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Abstract: Estimation of evapotranspiration using remote sensing is a promising and low-cost 
alternative, but there is a lack of studies to calibrate the algorithm for different crops and 
atmospheric conditions. In this context, the objective of the study was to evaluate the efficiency 
of the SAFER algorithm in estimating evapotranspiration of corn crops (ETa) in three different 
sources of surface albedo. The study was carried out in a corn (cultivar AG8700) production 
(March to Jully) area irrigated by central pivot in Itaberaí-GO, Brazil, in 2021. The region's climate 
is characterized as Aw, with two well-defined seasons, dry winter and rainy summer, and  the 
soil was classified as Red Oxisol of medium texture. Images from a multispectral and thermal 
camera model MicaSense Altum and albedo images from the Landsat 8 (each 16 days) and 
Sentinel 2A (each 10 days) satellites were used to estimate the ETa using the SAFER algorithm. 
These data were compared with ETc (Crop evapotranspiration) obtained by FAO, Embrapa and 
climatological water balance methods based on statistical indices. In general, the best correlation 
with standard methods was the Drone method, mainly the FAO and BHC methods. On average, 
the EQM (mean square error) was less than 0.22 mm day-1. The agreement index ranged from 
0.84 to 0.91. The largest errors were observed in phase III, due to contamination of albedo and 
NDVI pixels caused by screwing. This error was greater for the DroneLand and DroneSent 
methods. On average the EQM and EMA (mean absolute error) were close to 1 mm day-1, the 
confidence index was below 0.74 for all methods. Thus, the use of images from multispectral and 
thermal cameras proved to be a good tool for estimating evapotranspiration.  Corn crop 
flowering interferes with the estimated values of NDVI and surface albedo, leading to greater 
underestimation. However, when drone images are used to calculate the three SAFER variables, 
this effect is mitigated. ETa estimation by remote sensing is not recommended for the 
reproductive phase of corn crop. 

 
Keywords: Drone, energy balance, geoprocessing, flower tassel. 
Abbreviations: ETa - Real Crop Evapotranspiration; ETc - Potential Crop Evapotranspiration; ETo - Reference 
evapotranspiration; Rg  - Global radiation; Ta - Average air temperature; SAFER - Simple Algorithm For 
Evapotranspiration Retrieving; FAO - Food Agriculture Organization; EMBRAPA - Brazilian agricultural research company; 
BHC - Climatological water balance; REMA - root mean absolute error; EMA - Mean absolute error; EQM - Mean square 
error; NDVI - Normalized Difference Vegetation Index; Kc - Crop evapotranspiration coeficiente; VT - Vegetative phase; R - 
correlation coefficient; d - concordance index; c - confidence index; Drone – ETa obtained by drone images; DroneLand - 
ETa obtained by drone images and albedo extracted from LandSat 8 satellite; DroneSent – ETa obtained by drone images 
and albedo extracted from Sentnel 2 satellite. 
 
Introduction 
 
Corn (Zea mays L.) is a crop of great economic importance, 
being one of the main traded commodities (Lopes et al., 
2019). According to data published by the United States 
Department of Agriculture USDA (2021), corn is also the 
most cultivated grain in the world. It plays a significant 

