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Abstract  

 

The genetic markers of important traits are evaluated in order to improve the maize inbred lines. Ninety-four maize inbred lines were 

used to assess the genetic and phenotypic diversity and make association analysis of 26 agronomical traits with 204 genome-wide 

SSR markers, which were divided into five subpopulations by a model based population structure analysis. The population consisted 

of 94 maize inbred lines, presented high genetic diversity and significant linkage disequilibrium (LD), and could be used in the 

detection of genome-wide SSR marker-phenotype association. Although a total of 106 loci were associated with the trait of the mean 

results of two years at P<0.01 level, thirty-nine association loci were detected with an MLM association analysis model to existing 

significant association (P<0.05) with 17 traits in two years, simultaneously, in which there were three loci associated with PH, four 

loci with AD, five loci with KRN, three loci with HKW, etc. Five association loci were new discovery, which were bnlg2162, 

bnlg1118, phi077, umc1161 with BYC, and bnlg1118 with GLN. The strongest association loci were umc1917 with AD and HKW 

(P<0.01), umc2025 with CD (P<0.0001), etc. The number of associated loci detected on chromosome 1 was thirteen, which was 

more than chromosome 2 and 5(5), and more than chromosome 4(4), etc. The above results were useful for genetic improvement and 

molecular maker-assisted breeding in maize. 
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Abbreviations: LD, linkage disequilibrium; Q, population structure; K, kinship; GLM, general linear model; MLM, mixed linear 

model; PIC, polymorphism information content; MAF, major allele frequency; PH, plant height; EH, ear height; LA, leaf angle above 

ear; LL, leaf length at the ear; LW, leaf width at the ear; BYC, bract leaf length; LN, leaf number; GLN, the number of green leaves 

at mature; TD, days to tasseling; AD, days to anthesis; SD, days to silking; MD, days to mature; EL, ear length; ED, ear diameter; 

BL, bald length; EW, ear weight; CW, cob weight; CD, cob diameter; KRN, the number of kernel rows; RKN, the number of kernels 

per row; GW, grain weight per ear; EL, embryo length; GL, grain length; HKW, hundred kernels weight; TAI, tasseling to-anthesis 

internal days; ASI, anthesis to-silking internal days; KRO, kernel ratio; EL/GL, embryo length ratio of grain length. 

 

 

Introduction 

 

Maize (Zea mays L.) is one of the most important crops in the 

world, serving as a source of food, feed and fuel. To address 

increased demands globally due mainly to rapid population 

growth, energy insufficiencies and environmental issues, it is 

essential to improve maize productivity and quality through 

efficient breeding programs (Tester and Langridge 2010). 

Most important traits related to yield in cereals are 

quantitatively inherited and are difficult to investigate. 

Compared with linkage analysis, association mapping has a 

number of advantages that include shorter research time, 

higher mapping resolutions and investigation of a greater 

number of alleles (Yu and Buckler 2006). Because 

association mapping is a powerful and, thus, is a widely used 

approach for identifying the genes or loci that affect the 

phenotypic variations, a number of association mapping 

studies have been conducted to investigate the causal variants 

associated with many important traits, including flowering 

time (Camus-Kulandaivelu et al., 2006; Ducrocq et al., 2009; 

Pressoir et al., 2009), kernel starch (Wilson et al., 2004), 

maysin synthesis (Szalma et al., 2005), forage quality 

(Andersen et al., 2007), carotenoid content (Harjes et al., 

2008; Yan et al., 2010), kernel oil (Belo et al., 2008) and 

kernel size  (Li et al., 2010a and 2010b). The details  have  

 

been reviewed recently by Yang et al. (2010a and 2010b) and 

Yan et al. (2011). Maize is a desirable crop for association 

mapping due to its great genetic diversity and rapid linkage 

disequilibrium (LD) decay. Indeed, a large-scale maize 

QTL/association mapping population (nested association 

mapping, NAM) has been constructed to dissect the genetic 

basis of many quantitative traits with great power (Yu et al., 

2008; Buckler et al., 2009; McMullen et al., 2009). This 

association panel comprises 5,000 inbred lines that mainly 

came from crosses using a common parent, B73 and crossed 

with each of the 25 diverse founder lines. At present, SSRs 

are the most widely used markers in maize research. SNPs 

are also very popular molecular markers as they can be 

reliably applied on a large scale of linkage analysis, 

association studies and they are highly amenable for 

automation. However, SNP markers are not as informative as 

SSRs because they have a biallelic nature (Rosenberg et al., 

2003; Liu et al., 2005) and one has to increase the SNPs in 

order to gain the same information (Hamblin et al., 2007). 

