. The 
inoculation with the pathogen is done in F2:5 and the 
genotyping in F2. In this study, the numbers of 230 
genotyped plants in F2 and 1380 phenotyped lines in F2:5 
(230 families x six lines per family) under ASRS pressure 
have proven to be adequate for construction of the 
models. Alternatively, the evaluation of yield components 
under disease pressure can be done in F2:4 by sowing 
lines within families, which will reduce one generation 
cycle. 
Genomic selection leverages phenotype and genotype 
data from earlier generations or historical data and the 
prediction of GEBV of new populations without 
performing phenotyping to save resources and increase 
long-term genetic gain (Meuwissen et al., 2001; Duhnen 
et al., 2017). In this study, the models were built using 
later-generation (F2:3 and F2:5) phenotypes and F2-
generation genotypes from one small population derived 
from the cross between two elite breeding lines. These 
models can be potentially applied in the prediction of 
GEBV in a larger target population derived from the same 
cross or from crosses that share a similar genetic 
background with our target population (under current 
study). This strategy allows the assessment of a higher 
number of promising genotypes in the advanced stages of 
the target population, as it eliminates the less promising 
ones in the initial stages. Early-generation selection is 
crucial, when there is a requirement for specific 
environmental conditions for genotype selection, as 
occurs in selecting productive genotypes under ASR 
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pressure. The number of genotyped F2 plants in a target 
population may vary depending on the structural 
capacity of the breeding program. In a hypothetical 
scenario with 1,000 genotyped F2 plants and a 10% 
selection rate, one could obtain 100 F3 lines (one F2 plant 
per F3 line) and subsequently generate 10,000 F4 lines 
(100 F4 lines per F3 line). A new assessment of ASRS can 
be made in F2:4 to increase the accuracy of selection. 
Since genomic selection eliminated 90% of the plants in 
F2, this evaluation corresponds to one in 100,000 lines in 
a selection based on phenotype alone. In the latter case, 
the breeding program requires a larger logistical 
structure to conduct and harvest the lines, inoculate the 
pathogen, and maintain appropriate environmental 
conditions for allowing field disease development. Thus, 
the reduction in the number of genotypes in a target 
population is crucial to improve the likelihood of 
selecting high-yielding soybean genotypes under ASR 
pressure in more advanced stages. 
Genomic selection showed efficiency in predicting yield 
components of soybean genotypes under ASR pressure in 
subsequent generations (F2:3 and F2:5) from the cross 
between two elite breeding lines. For this purpose, 
phenotyping of advanced generations (F2:3 and F2:5) 
under disease pressure and genotyping of the F2 
generation were used to obtain genomic prediction 
models. The use of these models for early-generation 
selection in a target F2 population from the same cross or 
shares a similar genetic background with the population 
under study will reduce the number of segregating lines 
and consequently optimize the mechanical and financial 
resources of breeding programs to develop productive 
soybean genotypes under ASR pressure and increase 
selection gains. 
 
Materials and methods 
 
Plant materials 
The yield components of soybean plants under ASR 
pressure were evaluated in the F2, F2:3, and F2:5 
generations resulting from the cross between the lines 
BRQ16-5409 and BR13-9499, developed by the breeding 
program of Embrapa Soybean in Brazil (Figure B, 
supplementary data). BRQ16-5409 was developed to 
achieve higher productivity under Asian soybean rust 
pressure, and BR13-9499 for high yield without disease 
pressure. The BRQ16-5409 line was derived from the 
cross between the cultivars BRS 284 and W-20, and the 
BR13-9499 line from the cross between the cultivars BRS 
284 and BMX Potência. The parents of BRQ16-5409 and 
BR13-9499 lack the Rpp1 to Rpp7 genes, which confer 
resistance to P. pachyrhizi (Childs et al., 2018). BRQ16-
5409 and BR13-9499 have indeterminate growth habits 
and belong to maturity group 6, aimed at planting in the 
northern region of Paraná, Brazil.  
  