role in food security and industry, mainly in the 
production of energy (ethanol) and animal feed. Brazil is 
the 3rd largest corn producer in the world, behind the 
United States and China, together they produce more than 
60% of all grain produced in the world annually. 
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Furthermore, it is one of the five largest corn exporters 
(USDA, 2021). 
Despite the country's large production, average 
productivity is still low. Among the various factors that 
cause a drop in productivity (genetics, nutrition, 
phytosanitary control), water deficit is one of the most 
responsible, mainly due to irregularities in the 
distribution of precipitation (Sah et al., 2020). Within this 
scenario, it is essential to know the evapotranspiration 
(ET) of the corn crop, to estimate productivity and 
productivity decline. Because, it is mainly cultivated 
during the rainy season and dry spells directly influence 
these losses. 
Therefore, corn is among the five most irrigated crops in 
Brazil, and the state of Goiás is among the four with the 
largest irrigated area (ANA, 2021). Corn production is 
concentrated in the 1st and 2nd harvest, requiring 
supplementary irrigation, and knowledge of 
evapotranspiration (ETc) is essential, both to better 
manage water resources and to better develop irrigation 
projects and management. 
ET is the process in which water from soil (evaporation) 
and plants (transpiration) are released into the 
atmosphere (Fenner et al., 2019). Drought events are 
increasingly frequent in several areas of the world, which 
directly affects rainfed crops. Thus requiring a more 
careful assessment in the feeding of estimation and 
breakdown models, in addition to irrigation needs 
(Granata, 2019). 
Obtaining different levels of evapotranspiration can be 
achieved by direct or indirect methods (Evett et al., 2015). 
Among the indirect methods, remote sensing has been 
studied and recommended for estimating the 
evapotranspiration of various crops. Such as: dry beans 
(Sales et al., 2016), tomatoes (Sales et al., 2017), (Sena, 
2021), sugar cane (Souza et al., 2020; Mussi et al., 2020), 
lawn (Aldrighi, 2020), pasture (Andrade, 2015) and corn 
(Teixeira et al., 2021). However, many authors warn 
about the low temporal resolution of the Landsat 8 and 
Sentinel 2A satellites (16 and 10 days, respectively). This 
limitation can be resolved with the use of multispectral 
and thermal cameras coupled to drones. Another problem 
also reported in the literature, but little studied, is the low 
quality of the data estimated in the initial and final phases 
of the crop, due to the soil being poorly covered by the 
plants and the yellowing of the leaves. And in the case of 
sugar cane, corn, sorghum and millet there is also a 
problem with flowering crop. This causes contamination 
of the NDVI (Normalized Difference Vegetation Index) 
and albedo pixels, resulting in lower ET values. There is a 
need to know how this problem can be alleviated by using 
different image sources, with different pixel sizes. 
The pixel size of the Landsat 8 image is 30 x 30 m, Sentinel 
2A 10 x 10 m and the drone 0.06 x 0.06 m. According to 
Nádudvari et al. (2020) drone images are of higher 
resolution and provide more detailed information. Which 
leads to more reliable results. And due to this greater 
detail and reliability, drone data, together with field 
measurements, are used to calibrate orbital images. 
There are several studies that report the advantages of 
using drone images, such as Padró et al. (2018) who found 
a good correlation between the drone's spectroradio- 
metric and measurements carried out in the field. And 

Morgan et al. (2020) who state that the drone data 
worked for their work as a bridge to what the satellite 
was seeing. 
To calculate energy flows through remote sensing images, 
it is necessary to use algorithms to obtain the elements 
(Bezerra et al., 2008). SAFER (Simple Algorithm For 
Evapotranspiration Retrieving) developed by Teixeira et 
al. (2012) stands out. The algorithm has shown good 
results for estimating ET in large and heterogeneous 
areas. It is a simplified algorithm, as it is not mandatory 
to use the thermal band. To use it, only three variables are 
needed: surface albedo, NDVI and surface temperature. In 
addition to the existence of a meteorological station close 
to the area of interest, to obtain reference 
evapotranspiration (ETo), global radiation (Rg) and 
average air temperature (Ta). 
Therefore, the objective of this study was to estimate corn 
ET using remote sensing and evaluate the impact of crop 
flowering on this estimate, using images from a 
multispectral and thermal camera coupled to a drone. 
And if images collected closer to the plants can mitigate 
this effect. 
 
Results and Discussion 
 
Air Temperature, rainfall and irrigation 
During the cycle the average temperature was 21.03 °C. 
The extreme limits tolerated by corn are between 10ºC 
and 30ºC. The ideal temperature from emergence to 
flowering is between 24ºC and 30ºC (Landau et al., 2005), 
therefore, the average air temperature throughout the 
cycle was conducive to the good development of the plant 
(Thermal sum of 1.478,54 oC). Accumulated precipitation 
was 141.6 mm, irrigation was 214.9 mm, totaling 356.5 
mm during the entire cycle. 
 
