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Abstract 

 

In situ hyperspectral imaging has great application potential in crop nutrient determination using high spectral and spatial resolution. 

To detect chlorophyll content of crop components accurately, imaging and non-imaging spectrometers were simultaneously used to 
record the reflectance spectra of maize leaves from different layers. The peak–valley characteristic parameters were extracted from 

the change rates and their derived variables from the spectral curve on the blue, green, yellow, and red edge were then calculated to 

determine chlorophyll content. By analyzing the correlations between the feature parameters and the leaf chlorophyll concentrations, 

the feasibility of using these parameters was verified. The results reveal that peak–valley characteristic parameters such as RVA1, 
Kg/Kr, GPA2/RVA2, and Kb are significantly correlated with chlorophyll content, and among them, the regression coefficient (R2) 

of RVA1 was the highest (R2 = 0.705). Finally, an inverse model (y = 1.282x - 0.143) of chlorophyll content was constructed using 

RVA1. The R2 value of the validated model of chlorophyll content was 0.640, and the corresponding root mean square error was 

0.3039. These results indicate that estimating chlorophyll content is feasible using peak–valley characteristic parameters extracted 
from hyperspectral imaging data. 

 

Keywords: Analytical spectral devices; chlorophyll content; maize leaf; pushbroom hyperspectral imaging; peak-valley 

characteristic parameter. 
Abbreviations: ASD-analytical spectral devices; C/N-carbon/nitrogen; CARI-chlorophyll absorption ratio index; DN-digital 

number; Dλb- blue amplitude; Dλy- yellow amplitude; Dλr-red amplitude; FDR -first order derivative reflectance; GPA1- the included 

angle specified by the two sides (green edge and yellow edge) of green peak; GPA2- the included angle specified by the two sides 

(green edge and peak-to-valley edge) of green peak; GPA1/ GPA2, RVA1 /RVA2-Angle ratio; Kb- the rates of change of spectral 
curve on the blue edge (490~530 nm); Kg- the rates of change of spectral curve on the green edge (500~550 nm); Ky- the rates of 

change of spectral curve on the yellow edge (550~580 nm); Kpv- the rates of change of spectral curve from the top of green peak to 

the bottom of red valley (550–670 nm); Kr- the rates of change of spectral curve on the red edge (680~750 nm); Kg/ Kb, Kg/ Ky, Kg/ 

Kpv, Kg/ Kr, Kr/ Kb, Kr/ Kg, Kr/ Ky, Kr/ Kpv -spectral ratio; PIS-pushbroom hyperspectral imaging; PRI-pigment ratio index; 
PVCP-peak-valley characteristic parameters; Peak-to-valley edge-the peak-to-valley edge refers to the band range (550–670 nm) 

from the top of green peak to the bottom of red valley on the visible spectral curve; RMSE -root mean square error; Rrv-reflectance of 

red valley; Rgp-reflectance of green peak; Rg/Rrv-ratio of green peak and red valley; RVA1- the included angle specified by the two 

sides (yellow edge and red edge) of red valley; RVA2- the included angle specified by the two sides (peak-to-valley edge and red 
edge) of red valley; SE- standard error; TVI- triangular vegetation index; λb- blue position; λy - yellow position; λr-red position; λgp- 

green position; λrv-red valley position. 

 

 

Introduction 

 

The rapid, non-destructive, and accurate determination of crop 

nutrient status using spectral imaging technology remains a 
crucial question in agriculture. A large number of studies have 

been performed to explore the correlations among the 

ground-based hyperspectral data and the physiologic and 

biochemical characteristic indicators of crops, such as leaf area, 
biomass, chlorophyll, nitrogen, C/N ratio, and so on. (Daughtry 

et al., 2000; Gong et al., 2002; Hansen et al., 2003; Vianney et 

al., 2007). Among these indicators, chlorophyll is the key 
indicator of crop photosynthesis and it reflects the level of crop 

