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Abstract  

 

Large amount of N03
--N are accumulated in vacuole, and cannot be timeously reducted, reutilized and transported into cytoplasm. It 

is the main reason for great N03
--N accumulation in vacuole and nitrogen (N) use efficiency cannot be further improved. Transport 

mechanism of N03
--N across tonoplast is explained in this paper, there are two proton pumps (H+-ATPase and H+-PPase) on 

tonoplast with absolutely different biology functions and physical characteristic. Mg·ATP and Mg·PPi are the specific substrates of 

H+-ATPase and H+-PPase respectively, hydrolysis H+ is pumped into vacuole, and contribution to build electrochemical proton 

gradient between cytoplasm and vacuole. N03
--N transport from vacuole to cytoplasm greatly depends on electrochemical proton 

gradient, N03
--N transport from cytoplasm to vacuole is mainly achieved by vacuole H+/N03

- antiport system, while symport system 

(vacuole N03
--N combined with anion) is of benefit for vacuole N03

--N transporting into cytoplasm. N03
--N transported by proton 

pump of tonoplast is influenced by NR activity in cytoplasm, N03
--N can be continuing assimilation and reduction by NR in 

cytoplasm, and accelerating vacuole N03
--N transported into cytoplasm. These results will supply references and research forecast for 

further study on efficiency and practicable methods of N utilization, and improving reuse efficiency of N03
--N in plant tissues. 

 

Keywords: Nitrate nitrogen; Proton pump of tonoplast; nitrogen use efficiency. 

Abbreviations: N-nitrogen, V-ATPase-vacuole H+-ATPase, V-PPase-vacuole H+-pyrophosphatase, NR-nitrate reductase, DCCD- 

N,N′-dicyclohexylcarbodiimide, EDTA- ethylenediaminetetraacetic acid disodium salt, NRAact-activity nitrate reductase, 

NRAmax- maximum nitrate reductase. 

 

Introduction  

 

Nitrogen (N) fertilizer yearly consumption of China is 25 

million tons (pure N) and leads the world. However, reward 

decline of N has become more and more serious, yield 

increasing of crop is stopped or even reduced with N fertilizer 

application level increased (Shen et al., 2003; Rahimizadeh et 

al., 2010). In addition, N03
--N concentration in plant tissues 

were increased sharply with N fertilizer application level 

increased, it has become the mainly limiting factor for high 

quality of agricultural production (Liu et al., 2009). Therefore, 

improved N fertilizer use efficiency based on plant mechanisms, 

and exploitation of high N use efficiency potential of plants has 

become very important in plant nutrition research area in recent 

years (Rahman et al., 2009; Liu et al., 2006; Zhang et al., 2010). 

N03
--N is main resources of N in plant tissues, and accumulated 

large amounts in plant tissues also (Miller et al., 2008). Over 

90% volume of mature cell is occupied by plant vacuole, while 

N03
--N concentrations in vacuole and cytoplasm are generally 

30-50 mol·m-3 and 3-5 mol·m-3 respectively (Chen et al., 2005; 

Martinoia et al., 2000). Thus, vacuole is main tissues for 

N03
--N accumulation, contribution of vacuole N03

--N 

reutilization to N efficiency of plant cannot be ignored during 

N efficiency studying (Martinoia et al., 1981). Since NR is 

mainly located in cytoplasm, N03
--N reduction is mainly 

processed in cytoplasm also (cytoplasm is referred to as N03
--N 

metabolic pool). In addition, there is no NR in vacuole, which 

is known as N03
--N storage pool. Accumulated N03

--N in 

vacuole cannot be rapidly transported into cytoplasm, and 

transport speed depends on crop varieties and genotypes (Wang 

et al., 2008; Xu et al., 2007; Zhao et al., 2010). Zhang et al., 

(2007, 2009) reported that, regardless of N application levels, 

N03
--N reuse efficiency of high N efficiency and high potential 

oilseed rape genotypes are higher than low N efficiency 

genotypes, it was suggested that N use efficiency can be 

obviously improved by N03
--N reusing in plant tissues. 