Field trials 
Phenotypic data were obtained from three trials carried 
out at the experimental field of Embrapa Soja in Londrina, 
PR, Brazil. The field is at latitude 23°11'37” S, longitude 
51°11'03” W and altitude 630 meters. The local climate is 
humid subtropical (Cfa), according to the Köppen-Geiger 
climate classification and the soil is Typic Haplorthox.  

The first trial was sown in November 2019 and included 
the two parents -- BRQ16-5409 and BR13-9499 -- with 50 
replications each, along with 230 F2 plants resulting from 
this cross, for a total of 330 plants grown in single-plant 
hill plots (01 hill-plot = 01 plant) randomly arranged in 
the field (Lima et al., 2012). 
The second trial was sown in November 2020 and 
included the two parents and 230 F2:3 families obtained 
from the F2 plants of the first trial. Each parent was 
replicated 30 times in the trial, and each F2:3 family 
consisted of six plants, for a total of 1440 randomized 
single-plant hill plots. In 2019 and 2020, the spacing 
between hill plots within the rows was 20 cm and 1.5 m 
between the rows. Two rows of the susceptible cultivar 
BRS Conquista were border at this 1.5 m distance and 
around the trial. 
The third trial was sown in November 2022 and included 
the two parents with 30 replications each and 230 F2:5 
families with six lines each. Each of the 1380 F2:3 plants 
generated F2:4 plant, which then grown to seeds of an 
F2:5 line in the greenhouse. In addition, the ASR-resistant 
and susceptible check cultivars BRS 531 and BRS 523 
were evaluated with 30 repetitions each (1 repetition = 1 
line). The trial consisted of 1500 single-row plots, three 
meters long and 0.5 meters apart. The adopted 
experimental layout was an augmented block design 
(Federer, 1961). The 1380 F2:5 lines were field-
randomized planting. For every 50 F2:5 lines, one line of 
each parent and each control were sown. The cultivar BRS 
Conquista was sown as a border around the experiment. 
The sowing density of the three experiments was close to 
250,000 plants ha-1 to simulate soybean growth. 
Fertilization, weeding, and pest control were adopted to 
allow optimal plant development (Seixas et al., 2020). 
Inoculation with ASR in the three trials was carried out 
using a manual sprayer. The spore suspension was 
applied only to the borders sown with the susceptible 
cultivar BRS Conquista at the V3 developmental stage 
(Lima et al., 2012). Spraying was carried out with a 
suspension containing 1 x 104 mL-1 of uredospores in 
sterilized distilled water supplemented with 0.5 mL of 
Tween 20, with the uredospore concentration adjusted 
using a Neubauer chamber. In 2019, the field 
environmental conditions, from 5 days before to 5 days 
after inoculation, were an average relative humidity of 
86.4%, accumulated rainfall of 26.4 mm, and accumulated 
global solar radiation of 16 MJm-2. In 2020, the values 
were 92.3%, 52.2 mm, and 15.3 MJm-2, and in 2022, 
87.6%, 139.4 mm, and 14.7 MJm-2, respectively. The 
pathogen inoculum was propagated in the BRS Conquista 
sown in 4.0 kg pots containing a sterilized mixture of soil, 
sand, and manure for approximately 70 days in a 
greenhouse at an average temperature of 25°C and 
natural lighting (Ribeiro et al., 2007; Pierozzi et al., 2008).  
Plants were harvested at the R7 stage, shade-dried, 
threshed, and weighed individually in the first two trials 
and a row in the third one. 
 