stress. Therefore, it is usually used in the non-destructive 

monitoring of crop growth status through optical spectrometry 

(Haboudane et al., 2002; Huang et al., 2004; Bannari et al., 

2007; Haboudane et al., 2008; Zhang et al., 2010).Currently, 
there are two main methods for monitoring crop chlorophyll 

content. One method uses various spectral indices generated by 

different band combinations, such as the chlorophyll absorption 

ratio index (Elvidge et al., 1995), the pigment ratio index 
(Broge et al., 2000), and the triangular vegetation index (Chen 

et al., 2010). These methods often use wide-band multispectral 

imagery data and early hyperspectral applications (Oppelt et al., 
2004; Zhang et al., 2010). The other type employs the feature 

variables defined by changes spectral reflectance. The latter 

method can be further divided into two forms. One measures 
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the chlorophyll changes using the reflection spectra or the 

characteristic values of reflection peaks, and absorption valleys 
of normalized spectrum, as well as their derivatives (Wang et 

al., 2010). These methods are used mainly for assessing 

biological components at the single-leaf scale. For studies at the 

canopy-scale, impact factors, such as sensor performance 
(signal to noise ratio and bandwidth) and differences in canopy 

structure, must be considered (Kokaly et al., 1999). The other 

is the determination of chlorophyll content based on the 

characteristics of its derivative spectrum and their 
transformational forms. Considering the derivative spectrum 

can accurately determine the inflection points and extreme 

value of the spectral change regions such as the blue edge, 

yellow edge, and red edge, it is much more relevant in 
vegetation (Adams et al., 1999; Cho et al., 2006). In recent 

years, the emergence of narrow-band hyperspectral data allows 

the analysis of the variations in chlorophyll concentration based 

on characteristic shapes between the peaks and valleys of 
spectral reflectance, such as the characteristic location, peak 

height or width, and the area of valley depth, as well as their 

derived variables (Pu et al., 2009). Hyperspectral imaging 

technology provides more information, it is faster and 
non-destructive, and it can be done in real-time unlike 

non-imaging sensors. By combining imaging with 

spectroscopy, it can study not only group-scale crops, but also 

microscopic individuals and components. Therefore, 
hyperspectral imaging technology provides the essential 

technical and equipment support for probing the features of 

group and individuals and their metabolism (Tong et al., 2010). 

However, utilizing the strengths of imaging hyperspectral data 
requires sophisticated data mining techniques (Ye et al., 2008). 

The current study focuses on finding better parameters for 

assessing chlorophyll concentration through peak–valley 

characteristic variables such as the rising and falling rates of 
peak–valleys and angles derived from the both sides of peaks, 

and valleys from imaging spectra. In addition, comparison and 

analysis of differences in peak–valley characteristic 

parameters were calculated from data from imaging and 
non-imaging spectrometry. Hyperspectral imaging data was 

proven practical.  

 

Results  

 

Feasibility Analysis for Extracting Characteristic Parameters 

from Imaging Hyperspectra 

 

The results from a previous study indicated that the non imaging 

hyperspectra could effectively improve the capability of 

estimating barley canopy chlorophyll concentration using novel 

characteristic parameters, such as the change in the rates of the 
blue, green, and yellow edges and their derived variables (Xu et 

al., 2011). However, the usefulness of this approach has not 

been validated. Consequently, the reflectance of corn leaves 

from different layers (Fig. 3) was determined to verify the 
possibility in the leaf-scale for peak-valley characteristic 

parameters, and to identify optimal methods for accurately 

determining the chlorophyll content of maize leaves using 

hyperspectral imaging data. As shown in Fig. 3a, obvious 
differences in the spectral values were evident among the leaves 

from different layers at the bell-mouthed period. The first leaves 

had the highest reflectance at 550 nm (green peak position), 

followed by the second, the fourth, and the third leaves. Little 
spectral differences were observed between the third and the 

fourth leaves. At 670 nm (red valley position), little spectral 

differences were observed between the first and the second 

leaves, which was similar to that observed between the third and 
the fourth leaves. Visually, the leaf reflectance curves displayed 