Generally, assimilatory power of N03
--N in cytoplasm of leaves 

is adequate. So, N03
--N reuse efficiency of plant to a great 

extent depends on transport of N03
--N from vacuole to 

cytoplasm (Cao et al., 2009). There is a definite relationship of 
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N03
--N distribution and accumulation between vacuole and 

cytoplasm, realied by inspection of interaction mechanisms of 

N03
--N metabolic and storage pools, whichare beneficial to 

discovery of physiological potential of N use efficiency in plant 

tissues, avoiding N03
--N which is over accumulated in plant 

tissues (Jia et al., 2005). The above processes are all closely 

related to transport system of N03
--N on tonoplast and 

investigation of this transport system can provide practicable 

technology for controlling concentration of N03
--N in plant 

tissues and improving N efficiency (Martinoia et al., 2007). 

Many researches are involved in mechanisms of N03
--N 

transport system on tonoplast, but the relationship between 

proton pump activity of tonoplast and N03
--N transport and its 

influence on N efficiency are little reported (Zhao et al., 2010; 

Huang et al., 2006). In order to further study N03
--N transport 

mechanisms of tonoplast and investigate effects of transport 

system on N efficiency, one should inspect the relative 

contribution of two proton pump on tonoplast to N03
--N reuse 

and its dynamic resources. By studying responses of the two 

proton pump to different genotypes and N application levels 

can further define transport mechanisms of N03
--N by proton 

pump of tonoplast and is providing a scientific basis for 

excavating plant potential of N03
--N use efficiency and 

accelerating higher N03
-
-N reuse of plant vacuole.   

  

N03
--N accumulation and utilization in plant tissues and 

their relation to N efficiency 

 

N03
--N accumulation and utilization in plant tissues are 

important contents of crop N use research and is closely related 

to N03
--N concentration and N use efficiency in plant tissues. 

N03
--N is the main N resource of plant and a large amount of 

N03
--N can accumulate in plant tissues. Under extreme 

conditions, N03
--N accumulation can account for morethan 2% 

of plant fresh weight, and 17% - 24% of plant dry weight 

(Huang et al., 2006). Plant N03
--N is mainly distributed in 

vacuole, N use efficiency of plant is closely related to reuse 

ability of vacuole N03
--N (Zhao et al., 2010). On account of 

N03
--N is a reduction process in cytoplasm, and nitrite 

reduction occurs in chloroplast, in general, assimilatory ability 

of cytoplasm in leaves for N03
--N reduction is adequate. 

Therefore, N03
--N reuse in plant tissues to a great extent 

depends on transport of N03
--N from vacuole to cytoplasm and 

its reverse transport (Shen et al., 2003; Lea et al., 2004). N03
--N 

pool in plant tissues are separated into metabolic pool 

(cytoplasm N03
--N) and storage pool (vacuole N03

--N), the 

former quantity are few, but strongly influence on NR activity, 

the latter quantity are large, but bear little relation to NR 

activity (Granstedt et al., 1982; Glass et al., 2002). For some 

plants, vacuole N03
--N can be transported into cytoplasm and 

assimilated rapidly, when N application deficient, and 

maintains low N03
--N concentration level in vacuole. Vacuole 

N03
--N concentration is increased significantly again and 

maintains high balance level until N application level recovery. 

These genotypes are generally tolerant under N deficiency or 

high N use efficiency conditions. However, vacuole N03
--N 

concentration is still maintained at high levels in many plant 

tissues, when there is N application deficiency. Therefore, few 

N03
--N are existing in cytoplasm and apparent N deficiency 

situations. These genotypes are generally sensitive under N 

deficiency condition or low N use efficiency (Huang et al., 

2006). On the other hand, under the sufficient N application 

condition, how to maintain relative low vacuole N03
--N 

concentration, and keep low N03
-
-N concentration in plant 

tissues has become an impotant topic for these mechanisms can 

improve N use efficiency (Shen et al., 2003). All of the above 

cases are suggest a common question, that is the transport 

progress of N03
--N from vacuole to cytoplasm by tonoplast 

system; definitely, this transport system can provide a scientific 

basis for controlling N03
--N concentration in plant tissues and 

increasing N use efficiency. 