Many factors, for example, population structure, sample size 

and frequency of specific alleles, may affect accuracy of 

association analysis and may influence the ability to detect 

false positive associations. Among a number of models 
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proposed and used for minimizing the false-positive of 

association, the population structure (Q), kinship (K) and a 

combination of Q and K (Q + K) methods have been 

considered to be superior to those conventional linear models 

in association analyses (Yu and Buckler 2006). Although it is 

difficult to determine which significance level is acceptable 

in a given association study, many methods can verify if the 

identified polymorphisms are, indeed, significantly 

associated with the target trait. For example, a P value may 

be improved by adding additional individuals to the same 

panel or confirmed in independent panels of germplasm, 

thereby, increasing the researcher’s confidence in the 

marker-trait association. Finally, based on the genetic 

diversity information provided by SSR markers and 

adaptation data obtained from the filed experiments, 94 lines 

and 26 phenotypic traits were chosen for the present study. In 

our study, we found the more valuable marker-trait 

association loci through finding the same associated loci of 

the two year period. Then we compared the same association 

loci with association results of the mean results of two years 

at the same significant level, which could delete some false 

positive results and made our results more valuable. The 

objectives of our research were to (1) assess the phenotypic 

and genetic diversity of our association panel; (2) investigate 

the population structure among the inbred lines; (3) 

association analysis of agronomical traits with markers and 

compared with the predecessors’ QTL positioning results. 

 

Results 

 

Phenotypic variations of measured quantitative traits 

 

Extensive phenotypic variations were observed for all the 

measured quantitative traits in this maize panel, as shown by 

the descriptive statistics in Table S2. Correlation coefficient 

analysis was conducted for each trait of 2010 and 2011. 

Specifically, significant correlations at P<0.01 and P<0.05 

levels were found with 19 traits and six traits (e.g., TAI, MD, 

RKN, ED, KRO and EL/GL), respectively, suggesting the 

strong genetic impact. Bad Length (BL) was the only trait 

that did not show significant difference at either level, 

indicating the role of environmental factors in determining 

this trait. Data of the two years’ traits were averaged, then we 

used SPSS to descriptive the statistics. Cob weight, with an 

average of 23.97 g/cob, showed the largest variation 

(6.40-fold), ranging from 7.56 to 48.37 g/cob. Whereas, days 

to mature (MD, day), with an average of 97 days, exhibited 

the least variation (1.23-fold), ranging from 87 to 107 days. 

Because of such extensive phenotypic and genetic variations, 

it is clear that we should be able to conduct the association 

analysis by using this association panel. 

 

Genetic diversity of inbred lines 

 

To evaluate the genetic diversity of the 94 inbred lines, we 

used 204 SSRs which are randomly and uniformly distributed 

within the whole maize genome. High polymorphism of these 

SSRs within the 94 inbred lines was detected: 1, 460 alleles 

with an average of 6.30 alleles/locus, ranging from 2-16 

alleles. As shown in Fig. 1a, the major allele frequency 

(MAF) exceeding 40% value was within 0.3-0.6, with the 

mean of 0.4622, ranging from 0.1579 to 0.8579. Whereas, the 

polymorphic information content (PIC) exceeding 40% value 

was within 0.5-0.8, with the mean of 0.6095, ranging from 

0.2141 to 0.8738 (Fig. 1b). Meanwhile, the average genetic 

diversity was 0.6597 with the range between 0.2438-0.8849. 

 

Population structure and relative kinship 

 

In order to understand the genetic structure of the association 

analysis population, a model-based approach in the 

STRUCTURE software was used to subdivide each inbred 

line into the corresponding subgroup. As the STRUCTURE 

software overestimates the number of subgroups for inbred 

lines, and it is difficult to choose the “correct” k from the 

LnP(D) (Fig. 2). Thus, Δ k (Evanno et al., 2005) was used to 

determine the k value. Fig. 2 indicated that when Δ k was 

five, the model-based subgroups were rather consistent with 

the known pedigrees of the inbred lines. The five subgroups 

matched the five major germplasm, Reid, Sipingtou (SPT), 

Luda Red Cob (LRC), PB and BSSS (Iowa Stiff Stalk 

Synthetic maize population germplasm), most of which were 

developed in China (Fig. 3). The Q value of five groups was 

listed in Table S1 of all the inbred lines. Of all inbred lines, 

73.40% were assigned into the corresponding subgroups, and 

the remaining ones were categorized into the ‘‘mixed’’ 

subgroups based on their Q values (Table S1). Relative 

kinship within this inbred population were evaluated based 

on the analyses of the 204 SSR markers, and all the pairwise 

values ranged from 0 to 1, with a mean of 0.01104 (Fig. 4). 