Water, nutritional, phytosanitary status and 
productivity of corn crops 
The harvest was carried out on August 3rd, totaling 132 
days of cycle. Productivity was 6.1 t ha-¹, 25% above the 
average for the 2nd harvest for Goiás (CONAB, 2022).  
During the cycle there was an infestation of leafhoppers, 
causing stunting, a disease that affected the development 
of the crop, causing biotic stress. In several plants, the 
second corn cob was aborted. A nutritional deficiency in 
phosphorus was found, with values between 1.06 g kg-1 
and 1.22 g kg-1. Values below the limits established by 
Martinez et al. (1999) which vary between 6 g kg-1 and 20 
g kg-1. Figure 1 illustrates the water potential in the leaf 
throughout the cycle. The average potential was 0.48 
Mpa, remaining below the critical level established by 
Bono et al. (2001) which varies between 0.8 (water 
stress) and 1.2 Mpa (water deficit), showing that the 
plants did not suffer water stress. 
Figure 2 represents the temporal variation of soil 
moisture, irrigation and precipitation (rain fall). Soil 
moisture throughout the crop cycle remained above the 
critical level in the 0.0 – 0.5 m layers. The corn crop did 
not suffer water stress at any stage of development. 
 
Crop evapotranspiration 
For atmospheric correction of the Sentinel 2A albedo 
data, Equation 15 was used, correcting the values of “a”  



380 
 

Table 1. Mean square error (EQM, mm day-1), mean absolute error (EMA, mm day-1), root mean absolute error (REMA, mm 
day-1), correlation coefficient (r), concordance index (d ) and confidence index (c) for the evapotranspiration values 
obtained by the Drone, DroneLand and DroneSent methods comparing them to the ETFAO, ETEmbrapa and ETBHC 
methods. 

Method EQM EMA REMA r d c Classification 
FAO 
Drone 0.080 0.254 0.099 0.93 0.92 0.86 Great 
DroneLand 0.414 0.576 0.222 0.90 0.70 0.63 Median 
DroneSent 0.425 0.593 0.227 0.91 0.71 0.65 Good 
Embrapa 
Drone 0.191 0.391 0.138 0.98 0.86 0.84 Very good 
DroneLand 0.760 0.780 0.275 0.81 0.61 0.50 Bad 
DroneSent 0.582 0.701 0.256 0.94 0.69 0.65 Good 
BHC 
Drone 0.384 0.157 0.066 0.94 0.96 0.91 Great 
DroneLand 0.293 0.456 0.182 0.86 0.73 0.63 Median 
DroneSent 0.281 0.457 0.182 0.89 0.77 0.69 Good 
Drone 
DroneLand 0.201 0.388 0.163 0.87 0.75 0.66 Good 
DroneSent 0.153 0.349 0.150 0.93 0.83 0.78 Very Good 
DroneLand 
DroneSent 0.030 0.141 0.071 0.90 0.94 0.84 Very Good 

and “b” used in the equation for transforming albedo from 
the top of the atmosphere into surface albedo. The 
coefficient values for Landsat 8 were maintained 
according to Teixeira (2010): 
𝛼0 = 0.7184 ∗ 𝛼 𝑡𝑜𝑝 + 0.008                           (15) 
Another limitation in estimating evapotranspiration from 
satellite images is the presence of clouds, especially 
during the rainy season. The clouds over the study area 
make it impossible to obtain the algorithm variables. The 
use of drone images provided better detail of the area, 
better NDVI indexes, temperature and pixel size. 
However, on the dates where clouds were present 
(07/April, 17/April, 27/April, 23/May) the estimation 
using the DroneLand and DroneSent method was also 
discarded, as the albedo variable was not obtained. 
The underestimation of Kc at the beginning of the cycle is 
reported by several authors, such as Sales et al. (2016) for 
the bean crop, Sales et al. (2017) for tomato cultivation 
and Oliveira et al. (2020) for sugar cane. This fact is due 
to the large amount of exposed soil or straw, generating 
Kc’s close to zero. This factor was not observed for this 
study area, due to the loss of orbital images due to cloud 
cover at the beginning of the cycle (Figure 2). 
Figure 3 illustrates the comparison of kc between drone 
methods compared to FAO and Embrapa. It is possible to 
observe a greater underestimation during the 
reproductive phase, due to the emergence of the tassel 
(flowering). This effect was greater in DroneSent, as 
Sentinel 2A has better spatial and temporal resolution 
than Landsat 8, capturing images immediately before and 
at the beginning of the corn flowering. This effect caused 
a drop in albedo values (Figure 4). This effect was also 
noticeable in DroneLand, and was only not more intense 
due to the longer interval between images and the 
incidence of clouds on the date of 23/May/21 at 61 DAP, 
which coincides with the beginning of flowering. 
ETDrone obtained better results compared to other 
methods with drone images, as the best spatial and 
temporal resolution made it possible to select the best 
albedo pixels, thus reducing contamination. According to  

 
Figure 1. Leaf water potential obtained by Scholander 
chamber for corn crops according to the methodology of 
Bono et al. (2001). 
 