 

Transport mechanism of N03
--N across the tonoplast  

 

Study on transport system of nutrient ions in cell membrane 

and tonoplast is one of the important aspects for definition of 

genotype differences of plant nutrition and is a basis for further 

study on molecular biological characteristics of nutrient ions 

transported on membranes (Leij et al., 1998). Generally, ions 

across membranes are achieved by membrane transport protein 

(Dschida et al., 1995). Currently, study on transport protein of 

N03
--N in cytoplasm membrane is far deeper and extensive than 

transport protein of N03
--N in tonoplast (Angeli et al., 2006). 

This is the same scenario with plant cytoplasm membrane, 

where there are large amount of nutrients transport proteins on 

tonoplast also, including activity ion pump, ion carrier, ion 

channels and receptor protein (Facanha et al., 1998). Research 

shows that there aretwo proton pumps (H+-ATPase and 

H+-PPase) on tonoplast with absolutely different biology 

functions and physical characteristics. Mg·ATP and Mg·PPi 

are the specific substrates for H
+
-ATPase and H

+
-PPase 

respectively, hydrolysis H+ is pumped into vacuole, and 

contributes to building an electrochemical proton gradient 

between cytoplasm and vacuole. N03
--N transport from vacuole 

to cytoplasm greatly depends on an electrochemical proton 

gradient, N03
--N transport from cytoplasm to vacuole is mainly 

achieved by vacuole H+/N03
- antiport system, while symport 

system (vacuole N03
--N combined with anion) is beneficial for 

vacuole N03
--N transporting into cytoplasm (Angeni et al., 

2006; Krebs et al., 2010). Transported speed of vacuole N03
--N 

from vacuole to cytoplasm is much slower than speed of 

N03
--N transported in metabolic pool. Using “Double-Barreled 

Nitrate Selective Microelectrodes” method to measure vacuole 

N03
--N under N deficiency condition, results showed that reuse 

of vacuole N03
--N is rather slow in cortex cells also (Leij et al., 

1998). In addition, NR can not be induced by vacuole N03
--N 

accumulation rapidly (Shen et al., 2003). It is suggested that 

N03
--N transport between vacuole and cytoplasm is regulated 

by some physiological mechanisms. But these transport 

mechanisms are obscure currently and it is necessary to 

perform a large amount of experiments in order to inspect, 

investigate and analyze results. 

 

Characteristics and regulation of proton pump on tonoplast 

 

Proton pump is separated into three types according to 

composition, including F type which is located in inner 

mitochondrial membrane and thylakoid membranes of 

chloroplasts, P type is located in cytoplasm membrane, V type 

is located in tonoplast (Martinoia et al., 2007). H+-ATPase is 

separated into two categories according to biological function: 

one category, ATPase is synthesized by using electrochemical 

proton gradient of transmembrane, F-H+-ATPase belongs to 

this type, the other category, proton electrochemical gradient of 

transmembrane is built by using energy of ATP hydrolysis, P 

and V types H+-ATPase belong to this type (Zheng et al., 2009). 

There are two types of proton pump (V-ATPase and V-PPase) 

on tonoplast of plant tissues, working together to build 

transmembrane △H+ (Martinoia et al., 2000). 

 

Characteristic and regulation of V-ATPase 

 

V-ATPase is a primary transport protein and located on plant 

tonoplast (Brux et al., 2008), abundant accumulation on 
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tonoplast, and accounting for 6.5-35% of total vacuole 

membrane protein in different plant tissues respectively. 