Approximately 60% of the pairwise estimates were close to 

0, indicating that there was no close genetic relationship 

within these lines (Fig. 4). 

 

Linkage disequilibrium for pairwise markers 

 

In the entire collection under investigation 1, 580 (7.94%) of 

the 19, 900 intrachromosomal marker pairs showed a 

significant level of LD (P<0.01). The mean of 
2r  for all 

pairs was 0.015 and the mean of LD value (D´) for all 

statistically significant loci pairs was 0.286. As expected, the 

LD of these breeding germplasm was considerably higher 

than that had been previously reported (Yan et al., 2009). In 

the 94 inbred lines, 63.05% linked pairwise SSR loci were in 

significant LD at the 0.01 level. Overall, linkage was the 

main factor resulting in the pair-wise SSR loci with 

significant LD in the entire sample. 

 

Association analysis between traits and SSRs 

 

Effect of population groupings on association analysis 

 

The prerequisite for association analysis was the 

characterization of population structure within our new set of 

inbred lines using the software package STRUCTURE 2.3.1 

(Pritchard et al., 2000). The association analyses based on the 

Q matrix of our seven groups (one to seven) of the new 

inbred lines were conducted using the means of our two years 

of observations. The distribution of the P values of the 26 

traits from these seven groups was shown in Fig. 5. Five 

groups corresponding to the optimal group subdivided results 

gave the highest P values, with their 95% confidence interval 

for estimated mean of 0.4604, ranging from 0.4482 to 0.4715 

(Fig. 5). Whereas, one group had the lowest P values, with 

the estimated mean value of 0.4433, ranging from 0.4321 to 

0.4545. Thus, the incorporation of Q corresponding to the 

optimal subdividing results influenced the marker-trait 

associated results. 

 

Association analysis of the results individual year 

 

For each trait make association analysis for two years, 

respectively, with mixed linear model (MLM).  
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    Table 1. Same marker-trait results of association analysis for each individual year. 

Trait Bin Locus F_Marker 

2010 

F_Marker 

2011 

P_Marker 

2010 

P_Marker 

2011 

Trait Bin Locus F_Marker 

2010 

F_Marker 

2011 

P_Marker 

2010 

P_Marker 

2011 

PH 2 umc1419 2.46  2.85  1.07E-02 3.50E-03 AD 5.09 bnlg389 a 3.56  3.64  3.50E-03 3.10E-03 

PH 4.03 umc1550 2.80  2.10  8.70E-03 4.57E-02 ASI 1.06 umc1122 a 4.21  4.99  8.00E-03 3.20E-03 

PH 4.04 umc1652 2.74  3.40  4.81E-02 2.16E-02 KRN 1.03 phi001 a 2.90  2.96  5.00E-03 4.60E-03 

EH 1.05 umc1395 2.92  2.17  5.00E-03 3.38E-02 KRN 1.08 umc1446 3.14  4.11  4.80E-02 1.99E-02 

LA 2 umc1419 a 2.50  3.02  9.70E-03 2.20E-03 KRN 5.01 phi024 4.89  3.91  3.40E-03 1.16E-02 

LL 1.06 umc1035 3.11  2.49  5.90E-03 2.31E-02 KRN 7 umc1695 3.37  4.69  3.88E-02 1.17E-02 

LL 2.09 bnlg1520 2.58  2.50  1.87E-02 2.27E-02 KRN 10.05 umc1506 3.93  3.03  3.00E-03 1.50E-02 

LL 6.06 umc1859 4.04  2.39  1.40E-03 3.58E-02 CD 1.03 umc1397 12.60  4.21  6.26E-04 4.34E-02 

LL 7.03 umc1593 2.36  3.26  4.74E-02 9.90E-03 CD 1.05 umc2025 2.69  5.27  3.66E-02 8.31E-04 

LW 10.07 bnlg1185 2.11  2.64  1.98E-02 3.70E-03 EW 1.01 bnlg1014 2.63  2.18  1.70E-02 4.58E-02 

BYC 4.08 bnlg2162 3.36  4.78  2.24E-02 4.00E-03 CW 5.07 bnlg1118 2.90  3.34  1.30E-02 8.80E-03 