 
Figure 2. Temporal variation of soil moisture in the 0.0-
0.5 m layers and precipitation with irrigation. 
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Table 2. Mean square error (EQM, mm day-1), mean absolute error (EMA, mm day-1), root mean absolute error (REMA, mm day-1), 
correlation coefficient (r), concordance index (d) and confidence index (c) for the evapotranspiration values obtained by corn 
development stage using the Drone, DroneLand and DroneSent methods comparing them to the ETFAO, ETEmbrapa and ETBHC methods. 

Method EQM EMA REMA R d c Classification 
PHASE II 

FAO 
Drone 0.054 0.200 0.080 0.90 0.90 0.81 Very Good 
DroneLand 0.363 0.577 0.232 0.92 0.71 0.65 Good 
DroneSent 0.225 0.456 0.156 0.75 0.46 0.34 Very Bad 
Embrapa 
Drone 0.346 0.584 0.192 0.98 0.61 0.60 Median 
DroneLand 1.276 1.102 0.366 0.80 0.39 0.31 Very Bad 
DroneSent 0.626 0.766 0.237 0.60 0.34 0.20 Very Bad 

BHC (Climatical Water Balance) 
Drone 0.038 0.163 0.071 0.88 0.91 0.81 Very Good 
DroneLand 0.267 0.492 0.207 0.92 0.73 0.68 Good 
DroneSent 0.136 0.336 0.120 0.41 0.43 0.18 Very Bad 
Drone 
DroneLand 0.318 0.518 0.216 0.85 0.60 0.52 Bad 
DroneSent 0.062 0.208 0.077 0.69 0.64 0.44 Bad 
DroneLand 
DroneSent 0.091 0.270 0.127 0.38 0.52 0.20 Very Bad 

PHASE III 
FAO 

Drone 0.136 0.364 0.124 0.98 0.74 0.73 Good 
DroneLand 0.868 0.926 0.317 0.99 0.42 0.42 Bad 
DroneSent 0.716 0.836 0.286 0.91 0.45 0.41 Bad 
Embrapa 
Drone 0.218 0.462 0.152 0.98 0.67 0.66 Good 
DroneLand 1.061 1.024 0.339 0.99 0.40 0.40 Bad 
DroneSent 0.891 0.934 0.309 0.912 0.43 0.39 Bad 
BHC (Climatical Water Balance) 
Drone 0.071 0.241 0.085 0.91 0.80 0.73 Good 
DroneLand 0.657 0.801 0.287 0.92 0.43 0.39 Bad 
DroneSent 0.546 0.721 0.258 0.83 0.45 0.38 Bad 
Drone 
DroneLand 0.319 0.561 0.219 0.99 0.54 0.53 Bad 
DroneSent 0.234 0.472 0.185 0.91 0.59 0.54 Bad 
DroneLand 
DroneSent 0.169 0.407 0.204 0.99 0.58 0.57 Bad 

PHASE IV 
FAO 

Drone 0.040 0.176 0.076 0.99 0.95 0.95 Great 
DroneLand 0.197 0.383 0.164 0.97 0.78 0.77 Very Good 
DroneSent 0.327 0.502 0.217 0.97 0.68 0.66 Good 
Embrapa 
Drone 0.066 0.226 0.095 0.99 0.93 0.93 Great 
DroneLand 0.252 0.432 0.180 0.97 0.76 0.74 Good 
DroneSent 0.397 0.552 0.232 0.96 0.66 0.64 Median 
BHC (Climatical Water Balance) 
Drone 0.015 0.097 0.049 0.96 0.98 0.95 Great 
DroneLand 0.085 0.223 0.102 0.94 0.87 0.82 Very Good 
DroneSent 0.169 0.339 0.157 0.93 0.76 0.71 Good 
Drone 
DroneLand 0.060 0.206 0.096 0.98 0.90 0.89 Great 
DroneSent 0.138 0.326 0.154 0.98 0.78 0.77 Very Good 
DroneLand 
DroneSent 0.018 0.119 0.070 0.98 0.94 0.93 Great 