V-ATPase as a “special enzyme” is crucial important for 

maintaining anionic equilibrium in cell, ion compartment 

distribution and cell metabolic (Chu et al., 2001). V-ATPase is 

using energy of ATP hydrolysis to build electrochemical proton 

gradient of transmembrane, and supply dynamic for solute 

(positive and negative ions, amino acid and carbohydrates) 

positive transport (Wang et al., 2000). V-ATPase showed a 

more crucially important status for coordination of function 

network of ion pump in cell and signal transport system (Xin et 

al., 2003). In recent years, more research results showed that 

content, activity and subunit composition changes of V-ATPase 

are closely related to different plant tissues, growth stages and 

environmental factors, especially flexible responses of 

V-ATPase to tolerant environment (salt, low temperature, water 

deficiency, etc.) (Ruan et al., 2004; He et al., 2006). Therefore, 

V-ATPase is one of the crucial positions for regulation of plant 

physiological function in cellular and physiological levels. 

ATPase activity adaption to pH range is relatively wider, 

activity peak appeared at pH 7.5-8.0, and high affinity with 

ATP (Blom-Zandstra et al., 1992). ADP and AMP are 

competition inhibitors of this enzyme. Catalysis activity of 

V-ATPase and proton pump can be activated by anion in 

varying degrees, and it is the common characteristic of 

V-ATPase. Activation V-ATPase molecular has binding site of 

anion and is involved in enzyme catalysis. Activity of vacuole 

H+-ATPase is inhibited by high N03
--N concentration in 

cytoplasm and the inhibiting function is dissolved along with 

exhausting of N03
--N in cytoplasm, and H+-ATPase activity is 

recovered; it is beneficial to building new proton degree and 

accelerating N03
-/H+ symport transport, and promoting N03

--N 

transport from vacuole to cytoplasm. Vacuole N03
--N can be 

transported into cytoplasm by N03
-/H+ symport transport 

mechanism under N deficiency conditions. Symport constituted 

by vacuole N03
--N and other anions is beneficial to transport of 

N03
--N from vacuole to cytoplasm (Garrido et al., 2008). 

In addition, proton pump (H+-ATPase) of plant tonoplast is a 

multi-subunit membrane protein, constituted of a solubility 

region of the outside membrane (V1) and the membrane 

binding region (V0), V1 region has ATP hydrolysis and 

regulation functions, V0 region has a built-in proton 

transmembrane pathway, the two regions combin tightly and 

activity disappears when the two regions are separated (Wang 

et al., 2000). Bafilomycin A1 is an antibiotic with macrolide, 

combined with V0 region of vacuole H+-ATPase, blocking 

proton transmembrane pathway, and strongly inhibited activity 

of V-ATPase, as specificity inhibitor of H+-ATPase on 

tonoplast, 64% enzyme activity can be inhibited by only 50 nm 

bafilomycin A1 (Ma et al., 2003). 

 

Characteristic and regulation of V-PPase 
 

V-PPase is a distinguish H+ transport enzyme from F-, P-, 

V-ATPase, universally located in plant and a few 

photosynthetic bacteria. V-PPase is also an abundant 

component of tonoplast, accounting for 1%-10% of membrane 

protein (Bao et al., 2006). Coupling free energy of PPi 

hydrolysis and H+ transmembrane transport, formation proton 

impellent power (△ψH+) provides dynamic secondary transport 

of ions and other solutions. Contribution of V-PPase building 

electrochemical proton gradient of transmembrane is almost the 

same with V-ATPase or even obtains a better effect, as well as 

mature vacuole volume which accounts for 40%-99% of total 

cell volume, thus V-PPase function cannot be neglected. 

V-PPase is mainly involved in biological energy accumulation, 

cytoplasm pH regulation, Pi-PPi exchange, and probably 

regulation of tissue pressure by transporting K+ into vacuole 

(Zhu et al., 2001). 