BYC 5.07 bnlg1118 2.46  2.62  3.12E-02 3.05E-02 CW 8.05 umc1562 3.24  2.35  6.60E-03 4.84E-02 

BYC 6.01 phi077 3.20  3.24  4.55E-02 4.43E-02 CW 9.02 bnlg1401 2.17  2.63  3.39E-02 1.43E-02 

BYC 8.06 umc1161 a 3.78  7.79  7.10E-03 2.30E-05 GW 1.01 bnlg1014 2.40  2.97  2.80E-02 8.50E-03 

GLN 2.08 bnlg198 2.67  3.42  3.03E-02 8.70E-03 GW 6.02 umc1006 2.38  4.56  6.70E-03 1.34E-02 

GLN 5.07 bnlg1118 2.71  2.97  1.88E-02 1.65E-02 HKW 1.04 umc1917 6.65  5.20  1.16E-02 2.52E-02 

TD 1.02 umc1976 3.27  3.33  1.53E-02 1.42E-02 HKW 3.05 umc1307 2.75  2.51  1.74E-02 2.88E-02 

AD 1.04 umc1917 9.39  4.26  2.90E-03 4.21E-02 HKW 7.03 bnlg1579 4.09  2.89  4.50E-03 2.75E-02 

AD 1.1 phi308707 2.39  3.15  2.87E-02 5.70E-03 EL/GL 4.02 umc1288 a 7.44  4.97  1.00E-03 9.20E-03 

AD 2.07 bnlg1045 2.17  2.42  3.90E-02 2.70E-02        

     a: P<0.01 level. 

 

       Table 2. Trait-associated loci and QTL reported previously. 

 Association in this study Putative QTL in literature 

previously 

Trait Locus Bin  

ASI umc1122 1.06-1.07 Rainer Messmer et al. (2009) 

HKW umc1917 1.04 Rainer Messmer et al. (2009) 

KRN phi001 1.03 Wang (2009) 

EW bnlg2132 7 Wang (2009) 

CW bnlg1118 5.07 Ming Lu. et al. (2010) 

ED bnlg2190 10.06 Meng Li. et al. (2009) 
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The association analysis conducted in 2010 resulted in 138 

SSR loci, all of which were associated with the 26 traits 

(P<0.01), while that in 2011 gave rise to 96 SSR loci that 

were strongly associated with the 26 traits (P<0.01). 

However, compared with the same association locus that 

were used for association analyses in both 2010 and 2011, 

only six loci showed similar association levels with several 

traits (e.g., umc1419 with LA, umc1161 with BYC, bnlg389 

with AD, umc1122 with ASI, phi001 with KRN and 

umc1288 with EL/GL). When considering P<0.05 level, 417 

SSR loci and 347 SSR loci were associated with all 26 traits 

in our 2010 and 2011 study, respectively. This result 

indicated that the same association locus reached 39 (Fig. 6 

and for the P marker, see Table 1). 

 

Traits with strong association with markers 

 

MLM model was used to make association analysis each 

individual year, a total of 39 associated loci associated with 

17 traits were identified in two years at p<0.05 level, 

simultaneously, which were distributed on all of the ten 

chromosomes. Some important traits with strong association 

with markers have been detected. Umc1419, umc1550 and 

umc1652 were associated with PH. Umc1917, phi308707, 

bnlg1045 and bnlg389 were associated with AD. Five loci 

were associated with KRN, phi001, umc1446, phi024, etc. 

Umc1917, umc1307 and bnlg1579 were associated with 

HKW. The number of associated loci detected on 

chromosome 1 was thirteen, which was more than 

chromosome 2 and 5(5), and more than chromosome 4(4), 

etc. Of these loci, umc1917 located in bin 1.04 was 

associated with AD and HKW. Bnlg1014 located in bin 1.01 

was associated with EW and GW. Umc1397 located in bin 

1.03 and umc2025 located in bin 1.05 were associated with 

CD. Bnlg1118 located in bin 5.07 was associated with BYC, 

GLN and CW. Phi077 and umc1161 were associated with 

BYC. Umc1695 and umc1506 were associated with KRN. 

Bnlg1579 was associated with HKW. Umc1562 located in 

bin 8.05 and bnlg1401 located in bin 9.02 were associated 

with CW. 