two layers. For the red edge range (670 nm to 750 nm), the red 

edges of the first and second leaves were close to the green peak 
position, and those of the third and the fourth leaves tended to 

the far red. The corresponding chlorophyll content in the leaves 

from different layers were 0.7 mg/g, 0.9 mg/g, 1.4 mg/g, and 1.5 

mg/g, respectively, which indicated that the leaves with low 
chlorophyll content exhibited strong reflectance in the green 

peak position and the leaves with high chlorophyll content had 

strong absorbance in the red valley position. These findings 

served as the basis for determining the differences in crop 
nutrients based on spectroscopy. In principle, peak–valley 

characteristic parameters can be extracted from the imaging 

spectral data. Meanwhile, considering the high accuracy of 

monitoring crop leaf nutrients using the ASD integrating sphere, 
it was used to collect leaf spectral information, as shown in Fig. 

3b. The leaf spectra from the different layers had similar curves 

compared with the imaging spectral data, which suggests that 

hyperspectral imaging data are more accurate. 
 

Correlation Relationship between Chlorophyll Content and 

Hyperspectral Characteristic Parameters 

 

Chlorophyll content is a good indicator for crop growth and 

development, therefore, accurately determining and assess 

chlorophyll concentration is essential (Bannari et al., 2007). 

The current study extracted peak–valley characteristic 
parameters and determined their correlations with chlorophyll 

content by analyzing the characteristics of hyperspectral curves. 

Furthermore, comparative analysis was performed for the 

correlations between the peak–valley parameters and the 
traditional three-edge parameters to verify the accuracy of the 

peak–valley parameters in estimating chlorophyll content (Table 

4). As shown in Table 4, the correlations were extremely 

significant between the peak–valley characteristic parameters 
and the chlorophyll content apart from those with Kr, RVA2, 

and GPA1/RVA1. However, only Dλb, Dλy, Rg, λr, and λrv 

were markedly related to the traditional feature variables. 

Among them, Kb, Kg, Kg/Kr, RVA1, and GPA2/RVA2 had 
good correlation coefficients (r > 0.7). In contrast, Dλb, Rg, and 

λr were the only traditional three-edge parameters that had 

correlation coefficients greater than 0.7. This suggests that the 

peak–valley characteristic parameters, which were derived using 
three-edge spectral change rate, significantly improved the 

predictability of chlorophyll concentration. Both the 

peak–valley and traditional parameters were based on 

three-edge technology; most of them were calculated using the 
first order differential of the original spectra. However, the high 

correlation of the peak–valley parameters might be because the 

spectral information for quantitative components of crop was 

displayed in the form of overall characteristic ranges rather than 
a single individual point. The peak–valley parameters 

corresponded solely to this feature, which used region change 

rates for construction; thus, they might be a more comprehensive 

response to the variations in crop components than a single 
point. Secondly, single-point spectra possibly had greater errors 

caused by the instrument, light illumination, data processing 

methods, and so on. Fig. 4 shows the first order derivative 

reflectance (FDR) for the same leaves between the imaging and 
non-imaging data. Although they share the same change trends, 

the performance of single point exhibit different spectral 

characteristics. Therefore, to determine the crop component 

information accurately, all sensitive bands in the entire region 
must be integrated to avoid the effect of baseline drift. In 

addition, the current study used non-imaging hyperspectral data 

to verify the practicality of using peak–valley characteristic 

parameters (Table 5). Among these parameters, the correlation 
coefficients of the peak–valley characteristic parameters,   
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            Table 1. The key performance parameters of imaging and non-imaging spectrometers 

Performance parameters PIS ASD 

Spectrum range 400 nm to 1000 nm 350 nm to 1000 nm 

Spectrum resolution 2 nm 3 nm 
Sampling interval 0.7 nm 1.4 nm 

FOV 16° 25° 

Spatial resolution 0.5 mm  

Pixel dimension 7.4 μm × 7.4 μm  
Image resolution 1400 (Spatial) × 1024 (Spectral)  