Liang (2001), surface albedo is affected by vegetation 
morphology, which justifies this effect. 
Pang et al. (2022), researching the variation in surface 
albedo over time and in different soil covers, concluded 
that this index has a negative correlation with the soil 
covered by vegetation and soil moisture. In other words, 
the lower the vegetation cover and soil moisture, the 
higher the albedo values. In addition to the fact that data 
obtained by satellites, in general, has lower spatial and 
temporal resolution than compared to measurements 

close to the plant (drone), this makes comparison 
between data difficult (Dittmann et al., 2019). 
The feathering also caused NDVI contamination of the 
drone images. Figure 5 proves the contamination of pixels 
in the NDVI image, due to the appearance of the tassel 
(flowering). In 61 days after sowing (planting), the 
beginning of tasseling (flowering) was observed, 4 days 
later most of the plants had tassels (flowered), in the VT 
phase (vegetative phase). 
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Figure 6A illustrates the temporal variation in surface 
temperature during the corn crop cycle, it is possible to 
observe higher values at the beginning due to greater 
exposure of the soil to the sun (conventional planting). 
Figure 6B represents the distribution of NDVI throughout 
the cycle. Note the increase in values during the 
vegetative stage, later stabilization during the 
reproductive stage and the decrease from the beginning 
of senescence. 
Table 1 and Figure 7 show the evapotranspiration values 
and the statistical indices of the ETDrone, ETDroneLand 
and ETDroneSent estimates with the FAO, Embrapa and 
BHC method for the entire corn crop cycle. In general, the 
Drone method obtained better results compared to FAO, 
Embrapa and (Climatical water balance) BHC. The 
correlation ranged from “very good” to “excellent”. The 
results were better compared to other drone methods as 
they did not depend on the albedo of the satellites, which 
were more affected by tilting (flowering). The mean 
square error (EQM) values were 0.080, 0.191 and 0.384 
mm day-1, for the mean absolute error (EMA) it was 0.254, 
0.391 and 0.157 mm day-1 for ETFAO, ETEmbrapa and 
ETBHC when compared with the ETDrone, respectively. 
The root mean absolute error was less than 0.1 for the 
FAO (Allen et al., 1998) and BHC methods (Thornthwaite 
and Mather, 1955). 
ETDroneLand presented the worst results, obtaining an 
“average” rating from FAO and BHC and “poor” from 
Embrapa. The mean values of EQM, EMA and REMA were 
0.489, 0.604 and 0.226 mm, respectively. This is due to 
the smaller number of images available, reducing data 
accuracy. 
ETDroneSent obtained a “good” rating when compared to 
FAO, Embrapa and BHC. Despite the greater interference 
in albedo, the greater number of images during the cycle 
provided better correlation when compared to 
DroneLand. 
It is also observed that, in general, the curves generated 
by the data obtained by both methods follow the same 
trend, despite this greater underestimation in the 
reproductive phase. 
ET was compared for phases II, III and IV (Table 2). In 
phase II, ETDrone showed a “very good” correlation with 
FAO, presenting EQM, EMA and REMA of 0.054, 0.200 and 
0.080 mm day-1, respectively. This shows the good 
efficiency of using this method, before flowering. It 
presented a value of r = 0.90 and d = 0.90, the confidence 
index was equal to 0.81. The EQM, EMA and REMA of the 
ETDroneLand method more than doubled compared to 
the ETDrone, so the correlation was classified as “good”. 
The biggest errors in this phase were made by 
ETDroneSent, due to the influence of the low albedo on 
flowering, which caused the kc curve to decline. 
In comparison with Embrapa data, the splendor was 
found to range from “average” to “very poor”. According 
to the Embrapa methodology, the initial value for corn 
cultivation in direct planting areas starts at 0.75 and rises 
to 1.23, which differs greatly from other methods, 
presenting a confidence index of 0.60, 0.31, 0.20 for 
ETDrone, ETDroneLand, ETDroneSent respectively. The 
average values of NDE, EMA and REMA were 0.749, 0.817 
and 0.265 mm day-1, respectively. 
 

 
Figure 3. Comparison of the crop coefficient estimated by 
the FAO 56, Embrapa, DroneLand, DroneSent and Drone 
methods, throughout the cycle in Itaberaí-GO, 2021. 
 

 
Figure 4. Albedo distribution throughout the corn crop 
cycle obtained using the SAFER algorithm with drone 
images and Landsat-8 and Sentinel-2A satellites. 
 