 

Association analysis based on the meaning of the two years’ 

phenotypic data 

 

The association analysis with the mixed linear model (MLM) 

indicated that 106 SSR loci were strongly associated with the 

26 agronomical traits and such association significance 

reached the P<0.01 level (Table S3). The P_maker was listed 

in Table S3. Data listed in Table S3 also suggested that one 

maker could be associated with more than one trait. For 

example, each of these three loci, namely umc2215, umc1917 

and bnlg2190, was associated with (four traits/locus) EW, 

GW, TD, AD; HKW, TD, AD, SD; and CD, TD, AD, SD, 

respectively. Meanwhile, loci of bnlg2162, umc1457, 

umc1562, and bnlg1401 were associated with (three 

traits/locus) EL, CW, BYC; LW, TD, AD; EL, EW, GW and 

TD, AD, SD, respectively. 318 associated SSR loci were 

detected at P<0.05 level based on the meaning of the two 

years of data. 

 

Discussion 

 

Genetic diversity and population structure of the inbred 

lines 

 

A suitable association mapping panel should encompass as 

much phenotypic and molecular diversity as can be reliably  
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Fig 1. Frequency distribution of MAF (A) and PIC (B) for all 

of 204 SSR markers of all the inbred lines. 
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Fig 2. Model-based cluster membership for 94 lines in five 

groups. 

 
Fig 3. Population structure of 94 individuals based on 204 

SSRs. Red: Reid (Ye478); Green: SPT (Huangzaosi); Blue: 

LRC (Dan340); Yellow: PB (P138); Pink: BSSS (B73). 

 

 

measured in a common environment (Flint-Garcia et al., 

2005). The genetic diversity of our association panel 

represented by 94 Chinese inbred lines is higher than, or 

equal to, those that had been reported so far, with the 

exception of those described by Taramino and Tingey (1996), 

and Liu et al. (2003). The present study used 204 pairs of 

SSR markers and subdivided the association panel into five 
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groups (Reid, SPT, LRC, PB and BSSS) using the 

model-based cluster method. Data from our genetic diversity 

and population structure analysis revealed that this 

association panel showed a diverse genetic variation and, 

therefore, could be used for the association analysis.  

 

Linkage disequilibrium analysis and association analysis 

 

When using an association panel to uncover a variant for 

quantitative traits of interest, a primary consideration should 

be the power of this panel, namely, the probability of 

detecting the causal variant. Studies of power evaluations 

have suggested that population size is one of the most 

fundamental decisions when identifying associations 

(Spencer et al., 2009). Marker density is another determinant 

for increasing the power of association analysis (Mackay et 

al., 2009), especially for GWAS. It is often related to the LD 

pattern of a maize association panel at the genome-wide 

level. Among factors influencing LD, linkage was the major 

cause for LD of SSR loci. In our study, we used 204 pairs of 

SSR markers among the 10 chromosomes, the LD level of 

the markers were high and could be used for association 

analysis. Many models were used to minimize the 

false-positive of association analysis. It seems that a K matrix 

incorporated into the K model was sufficient to minimize 

false-positive associations, consistent with other model 

simulations and comparisons (Yu and Buckler 2006; Stich et 

al., 2008; Zhu and Yu 2009; Yang et al., 2010b). Similarly, 

the Q + K model can also reduce the false positives, and in 

fact, such a combined model has proven to be better than 

either the K matrix or the Q matrix alone (e.g., traits of 

flowering time, ear height and ear diameter) (Yang et al., 

2010a). Using GLM and MLM analyses, the mean values of 

our two consecutive years’ observations revealed that 145 

and 106 associated loci were significant at P<0.01 level, 

respectively, whereas 407 and 318 associated loci were 

significant at P<0.05 level, respectively. Our study suggests 

that the K + Q model can eliminate some false-positive 

associations. 

 

The same association loci based on two-individual years’ 

results 

 

The results of our association analyses conducted in 2010 and 

2011 suggested that 39 same association loci were found to 

be significant at P<0.05 level. False positives of 90.9% and 

89.0% of the same association loci resulted from 2010 and 

2011, respectively, were removed. In order to improve the 

power of the results of association analysis, we compared the 

39 same association loci with the mean of two years of 

association loci, 17 same association loci were selected at 

P<0.01 level. Finally, 25 same associated loci were found at 

P<0.05 level. We thought that they are the more valuable 

associated loci, on the basis of our experiment. A number of 

agronomical traits related to yield have been mapped or 

found to be associated, but limited information is available 

on traits such as GLN and BYC. Of the 25 associated loci, 

we found that four loci, bnlg2162, bnlg1118, phi077 and 

umc1161 were strongly associated with BYC, while one 

locus, bnlg1118 was associated with GLN. 