 

        Table 2. The traditional characteristic parameters  

Name Characteristic parameter 

Blue edge Blue amplitude (Dλb), blue position(λb) 

Yellow edge Yellow amplitude (Dλy), yellow position (λy) 
Red edge Red amplitude (Dλr), Red position (λr) 

Green peak Reflectance of green peak (Rgp) and green position (λgp) 

Red valley Reflectance of the red valley (Rrv) and the red valley position (λrv)  

Ratio of the Green peak to the Red valley Rg/Rrv 

 
Table 3. Description of peak-valley spectral characteristic parameters 

Name Definition 

Kb The rates of change in the spectral curve on the blue edge (490 nm to 530 nm) 

Kg The rates of change in the spectral curve on the green edge (500 nm to 550 nm) 

Ky The rates of change in the spectral curve on the yellow edge (550 nm to 580 nm) 
Kpv The rates of change in the spectral curve from the top of the green peak to the bottom of the red valley (550 nm 

to 670 nm) 

Kr The rates of change in the spectral curve on the red edge (680 nm to 750 nm) 

GPA1 The included angle specified by the two sides (green edge and yellow edge) of the green peak 
GPA2 The included angle specified by the two sides (green edge and peak-to-valley edge) of the green peak 

RVA1 The included angle specified by the two sides (yellow edge and red edge) of the red valley  

RVA2 The included angle specified by the two sides (peak-to-valley edge and red edge) of the red valley 

 Derivative variable 
Spectral ratio  Kg/Kb, Kg/Ky, Kg/Kpv, Kg/Kr, Kr/Kb, Kr/Kg, Kr/Ky, Kr/Kpv 

Angle ratio GPA1/GPA2, RVA1/RVA2  

Notes: The peak-to-valley edge refers to the band range (550 nm to 670 nm) from the top of green peak to the bottom of red valley on 

the visible spectral curve. 

 
including Kg, Kg/Kr, RVA1, and GPA2/RVA2 all reached 0.71 

and the highest value was 0.791, whereas only the coefficients of 

Dλb, Rg, and λr exceeded 0.71 and the largest value was 0.786. 

As shown in the analysis above, the results measured by two 
instruments indicate that peak–valley characteristic parameters 

were more suitable for estimating chlorophyll content. However, 

although the same parameters were selected for imaging and 

non-imaging data, the correlation coefficients were different. 
For the peak–valley characteristic parameters from the imaging 

data, the order of the correlation coefficients was 

RVA1 > Kg/Kr > GPA2/RVA2 > Kb, whereas the result of 
non-imaging data was Kb > Kg/Kr > Kg > RVA1 > GPA2/ 

RVA2. For the traditional characteristic parameters from the 

imaging data, the order of the parameters was λr > Dλb > Rg, 

whereas that of non-imaging data was λr > Rg > Dλb. The above 
differences combined with those in Fig. 4 can be explained by 

the following: (1) The difference in the spectral interval, which 

was 0.7 nm for the imaging data and 1 nm for the non-imaging 

data, indicates the effect of spectral interval on the results. (2) 
For the imaging data, the value was derived from the average 

spectra of the entire leaf, whereas the value was derived from the 

average spectra of several points on a leaf using the non-imaging 

data; this suggests some differences in reflecting the inner 
components of the leaves. (3) The area spectrum is more easily 

affected by light compared with the point spectra, which was 

likely induced by different instruments, (4) Before the 

non-imaging data was used, they had been optimized by its own 
software, but the imaging data were just processed step by step 

using the five-point average method. 