Phenotyping 
The traits evaluated were SY, 50SW, DM, PH, and ASRS. 
Assessment of the plant cycle allowed us to verify 
whether plants with higher SY and greater 50SW had an 
early cycle, which consisted of a strategy to escape the 
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disease (Godoy et al., 2016). For this purpose, Pearson 
correlations were calculated between SY and 50SW with 
DM in F2 and F2:5, since SY and 50SW are traits affected 
by the occurrence of ASR (Godoy et al., 2006). Plant 
heights were measured to develop cultivars with higher 
resistance to lodging.  
ASRS was estimated as a percentage of leaf area infected 
by the pathogen using the graphical scale developed by 
Franceschi et al. (2020). Four assessments were made in 
the middle third of the plants at approximately seven-day 
intervals. The initial assessment took place around 80 
days after emergence, when the crop canopy had closed 
and a more favorable microclimate for infection had been 
established, due to higher humidity and shading (Isard et 
al., 2006). Additionally, the plants were evaluated and 
classified based on the type of present lesion, which were 
either RB or TAN (Hartman et al., 2015). These 
assessments allowed for the quantification of disease and 
the identification of resistant genotypes associated with 
the unexpected presence of major genes. 
 
Genotyping 
When seedlings of 230 F2 plants were three weeks old, 
leaf tissue samples were collected, placed in 50 mL Falcon 
tubes, lyophilized, and ground to a fine powder for DNA 
extraction. DNA was extracted using a modified CTAB 
protocol (Rogers and Bendich, 1994). Genotyping was 
performed by selecting a set of 4,224 SNPs from those 
validated in the previously developed soybean 
BARCSoySNP6K chip (Song et al., 2020) to populate a 
sector of the EMBRAPA multispecies 65K Infinium chip. 
This chip contains 66,413 SNPs in total, shared among 27 
different plant and animal species, significantly reducing 
the cost of genotyping individual samples, while allowing 
the generation of high-quality and inter-laboratory 
portable SNP data for all species. SNPs were selected 
based on criteria that included performance metrics of 
the SNPs in previously genotyped germplasms including 
SNP CR, MAF, and SNP quality parameters from previous 
reports. SNP genome address information in the 
reference genome was also considered to distribute SNPs 
across chromosomes to maximize recombination space 
coverage and allow genotype imputation in future 
studies. Genotyping was executed at Neogen/Geneseek 
(Lincoln, NE). Manifest files and intensity data (.idat files) 
were obtained from Neogen. SNP genotypes were called 
using GenomeStudio 2.0 (Illumina, Inc. San Diego, CA) 
following the standard genotyping and quality control 
procedures (Illumina, 2010) and exported in the AB 
format where alleles A and T at the SNPs are coded as “A” 
and alleles G or C at the SNPs are coded as allele “B”. 
Marker data for F2 plants were coded for genomic 
selection analyses. Genotypes homozygous for the major 
allele were coded as 2, heterozygous genotypes were 
coded as 1, and genotypes homozygous for the minor 
allele were coded as 0. 
 
Marker quality control 
Quality control of SNP markers was performed after 
genotyping of F2 plants to check for the presence of rare 
alleles in the population, markers with a large number of 
missing genotypes, and whether the observed genotypic 
frequencies of the markers were consistent with the 1:2:1 

ratio expected in an F2 population. Markers with CR less 
than 90% and MAF less than 5% and whose genotype 
ratios deviated significantly from the expected 1:2:1 ratio 
(with Bonferroni protection (α = 20%)) were excluded 
from the analysis.  
 
Genomic breeding values 
The models for estimating the GEBV of soybean yield 
components were obtained using genotyping of 
individual plants from the F2 generation and 
phenotyping of the F2, F2:3, F2:5, and the top 50% of lines 
in each F2:5 family [F2:5(50%)]. The phenotyping 
consisted of values from individual plants in the F2 
generation, average values from six plants in F2:3, 
average values from six lines in F2:5, and average values 
from three upper or lower lines in F2:5(50%), depending 
on the trait. The top 50% of lines in each F2:5(50%) 
family had the highest SY, highest 50SW, lowest DM, or 
lowest PH. 
We used different approaches for model construction 
such as G-BLUP (Bernardo, 1994; VanRaden, 2008), 
bagging (Breiman, 1996; Prasad et al., 2006), principal 
component regression (Solberg et al., 2009; Azevedo et 
al., 2013), and Bayes-C𝜋 (Habier et al., 2011). The 
additive, additive-dominant, and additive-epistatic 
kernels fit in the G-BLUP approach (Zhang et al., 2019; 
Costa et al., 2022). In the bagging method, 500 trees were 
grown (Costa et al., 2022). For principal component 
regression, the number of components was selected 
based on the highest predictive ability (Long et al., 2011). 
Bayesian analysis involved 500,000 interactions, a burn-
in of 50,000, and a thin of five. Convergence analysis was 
performed according to Geweke’s criteria (Geweke, 
1992). 
 