In relation to BHC (water balance climate), the ETDrone 
method showed better results, the EQM and REMA were 
below 0.1 mm day-1, obtaining a “very good” rating. The 
methods with drone images using satellite albedo had 
worse results, precisely due to the influence of flowering 
on variable, with ETDroneSent having the worst 
performance, the correlation level was “terrible”. 
When comparing phase II data between drone methods, 
the correlation varied from “poor” to “terrible”. This is 
due to the low kc presented by ETDroneLand, in addition 
to the decreasing curve presented by ETDroneSent. 
Several authors such as Silva et al. (2009) report that the 
best spectral response for corn crops is in vegetative 
growth, as after flowering there is a decrease in 
correlation coefficients. 
In phase III, in which there was this greater influence of 
flowering on the NDVI values of the drone and albedo of 
the satellites, the correlation classification with the FAO, 
Embrapa and BHC methods varied from “poor” to  
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Figure 5. Influence of corn flowering on the distribution of NDVI values in corn crops. *Contamination of pixels in the NDVI 
image, due to the appearance of the tassel (flowering). *61-65 days after planting (beginning of tasseling/ flowering) in the 
VT phase (vegetative phase). 
 
“terrible” for ETDroneLand and ETDroneSent. It 
presented NDE and EMA close to 1 mm day-1. The 
correlation with the ETDrone method, which had less 
influence on albedo values, showed better results and 
was classified as “good”. Among the drone methods, the 
correlation was “poor”. 
In phase IV, ETDrone showed better results when 
compared to ETFAO and ETEmbrapa, it had an “excellent” 
correlation and a confidence index ranging from 0.93 to 
0.95. At this stage, the plant entered senescence and the 
tassel (Flowering) no longer had pollen, reducing its 
influence on the images. ETDroneLand was classified as 
“very good” and “good”, while ETDroneSent, which 
presented lower albedo values, was classified as “good” 
and “average”, respectively. Compared to ETBHC, both 
methods performed satisfactorily. 
Borghi et al. (2016) found a statistical difference in NDVI 
values at different plant densities for corn crops. This 
sensitivity of the vegetation index, surface temperature 
(influenced by the irrigation frequency) and surface 
albedo (influenced by vegetation morphology) causes a 
direct influence on the ET values estimated by remote 
sensing. 
 
Materials and Methods 
 
Experimental area 
The study area comprised an area of 25 hectares on a 
central pivot. It is located in the municipality of Itaberaí-
GO, Brazil, coordinates 49º 43’ 23” W and 16º 01’ 41” S. 
The region's climate is characterized according to 
Koppen's classification as Aw, with two well-defined 
seasons, dry winter and rainy summer. 
 

 

 

 
Figure 6. Distribution of surface temperature (A) and 
NDVI (B) throughout the corn crop cycle obtained using 
multispectral and thermal camera images. 
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Figure 7. Evapotranspiration of the corn crop for the period from March to July 2021 obtained by the Drone (A; B; C;), 
DroneLand (D; E; F) and DroneSent (G; H; I) method compared with FAO 56, Embrapa and BHC (Climatical Water Balance).
 
Corn was sown on March 24, 2021 in a conventional 
planting system, cultivar AG8700, spacing of 0.5 m 
between rows and 3 plants per linear meter. Top dressing 
was applied with 0.26 t ha-1 of urea. The soil was classified 
as Red Oxisol of medium texture (Santos et al., 2018). 
Undisturbed soil samples were collected in volumetric 
rings at eight georeferenced points in layers 0.0-0.1; 0.1-
0.2; 0.2-0.3; 0.3-0.5 m. Soil density and texture were 
obtained according to Embrapa methodology (2017). 
Data on soil resistance to penetration was also collected 
using a FALKER digital impact penetrometer. The limits 
of field capacity and permanent wilting point were 
defined according to Medrado and Lima (2014). Soil 
texture was Sandy clay loam (58% Clay, 8% Silt and 34% 
Sand). 
The reference evapotranspiration (ETo) was obtained by 
the Penman Monteith method (Allen et al., 1998), using 
data from the automatic weather station installed within 
a radius of 10 meters from the pivot.  
 