Constructing and Validating Model of Retrieving Leaf 

Chlorophyll Content Using Peak-Valley Characteristic 

Parameters 

 

Based on the correlations between the peak–valley characteristic 

parameters and the chlorophyll concentration, the optimal 

characteristic parameter was chosen to construct a model for 

estimating chlorophyll content (Fig. 5a) according to the R2 
value and standard error (SE) (Table 6). The results show that 

the R2 value between RVA1 and chlorophyll content was the 

highest and the SE was the least. Therefore, it was used to build 
the model. In addition, both Kg/Kr and GPA2/RVA2 had high 

R2 values and low SEs, indicating that the combined and 

transformed characteristic parameters reflect the inner 

components of crops better than single variables. This 
phenomenon is consistent with the principle that multi-band 

composite vegetation indices are usually more reliable than 

single variables in reflecting crop growth status (Haboudane et 

al., 2002). Given the vertical gradient variance of crop nutrient 
distribution, only the first and fourth leaves were used to 

construct the model to increase the contrast. Therefore, the 

predicted values were concentrated around 0.29 and 0.37 (Fig. 

5a). As shown in Fig.5b, the correlation between RVA1 and the 
chlorophyll concentration was evident; thus, it was used to 

construct a model for retrieving chlorophyll concentration. 

Finally, the correction between the predicted values and 

observed values was established. The R2 was 0.640 and RMSE 
was 0.3039, suggesting that assessing leaf-scale component 

information is feasible using peak–valley characteristic 

parameters. 
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Fig 2. Constitution of peak-valley spectra characteristics 

parameters. 

 

 
Fig 3. Spectral reflectance curves of leaves from different 

layers using PIS and ASD 

 

Discussion 

 

The peak–valley characteristic parameters were first proposed 

by Xu et al. (2011) and it used non-imaging hyperspectral data 

to estimate the chlorophyll content of barley at the canopy scale. 
The results showed that new method was suitable for reflecting 

the growth status of barley. However, the paper did not 

determine the differences between novel characteristic 

parameters and traditional feature variables that form spectral 
curves on the blue, green, and red edge. In addition, the author 

 

 

 

 

did not provide more information on whether the novel 
characteristic parameters have better application effects in other 

crops and different hyperspectral data. In the current study, the 

peak–valley characteristic parameters extracted from imaging 

and hyperspectral data were used to assess the chlorophyll 
content of maize leaves; the results revealed that the novel 

means were better than the traditional feature variables. 

Meanwhile, similar results were achieved by applying 

non-imaging hyperspectral data in the current study. The results 
can be explained by the special wavelengths, which are defined 

as the spectral location that corresponds to the maximum 

position of the first derivative from reflectance spectra (Lamb 

et al., 2002; Huang et al., 2004; Yao et al., 2010). These values 
were indicated by the traditional feature variables, but the novel 

characteristic parameters reflected the changes from a specific 

region of spectral reflectance as a key factor, thereby 

preventing abnormal spectral values of certain single 
wavelengths to affect the results. Therefore, the new method is 

better than the traditional means. Imaging hyperspectral 

spectrometers have a narrower spectral band (0.7 nm) and a 

higher spectral resolution (2 nm) than those of the spectral band 
(1 nm) and the non-imaging spectrometer (3 nm) (Table 1). 

Therefore, methods that are more suitable for emphasizing and 

exploiting the advantage of imaging hyperspectral data should 

be found. The results from current research revealed that 
peak–valley characteristic parameters are more suitable for 

imaging hyperspectral data. In the future, this method should be 

extended to canopy nutrition determination for different crops 

in different growth stages. 

 

Materials and methods 

 

Experimental design 

 

Field experiment was performed at an experimental station 

affiliated the Beijing Academy of Agricultural and Forestry 

Sciences (39° 56′ N, 116° 17′ E) in August and October in 2009. 
Maize variety ZD 958 was selected as the experimental subjects. 

The corresponding seeds were planted in a field and their 

general managements were the same as that of locally grown 

plants. When the corn reached the early bell-mouthed period, the 
first, second, third leaf, and fourth leaves were collected and 

were used for determining spectral reflectance using imaging 

and non-imaging spectrometers in the laboratory. 