 

 

Our association results compared with others QTL 

positioning results 

 

Some of the SSR markers used in the present investigation 

had been described previously by others in their linkage 

mapping or association mapping studies (Table 2). For 

example, it had been reported that umc1122 (Messmer et al.,  
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Fig 4. Distribution of pairwise relative kinship estimates 

between 94 maize inbred lines. 
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Fig 5. Interval plots of P values for the number of groups 

from one to seven subdivided by structure software. 

 

 

2009), umc1917 (Messmer et al., 2009), bnlg1118 (Lu et al., 

2010) and bnlg2190 (Li, et al., 2010) were linked to ASI, 

HKW, CW, and ED, respectively. Similarly, Wang (2009) 

constructed an integrated map of QTL for Grain yield and its 

related traits in maize. Our study indicated that the phi001 

locus was associated with KRN. A similar result was reported 

by Wang (2009) who suggested that the QTL, bnlg2132, was 

strongly related to EW-another important yield trait. 

Furthermore, other loci associated with the yield traits were 

also found in the present study: e.g., bnlg2180 was associated 

with the KRO (in the consensus map, this locus showed 

association with a kernel number/row). In our study, there are 

many associated loci with the mean results of two years at 

P<0.01 level in the tenth chromosome, but the previous 

mapping results were little, which may have made a 

supplement to the association mapping progress. 

 

Materials and methods 

 

Plant materials 

 

Table S1 listed 94 maize inbred lines and described their 

detailed pedigree information. Of these inbred lines, 65 were 

developed by domestic or international researchers and have 

been utilized extensively in the current maize hybrid 

breeding programs in China. Whereas, the remaining 29 

inbred lines were derived from our breeding team. All field 

experiments were performed in the summers of 2010 and  
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Fig 6. Thirty-nine same marker-trait loci at P <0.05 level based on two individual years. Genetic map showing the marker positions 

and estimated map distances based on the IBM2 2008 Neighbors Frame 1. Asterisks indicated 25 same marker-trait loci (compared 

the 39 same association results with the mean of two years of results at P <0.05 level). 

 

 

 

2011 at our Experimental Farm, Shandong Agricultural 

University, Taian, Shandong Province, P. R. China. 

 

Phenotypic data 

 

Field experiments were performed at Taian, Shandong 

Province, China, in 2010 and 2011 (summer sowing). On an 

individual basis, 26 agronomical traits were measured or 

further calculated. The measured traits were plant height (PH, 

cm), ear height (EH, cm), leaf angle above ear (LA,°), leaf 

length at the ear (LL, cm), leaf width at the ear (LW, cm), 

bract leaf length (BYC, cm), leaf number (LN), the number 

of green leaves at mature (GLN), days to tasseling (TD, day), 

days to anthesis (AD, day), days to silking (SD, day), days to 

mature (MD, day), ear length (EL, cm), ear diameter (ED, 

cm), bald length (BL, cm), ear weight (EW, g), cob weight 

(CW, g), cob diameter (CD, cm), the number of kernel rows 

(KRN), the number of kernels per row (RKN), grain weight 

per ear (GW, g), embryo length (EL, cm), grain length (GL, 

cm), and hundred kernels weight (HKW, g). The calculated 

variables were tasseling to-anthesis internal days (TAI), 

anthesis to-silking internal days (ASI), kernel ratio (KRO) 

and embryo length ratio of grain length (EL/GL). 

 

Genotypic data 

 

DNA extraction and SSR genotyping 

 

For DNA extraction, bulk of leaf samples representing at 

least six individual plants were used, and the extraction 

protocol was modified (CTAB) according to Murray and 

Thompson (1980). PCR amplification reactions were 

performed using 75 ng sample DNA in 25 µL of DNA 

amplification system, containing 0.5 μM of each primer pair, 

100 μM of dNTPs, 2.5 μL 1×Taq polymerase buffer, 1.5 mM 

MgCl2, and 0.75 U Taq DNA polymerase. The SSR reactions 

were carried out using Touchdown PCR program. PCR 

products were separated on a 9% non-denaturing PAGE gel 

in 1×TBE buffer and stained using the silver method (Creste 

et al., 2001). 