Current research considers that V-PPase function possessed 

reversibility. On the one hand, PPase as a hydrolysis enzyme 

which can hydrolyze PPi into Pi, and build electrochemical 

proton gradient of tonoplast. On the other hand, PPase as a 

synthesis enzyme can synthesize Pi into PPi using the 

electrochemical proton gradient of proton pump (V-ATPase 

and V-PPase) (Hsiao et al., 2002). Substrate of V-PPase is 

Mg/PPi complex, but the substrate has to be further studied 

(Zhu et al., 2001). The best pH condition for V-PPase activity 

is pH 7.5-8.5. N,N′-dicyclohexylcarbodiimide (DCCD) is a 

specific inhibitor of proton transport channel, strongly inhibited 

V-PPase activity, and slightly inhibited V-ATPase activity also 

(Maeshima et al., 1994; Yang et al., 1999). While the fourth 

transmembrane α-screw of subunit c in V-ATPase has a highly 

conservative Glu residue, this is the only function position 

between inhibitor (DCCD) of proton transport channel and 

V-ATPase, and combined position between DCCD and 

V-ATPase can be changed by sulfur, lead to DCCD cannot be 

combined with this special position, effectively resisting 

DCCD inhibiting V-ATPase hydrolysis, and does not relieve 

inhibition effectiveness of bafilomycin A1 (Ma et al., 2003), 

therefore, DCCD+NaSO3 treatment is a specificity inhibitor for 

V-ATPase activity. It can be concluded that V-ATPase and 

V-PPase are not only the key enzymes of proton pump in 

tonoplast, but also the decisive factor of vacuole N03
--N reuse 

efficiency. But the mechanism of vacuole N03
--N reused by 

proton pump of tonoplast and its relation to N efficiency are not 

clearly defined at this stage. Therefore, study on key enzyme 

activity of proton pump in tonoplast (as basic theory), to 

inspect mechanisms of vacuole N03
--N reuse, has important 

meanings for improvement of crop N use efficiency. 

 

Effect of NR, NRAact and NRAmax on proton pump 

activity of tonoplast 

 

NR is an illumination and N03
--N induced enzyme (Cao et al., 

2007, 42009). NR activity is mainly regulated by NR 

phosphorylation (Garcia-Mata et al., 2003). Conception of 

NRAact and NRAmax is highlighted according to experiment 

results of NR activity degeneration (phosphorylation) in barley. 

Activity NR (NRAact) is measured by adding adequate EDTA, 

NR phosphorylation while extraction progress has been 

blocked by chelate action between EDTA and Mg2+. Maximum 

NR (NRAmax) is measured by adding sufficient Mg2+, NR 

phosphorylation while extraction progress has completed a 

reaction, and then maximum NR protein in plant tissues was 

measured by this method (Fan, 2005).Fan (2005) reported that 

there are no significant differences between NRAmax in leaves, 

between two rice cultivars (Yangdao 6 and Nongken 57) under 

10 mmol·L-1 N03
--N application level, but NRAact of Yangdao 

6 is three times higher than Nongken 57. There is no effect of 

24 hours N deficiency condition on NRAmax of Yangdao 6, 

but NRAmax of Nongken 57 has been reduced by 79.7%, and 

NRAact of the two rice cultivars has been decreased 

significantly, compared with 10 mmol·L-1  N03
--N application 

level. Expression results of OsNial and OsNia2 showed that a 

response of OsNial to N deficiency is faster than OsNia2 (Fan 

et al., 2007). It is suggested that there are significant 

differences of NRAact and NRAmax between genotypes and N 

application levels. However, there are few researches studying 

effects of NRAact and NRAmax on proton pump of tonoplast. 

N03
-
-N transported by proton pump of tonoplast is influenced 

by NR activity in cytoplasm, N03
--N can be continuing 

assimilated and reduction by cytoplasm NR, and accelerating 

more vacuole N03
--N transported into cytoplasm. NR activity 
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can be regulated by NR gene expression, NR amount and 

protein degradation (Dou et al., 2008). NR activity is also 

inhibited by additional chemical complex, Na2WO4 is a 

specificity inhibitor of NR. Chen et al., (2009) and Si et al., 

(2004) research results showed that NR activity and net 

photosynthesis rate of cabbage are decreased by Na2WO4 

treatment significantly; it is specificity inhibitor of NR activity, 

and NR protein amount can not be influenced by this inhibitor. 