 

Data collection and preprocessing 

 

Introduction to imaging and non-imaging spectrometers 

 

The pushbroom hyperspectral imaging spectrometer (PIS) used 

in the current study was jointly developed by the Beijing 

Research Center for Information Technology in Agriculture and 

the University of Science and Technology of China, which 
acquired images via a linear array push-broom, as shown in 

Fig.1. Before utilizing PIS for studying the spectral features of 

objectives, strict laboratory calibration was performed to 

determine the location of each channel, radiometric accuracy, 
and so on by the spectrometer designer. The key performance 

parameters are listed in Table 1. The non-imaging spectrometer 

used in the study was the ASD Field Spectroradiometer Pro FR 

2500 (Analytical Spectral Devices, Inc., Boulder, Colorado, 
USA).  

 

    

maize Leaf 
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  Table 4. Correlation coefficients between chlorophyll content and characteristic parameters for PIS (n = 84). 

PVCP 
Correlation 

coefficient (r) 
PVCP 

Correlation 

coefficient (r) 
CCP 

Correlation coefficient 

(r) 

Kb -0.723 Kr/Ky -0.522 Dλb -0.713 
Kg -0.701 Kg/Kpv 0.606 Dλy 0.620 

Ky 0.561 Kr/Kpv -0.677 Dλr -0.310 

Kpv 0.688 GPA1 0.495 Rg -0.702 

Kr 0.223 GPA2 -0.689 Rrv -0.441 
Kg/Kb 0.614 RVA1 0.792 λb 0.432 

Kg/Ky 0.727 RVA2 -0.306 λy -0.274 

Kg/Kr -0.741 GPA1/RVA1 -0.331 λr 0.715 

Kr/Kb 0.561 GPA2/RVA2 -0.726 λg -0.320 
Kr/Kg 0.635 Rg/Rrv -0.472 λrv -0.606 

Notes: for p > 0.05, r = 0.3126; for p > 0.01, r = 0.4732. PVCP meant peak–valley characteristic parameters; CCP meant conventional 

characteristic parameters. 

 
  Table 5. Correlation coefficients between chlorophyll content and characteristic parameters for ASD (n = 84). 

PVCP 
Correlation 

coefficients (r) 
PVCP 

Correlation 

coefficients (r) 
CCP 

Correlation 

coefficients (r) 

Kb -0.791 Kr/Ky -0.202 Dλb -0.738 

Kg -0.761 Kg/Kpv 0.247 Dλy 0.567 

Ky 0.536 Kr/Kpv -0.170 Dλr -0.456 
Kpv 0.621 GPA1 0.235 Rg -0.748 

Kr -0.219 GPA2 -0.711 Rrv -0.241 

Kg/Kb 0.557 RVA1 0.757 λb 0.270 

Kg/Ky 0.410 RVA2 -0.443 λy -0.171 
Kg/Kr -0.767 GPA1/RVA1 -0.202 λr 0.786 

Kr/Kb 0.626 GPA2/RVA2 -0.714 λg -0.256 

Kr/Kg 0.539 Rg/Rrv -0.632 λrv -0.447 

Notes: r = 0.3126 (p > 0.05), r = 0.4732 (p > 0.01). PVCP meant peak–valley characteristic parameters; CCP meant conventional 
characteristic parameters. 
 

Table 6. Statistics of formulas, R2 and SE between feature parameters and chlorophyll content. 

Feature parameters Regression equation R2 SE 

RVA1 y = 1.282x- 0.143 0.705 0.034 

Kg/Kr y = -0.654x + 0.466 0.640 0.044 

GPA2/RVA2 y = -0.572x + 0.497 0.629 0.045 
Kb y = -1.160x + 0.399 0.623 0.045 

Kg y = -1.199x + 0.456 0.606 0.046 

 

The performance parameters from 350 nm to 1000 nm are listed 
in Table 1. In the current study, the ASD data were interpolated 

into 1 nm from 400 nm to 1000 nm. 