Predictive ability of models for soybean yield 
components  
A total of 230 F2 plants resulting from the cross between 
the lines BRQ16-5409 and BR13-9499 were randomly 
divided into 5 groups (folds), each containing 46 plants. 
We gathered 184 plants from 4 folds to form a training 
population and 46 plants from 1-fold to form a validation 
population. This process of creating training and 
validation populations was the first iteration. Four more 
iterations were conducted so that all F2 plants took part 
in 4 training stages and 1 validation stage. 
Models were created using the genotyping and 
phenotypic values of the yield components of F2 plants 
from each training population. These models were then 
used to estimate the GEBV and the predictive capacity of 
these models. The predictive capacity was measured as 
the correlation between the GEBV and the phenotypic 
values of the plants in the validation population. The 
average of the predictive abilities of the models obtained 
in the five iterations was defined as the predictive ability 
of the first division. 
The random division of the F2 population into 5 folds was 
repeated nine more times, resulting in a total of 10 
divisions. Similar to the first division, we calculated the 
model predictive abilities of the other nine divisions, 
resulting in 10 predictive abilities. Finally, we obtained 
the mean and the respective standard deviation of the 
predictive abilities of the 10 divisions. 
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Additionally, the predictive abilities of the models were 
calculated using the F2 plant genotyping and the 
phenotypic values of yield components in F2:3, F2:5, and 
F2:5(50%). This process involved averaging the data 
from six plants, six lines, and three lines, respectively, 
rather than relying on the phenotypic information of 
individual plants in the F2 generation. 
 
Heritability, correlation and phenotypic selection 
The genetic components of variance were estimated 
using the weighted least squares method, and these 
estimates were used to calculate the narrow-sense 
heritabilities of the yield components at the individual 
level in F2 and the family mean level in F3 (Mather and 
Jinks, 1984). Correlations of F2 and F2:3 with F2:5(50%) 
were obtained to verify the feasibility of phenotypic 
selection, and the correlation between F2:5 and 
F2:5(50%) was analyzed to check for any differences in 
the predictive abilities of their generated models. The 
feasibility of phenotypic selection was also verified by 
calculating the percentage of F2 plants and F2:3 families 
that resulted in the best F2:5 families. 
 
Statistical analyses 
The narrow-sense heritabilities of the yield components 
were calculated using the GENFIT software (Toledo, 
1991). The correlations of F2 and F2:3 with F2:5(50%) 
were estimated using the GENES software (Cruz, 2016). 
A Tukey´s test compared the predictive abilities of 
different model approaches for yield components 
evaluated across different generations (Cruz, 2016). The 
comparisons between approaches within the same 
generation and between generations within the same 
approach were performed when there was a significant 
Generation x Approached interaction (p ≤ 0.05). When 
the interaction was not significant, comparisons were 
made between generations and between approaches. 
The marker quality control and the estimates of GEBV and 
predictive abilities of the models using G-BLUP, bagging, 
principal component regression, and Bayesian analysis 
were performed using the GenomicLand software 
(Azevedo et al., 2019).  
 
Conclusion 
 
The genomic selection allows for constructing models for 
seed yield per plant, days to maturity, plant height, and 
50-seed weight that predict the phenotyping of advanced 
generations of a population under Asian soybean rust 
pressure from the genotyping of the F2 generation.  
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