Therefore, effect of NR activity on proton pump activity on 

tonoplast can be further investigated by specificity regulation 

of NR activity. 

 

Measurement method of N03
--N concentration in cytoplasm 

and vacuole  

 

I order to study transport progress of N03
--N between 

cytoplasm and vacuole, it is necessary to measure 

electrochemical gradient of inside and outside the vacuole and 

measurement N03
--N concentrations in cytoplasm and vacuole 

is a basis for studying transportation of N03
--N between 

different cell compartments (Jia et al., 2006). This method can 

be divided into two types. Walker et al., (1995) suggest a 

“three-barreled nitrate selective microelectrodes” method and a 

“double-barreled nitrate selective microelectrodes” method. 

Although “double-barreled nitrate selective microelectrodes” 

method requires a high nitrate concentration (≥ 5 mol·m-3) in 

crop growth culture solution (Shen et al., 2003), its 

manufacturing process and measurement method are relatively 

simple, and this method has come into general application. 

However, the manufacturing process and measurement method 

of the “three-barreled nitrate selective microelectrodes” method 

is very difficult, and this method can not be generally used 

currently (Jia, 2006). Zhen et al., (1991) have used the“double-barreled nitrate selective microelectrodes” method to 

measure nitrate concentrations of inside and outside vacuole 

respectively, and measure nitrate concentration of the whole 

single cell using enzyme method, confirming availability of the“double-barreled nitrate selective microelectrodes”method for 

measurement of nitrate concentrations in inside and outside 

vacuole, it is a currently available method and technology for 

further studying on nitrate transport between cytoplasm and 

vacuole. 

“Double-barreled nitrate selective microelectrodes” method has 

recently been generally used to measure nitrate concentration 

of plant tissues. More and more crop and plant have been used 

as plant materials for studying on changes of nitrate 

concentration between vacuole and other cell compartments, 

including barley, maize, bean, cabbage and rice, etc. (Wang et 

al., 2010; Jia et al., 2006; Jia et al., 2005), gradually formed a 

series of perfect and mature methods for measurement of 

nitrate concentration in cytoplasm and vacuole is a supplied 

available method for vacuole nitrate reusing studies. 

 

Conclusion  

 

It is noteworthy that there are some researches which focus on 

transport mechanisms of N03
--N between cytoplasm and 

vacuole and how proton pump (V-ATPase and V-PPase) of 

tonoplast plays a key function during vacuole N03
--N 

distribution (Martinoia et al., 2000). H+-ATPase activity of 

tonoplast is regulated by N03
--N concentration in cytoplasm, 

where H
+
-ATPase activity is inhibited by high N03

-
-N 

concentration in cytoplasm and recovered with low N03
--N 

concentration; it providea a dynamic for secondary transport of 

ion and other solutions between cytoplasm and vacuole. 

V-PPase is another proton pump of tonoplast. On the one hand, 

PPase as a hydrolysis enzyme which can hydrolyze PPi into Pi, 

and build an electrochemical proton gradient of tonoplast and 

conversely, PPase as a synthesis enzyme can synthesize Pi into 

PPi (Hsiao et al., 2002). In addition, N03
--N transported by 

proton pump of tonoplast is influenced by NR activity in 

cytoplasm, N03
--N can be continuing assimilated and reduction 

by cytoplasm NR, and accelerating more vacuole N03
--N 

transported into cytoplasm. But, transport mechanisms of 

tonoplast are not entirely clear yet and there is no still 

universally accepted transport mechanism, but a few researches 

are studying on proton pump activity of tonoplast combined 

with ion transport. For example, reusing mechanism of N03
--N 

through proton pump of tonoplast and relation to N efficiency 

is not clear yet, where substrate of V-PPase is Mg/PPi complex, 

but the actual substrate used has to be further studied (Zhu et al., 

2001). There are significant differences of NRAact and 

NRAmax between genotypes and N application levels, but few 

researches focus on effects of NRAact and NRAmax on proton 

pump activity of tonoplast. These must necessarily be further 

discussed and studied in the future during research progress of 

N use efficiency. 
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