Conduction of study 
With the data for preparing the climatological water 
balance (BHC), the methodology of Thornthwaite and 
Mather (1955) was used. Considering the data on the 
pedotransfer function, soil density and effective depth of 
the root system (Z=0.5 m), the value of 100 mm was used 

for available water capacity (CAD). And by accounting for 
water inputs and outputs from the system, ETa was 
estimated during the corn crop cycle. 
To estimate soil moisture variation, three sensor 
batteries were installed, each battery containing three 
EC-5 sensors from Decagon Devices, in layers 0.0-0.1, 0.1-
0.2, 0.2-0.3 and 0.3-0.5 m connected to an EM-50 
datalogger, with a reading interval every 20 minutes. To 
obtain precipitation and irrigation, two tilting rain gauges 
with 0.25 mm resolution were installed, connected to a 
NOVUS infrared datalogger, with readings every 24 
hours. The methodology of Sena et al. (2020) was used to 
calibrate sensor data according to texture. 
Field visits were carried out when the Landsat-8 and 
Sentinel-2A satellites passed, every 16 and 10 days 
respectively, according to the temporal resolution of each 
sensor. The dates were: 05/April; 21/April; 07/May; 
23/May; 08/Jun; 24/Jun; 10/Jul for Landsat-8 and 
07/April; 17/April; 27/April; 07/May; 17/May; 27/May; 
06/Jun; 16/Jun; 26/Jun; 06/Jul to Sentinel-2A. The last 
irrigation was carried out on 04/Jul, so the last visit was 
carried out on 06/Jul. 
On the date of the satellite's passage, readings were taken 
with the Scholander pump at approximately 5:30 am, 
using the last fully opened and expanded leaf, with 10 
repetitions, to prove whether or not there was a water 
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stress. The first leaf below and opposite the ear was 
collected for foliar analysis, obtaining macro and 
micronutrients according to methodology Embrapa 
(2000). 
To estimate ET, albedo data was extracted from images 
from the Landsat-8 satellite (OLI/TIRS), obtained free of 
charge on the United States Geological Survey (USGS) 
website. Images from the Sentinel-2A satellite were also 
used, obtained from the Copernicus website (European 
Space Agency). On the same date as the satellites' passage 
and close to the passage time, a flight was carried out with 
a drone model DJI Inspire 2, coupled with a multispectral 
and thermal camera model Micasense Altum. 
To obtain evapotranspiration using the SAFER algorithm, 
it is necessary to follow some steps. These steps follow 
the methodology proposed by Teixeira (2010). 
 
Conversion of DN values (digital numbers) into 
radiance 
The DN represents a pixel that contains the intensity of 
electromagnetic energy measured by the satellite sensor. 
These digital values need to be converted into spectral 
radiance for each band. Therefore, radiance is the radiant 
intensity per unit source area. 

 𝐿λ = (
LMAX−LMIN

255
) QCAL + LMIN         (2) 

 
LMAX: maximum radiance (W m−2  sr−1 μm−2 ); 
LMIN: minimum radiance (W m−2  sr−1 μm−2); 
Qcal: pixel intensity (ND), Whole number 0 a 255. 
 
Reflectance calculation 
For each thermal band contained in the orbital images, 
the reflectance (Pλ) is calculated from the radiance values 
that were obtained in the previous step. Reflectance is the 
process by which radiation passes through an object such 
as a cloud or a river. 

𝑃λ =
𝜋 ∗  𝐿λ

ESUNλ   
∗ cosZ ∗  E0

 
          (3) 

 
𝐿λ: radiance of each band; 
SUN λ: spectral irradiance at the top of the atmosphere; 
cosZ: zenith angle; 
E0: daily angle; 
And: E0 is defined by Equation: 
 

𝐸0 = 1.000110 +  0.0342221 cos(da) +  0.001280 (da) 
+  0.000719(2 ∗ da) +  0.000077 sin(2
∗ da) 

(4) 

Da: daily angle 
Da is defined by Equation 5: 

da = (𝑑𝑛 − 1)
2𝜋

365
                                            (5) 

  
Dn: Julian day of the image 
 
Albedo at the top of the atmosphere 
 
The albedo at the top of the atmosphere can be obtained 
from the following equation: 
𝑡𝑜𝑝 =  (𝑝  𝑝)                                           (6) 

 
p: reflectance 
ωλ: coefficient for each band 

And, ωλ obtained by the equation: 

 =
𝐸𝑆𝑈𝑁 

 𝐸𝑆𝑈𝑁

                                       (7) 

Surface Albedo 
In SAFER, the surface albedo (α0) was estimated from the 
albedo at the top of the atmosphere by the following 
equation: 

𝛼0  =  𝑎 ∗  𝛼 𝑡𝑜𝑝 +  𝑏                              (8) 

a and b are regression coefficients Teixeira (2010), which 
present, respectively, values of 0.7 and 0.006, α top, is the 
albedo at the top of the atmosphere. 
 