bnlg1014 EW GW* 82.8 
umc1071 85.2 
umc2215 89.9 
umc1166 133.6 
umc1976 TD 160.6 
umc2226 165.8 
umc1397 CD* 226.4 
umc1479 257.4 
bnlg439 259.1 
phi001 KRN* 272.0 
bnlg2180 273.6 
phi109275 290.4 
umc1917 AD*HKW 374.8 
umc2025 CD* 417.0 
umc1124 457.0 
umc1395 EH 471.7 
umc1590 517.0 
umc1035 LL* 587.0 
umc1122 ASI 599.9 

umc1147 714.4 
bnlg1564 718.5 

umc1446 KRN 781.6 
umc2240 806.5 
phi011 839.3 

phi308707 AD 927.4 
umc1774 936.1 

phi120 1007.8 
umc1681 1014.9 

phi064 1103.0 

1 

umc1419 PH LA 0.0 
umc2246 3.1 
phi96100 28.1 
phi098 56.7 
bnlg1017 65.7 
umc1823 92.8 
umc1756 141.6 
umc1845 197.8 
umc1555 225.3 
bnlg1621 235.4 
umc1024 250.1 
umc1454 339.3 
bnlg1036 373.5 
nc003 379.2 
mmc0271 438.3 
bnlg198 GLN 456.1 
bnlg1045 AD* 457.2 

bnlg1520 LL 599.1 

2 

umc2105 umc2101 2.0 
umc1970 28.2 
bnlg1144 77.0 
bnlg1904 127.3 
bnlg1447 129.4 
phi036 159.0 
bnlg1452 190.8 
umc1025 192.4 
umc1750 270.4 
umc1773 280.4 
phi053 296.1 
umc1102 312.8 
bnlg1035 313.4 
umc1307 HKW 339.6 

bnlg1350 439.7 

bnlg197 511.5 

umc1489 567.6 

phi047 759.9 
bnlg1496 760.9 

3 

phi072 2.9 
umc2148 23.4 

umc1288 EL/GL 107.4 
umc1294 114.0 
umc2280 158.8 
umc1550 PH* 185.2 
umc1652 PH 228.4 
umc1662 252.5 
nc005 phi079 254.0 
umc1896 284.5 

umc1299 371.4 

umc1808 452.9 
bnlg1444 462.5 
bnlg2162 BYC* 475.7 
umc1856 535.5 
umc2188 554.1 

phi076 731.6 
umc1058 737.8 

4 

phi024 KRN* 72.1 
umc1478 79.2 

umc1274 263.1 
umc2296 267.5 
phi109188 285.7 
umc2066 305.2 
bnlg1287 312.6 
bnlg2323 328.5 
bnlg1074 332.1 
umc1221 368.4 
umc1482 383.8 
mmc0081 389.9 
umc1822 396.6 
umc2164 402.2 
umc1019 470.1 
mmc0481 476.6 
umc1752 488.4 
umc1680 493.5 
phi048 536.6 
bnlg1118 BYC*GLN*CW* 590.4 
umc1225 641.4 
bnlg389 AD* 674.5 

5 

phi075 9.1 
bnlg161 23.2 
bnlg1371 72.7 
umc1133 98.6 
bnlg1538 107.3 
phi077 BYC* 121.1 
umc1006 GW 125.0 
umc1186 127.1 
umc1178 145.3 
umc1857 203.2 
nc010 umc1014 211.5 

umc1805 339.6 

umc1859 LL* 391.4 

umc2165 502.9 
umc1653 534.6 
phi123 564.2 

6 

umc2177 0.0 
umc1695 KRN* 45.0 
bnlg2132 53.3 
umc1066 122.4 
umc1016 155.8 
bnlg1094 180.5 
umc1983 244.3 
bnlg1808 286.3 
umc1015 300.0 
bnlg1305 302.9 
bnlg1579 HKW* 322.7 
umc1936 405.5 
umc1710 410.5 
umc1593 LL* 451.2 
umc1944 466.8 
umc1708 471.4 
Dupssr13 499.9 

phi116 611.5 

7 

umc1359 10.1 
umc1414 48.0 

bnlg1863 245.7 
umc2366 245.9 
umc1457 284.6 
phi014 295.3 
umc1562 CW* 353.3 
bnlg1812 370.0 
umc1960 413.2 
umc1161 BYC* 422.8 

umc1268 bnlg1834 494.7 

umc2218 547.2 
phi015 phi080 571.5 
umc1663 608.1 

8 

bnlg1724 11.8 
umc2084 17.7 
umc1867 24.3 
phi028 80.3 
umc1647 109.0 
bnlg244 142.6 
bnlg1401 CW* 147.5 
phi022 191.7 
phi065 225.4 
bnlg127 226.3 
mmc0051 256.8 
umc1267 257.6 
umc1107 285.8 
umc1519 321.6 
bnlg1270 327.8 
umc1094 333.1 
umc1357 340.4 
umc1231 342.0 
umc1657 344.8 
umc1366 489.9 