Hyperspectral data acquisition and processing 

 

Before the experiment was performed, the PIS was fixed at an 

optimal height, which was only100 cm from the lens to leaves 

(as shown in Fig.1). To reduce the effects of illumination, two 
halogen light sources were used symmetrically at a 45° angles. 

When the imaging cubes were acquired, the maize leaves were 

placed on a platform with black cloth and moved at a constant 

speed. In addition, three reference targets, a white panel (high 
reflectance), a gray cloth (medium reflectance), and a black 

cloth (low reflectance), with known calibrated spectral 

reflectance were also measured as references for calculating leaf 

reflectance, as detailed by Zhang et al.(2011). Simultaneously, 
non-imaging spectral data were recorded using ASD combined 

with a LI-COR 1800-12 integrating sphere. The spectral 

reflectance of the PIS can be obtained through the experiential 

straight-line method using the following formula: 
 

bDNaρ         (1)

 where a is the mean coefficient; b is the intercept; ρ is the 

targets reflectance; and DN is the digital number of targets.  

 

 

 

Coefficients a and b were regressed using the least square  
method from the spectral values of the white reference panel, 

gray cloth, black cloth and their corresponding DNs of images, 

and were then applied to obtain the spectral reflectance of the 

targets combined with their DNs. The reflectance of ASD was 
calculated using the following formula:  

 

t
t r

r

Rad
R = R

Rad
×        (2) 

        
 

where Rt denotes the target spectral reflectance with the white 

panel as reference, Radt denotes the target radiance acquired by 

the ASD spectrometer, Radr denotes the radiance of the white 
panel acquired by ASD, and Rr is the reflectance of the reference 

white panel. In the current study, reflectance was multiplied by 

100. 
 

Conventional Characteristic Parameters 

 

The traditional characteristic parameters including blue, yellow, 
and red edges are shown in Table 2, and their specific definitions 

can be obtained from a previous study (Li et al., 2010). 
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Fig  4. FDR of spectral reflectance of leaves from different 

layers for PIS and ASD. 
 

 
 

Fig 5 . (a) Predicted model of chlorophyll content 

(n = 42), (b) Validated model of chlorophyll content 

(n = 28) 

 
 

Peak-Valley Characteristic Parameters 

 

Peak–valley characteristic parameters were constructed 
according to the changes in the peaks and valleys of the spectral 

curves (Fig. 2). By fitting the rate of increase of the blue, green, 

and red edges and the rate of decrease of the yellow edge, the 

corresponding slopes were calculated into Kb, Kg, Ky, Kpv, and 
Kr (Table 3). Additionally, the included angles were specified in 

terms of the reflectance peaks and absorption valleys of the 

spectral curves (Table 3). Their specific definitions have been 

explained by Xu et al. (2011). 
 

Measuring Pigment Content 

 

After measuring the corn leaf spectra, the middle part of leaves 
(0.5 g) were immediately cut and soaked in 80% acetone 

solution. The absorbance values of the acetone solution were 

then measured at 663 nm, 645 nm, and 440 nm using a 

spectrophotometer. Finally, the concentrations of chlorophyll a, 
chlorophyll b and chlorophyll a + b were calculated using the 

extinction coefficient at the corresponding wavelength. 

 

Conclusion 

 

The current study extracted peak–valley and traditional 

three-edge parameters using imaging spectral data, and then 

evaluated their abilities to determine chlorophyll content using 
two methods. The accuracy was then verified using typical 

non-imaging spectral data. The conclusions were as follows: 

(1) The use of peak–valley characteristic parameters extracted 

from imaging spectral data is feasible.  

(2) Compared with the traditional three-edge characteristic 

parameters, peak–valley parameters have improved ability to 
reflect chlorophyll content. 

(3) The characteristic parameters, including RVA1, Kg/ Kr, 

GPA2/RVA2, and Kb have higher R2 values, and RVA1 most 

accurately reflected chlorophyll content. Finally, the R2 value of 
the constructed model was 0.705, and the R2 value of the 

validated model was 0.640, with an RMSE value of 0.3039. 
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