Surface temperature 
To prepare the surface temperature map (To), it is 
necessary to use thermal infrared images of the bands, 
which will be determined later. But the surface 
temperature is calculated by the equation: 

𝑇𝑜 = 1.11 𝑥 𝑇𝑏𝑟𝑖𝑔ℎ𝑡 − 31.89                                 (9) 

 𝑇𝑏𝑟𝑖𝑔ℎ𝑡  is obtained by the equation: 

𝑇𝑏𝑟𝑖𝑔ℎ𝑡 =
1260,56

ln (
607.76

Ltermal + 1
)

 
                                     (10) 

 
Ltermal = radiance (Lλ) of the bands yet to be chosen. 
 
Normalized difference vegetation index (NDVI) 

𝑁𝐷𝑉𝐼 =
𝐼𝑉𝑃 − 𝑉

𝐼𝑉𝑃 + 𝑉
 

                                  (11) 

 
IVP is the reflectance in the near-infrared band and V is 
the reflectance in the red band. 
Equation 12 is used to obtain the current 
evapotranspiration (ETa) (Teixeira, 2010): 
𝐸𝑇

𝐸𝑇𝑂
= exp [𝑎 + 𝑏( 𝑇𝑜

∞o NDVI
)]                                          (12) 

 
 a and b are regression coefficients; a = 1 (Teixeira et al., 
2013) and b = -0.008. 
Using the ETa/ETo relationship, we arrive at the value of 
the crop coefficient. The respective crop coefficients (kc), 
by SAFER, were calculated using Equation 16: 

 𝑘𝑐 =  
𝐸𝑇𝑎

𝐸𝑇𝑜
                                                               (13) 

The surface albedo is a variable within SAFER that images 
obtained by a drone cannot estimate, as the albedo at the 
top of the atmosphere is taken into account, which the 
drone does not capture because it is under the top of the 
atmosphere. For this variable, in the calculation of ET by 
the multispectral camera, a methodology according to 
Planck (1901) was used. Weights were defined for each 
band and subsequent summation of all bands in 
reflectance, according to Equation 17: 
𝛼0 = 0.24 ∗ 𝐵𝑙𝑢𝑒 + 0.23 ∗ 𝐺𝑟𝑒𝑒𝑛 + 0.2 ∗ 𝑅𝑒𝑑 + 0.14 ∗ 𝑁𝐼𝑅 +

0.18 ∗ 𝑅𝑒𝑑𝐸𝑑𝑔𝑒        (14) 
Furthermore, the surface albedo estimated by satellites 
was used. The flight height chosen was 120 meters, a 
height that provided better battery life and a 6-
centimeter pixel. The flight plan was prepared using 
Pix4D capture software. The camera images were 
processed in the Pix4d mapper software, where the 
images were mosaicked, obtaining each band in 
reflectance, the NDVI (Normalized Difference Vegetation 
Index) and the surface temperature. Subsequently, the 
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evapotranspiration calculation was carried out using the 
raster calculator tool of the ArcGis 10.3 software. 
Data correlation was performed using the BHC 
(climatological water balance), FAO and Embrapa 
method, and between the three albedo sources. The FAO 
data were calibrated to the air humidity and wind speed 
conditions of the study area, as described in the bulletin. 
Pearson correlation (r), linear regression (R²), confidence 
index (c) and Willmott index “d” were used. This index 
varies from 0 to 1, the closer it is to 1, the more the 
estimated values fit the measured values (Willmott et al., 
1985). 
 
Conclusions 
 
Biotic stress and nutritional deficiency directly affect ET 
estimation by remote sensing. Corn crop flowering 
interferes with the estimated values of NDVI and surface 
albedo, leading to greater underestimation. However, 
when drone images are used to calculate the three SAFER 
variables, this effect is mitigated. ET estimation by remote 
sensing is not recommended for the reproductive phase 
of corn crop. 
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