9 

phi041 30.9 
umc1152 91.4 
umc1367 183.8 
umc1381 187.0 
umc2016 195.4 
bnlg1712 217.8 
phi062 260.5 
umc2163 269.6 
umc1053 272.2 
bnlg1526 284.7 
umc1115 295.9 
bnlg1250 335.5 
umc1506 KRN* 344.8 
umc2043 352.9 
umc2122 392.5 
umc1993 410.6 
bnlg2190 412.3 
umc1196 444.8 
bnlg1677 449.3 
bnlg1839 466.4 
bnlg1450 483.7 
bnlg1518 526.4 
bnlg1185 LW* 550.9 
umc1645 578.1 

10 
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Two hundred and four pairs of SSR primers with high 

polymorphism rate and even distribution throughout the 

maize genome were used to genotype all of the 94 lines. All 

the SSR primers and the bin values were searched in 

MaizeGDB (http://www. Maizegdb.org). Most of the SSR 

repeat motifs and sequences were obtained from MaizeGDB 

(Table S4). 

 

Genetic structure analysis 

 

Microsatellite profiles were scored reflecting either the 

presence (1) or absence (0) of clear bands. Powermarker 

version 3.25 (Liu and Muse, 2005) was used to calculate 

allele number, gene diversity, polymorphism information 

content (PIC) and major allele frequency (MAF). The 

model-based program STRUCTURE 2.3.1 (Pritchard et al., 

2000; Falush et al., 2003) was used to infer population 

structure using 204 SSRs. Five independent runs were 

performed, setting the number of populations ( k ) from 1 to 

15, burn in time and MCMC (Markov Chain Monte Carlo) 

replication number both to 100, 000, and a model for 

admixture and correlated allele frequencies. The k  value 

was determined by LnP(D) in STRUCTURE output and an 

ad hoc statistic Δ k based on the rate of change in LnP(D) 

between successive k (Evanno et al., 2005). Both LnP(D) in 

STRUCTURE output and its derived Δ k were used to 

determine the k value. Since the distribution of L(k) did not 

show a clear mode of the true k , 

 )(/)1()(2)1(( kLskLkLkLmk Δ  

was used to show a clear peak to represent the true value 

of k (Evanno et al., 2005). Lines with membership 

probabilities of  0.70 and <0.70 were assigned to match 

clusters and to represent a mixed group, respectively. 

Relative kinship between individuals was inferred based on 

the molecular markers, which represent the approximate 

identity between any two given individuals (Yu and Buckler 

2006). We used SPAGeDi (Hardy and Vekemans 2002) to 

estimate the kinship coefficients based on 204 SSR markers. 

The Q matrix corresponding to the highest Δ k and the 

kinship matrix (K) were adopted for association analysis. 

 

Linkage disequilibrium estimation and association analysis 

 

Linkage disequilibrium analysis was further performed for 

the 204 polymorphic SSRs, with the dedicated procedure of 

the TASSEL software, using 1, 000 permutations 

(http://www. Maizegenetics.net/). Pairs of loci were 

considered to be in significant LD if P was < 0.01. The 

significance of pairwise LD (P values) among all possible 

intrachromosomal and genome-wide comparisons for the 204 

loci was also evaluated with the rapid permutations test. The 

loci were considered to be in significant LD if P<0.01. The 

estimated genetic distance (cM) among the loci was inferred 

from the public IBM2 2008 Neighbors Frame 1. The Q 

model were performed using GLM in TASSEL V2.1; the K + 

Q model were performed using MLM in TASSEL V2.1 (Yu, 

Pressior et al., 2006; Bradbury et al., 2007). Association 

analysis was conducted for 26 traits with 204 SSRs. The 

observed P values were used to estimate the SSR-trait 

associations between marker and trait. 

 

 

 

Conclusion 

 

We used the high genetic diversity association panel to make 

association analysis with the important agronomical traits 

which made a great contribution to yield improvement. Then, 

we took advantage of annual field trials to detect the same 

associated loci; the method could delete some false positive 

results rather than using the mean value of traits to make 

association analysis. With a mix of the kinship and Q matrix 

model, many loci were detected that coincide with known 

major genes or QTL, some marker-traits loci were not 

reported previously, indicating the power of this association 

panel. The role of these regions will need to be further 

investigated. Additionally, potential novel loci were identified 

that may help to better understand the architecture of 

complex genetic traits. Association mapping based on LD 

may have broad applications in maize genetics and selective 

breeding. 
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