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Abstract 

 

Many plant breeding trials often include a large number of genotypes with possibly no repeated field plots. Ineffective control of 

field variation could result in an inflated residual variance and/or biased estimation/prediction of genetic effects. Three hundred thirty 

seven (337) multi-parental spring wheat (Triticum aestivum L.) F2 hybrids were grown in two locations in South Dakota without 

repeated field plots in 2009. Two agronomic traits (grain yield and plant height) were measured.  An augmented additive-dominance 

(AD) model including a sub-block component was proposed for analyzing the data. This augmented AD model was first investigated 

by simulated data followed by actual data analysis. Simulation results showed that the augmented AD models yielded unbiased 

estimates with and without presence of sub-block effect. Actual data analysis revealed that grain yield and plant height were 

significantly influenced by the systematic field variation. Additive effects were significant for grain yield and plant height, and 

dominance effects were significant for plant height. Results also showed that most spring wheat lines developed by South Dakota 

State University breeding program (SD lines) were good general combiners for increasing grain yield and reducing plant height. 

Thus, this augmented AD model can reduce the impact of field variation on estimation and/or prediction of genetic effects. 

 

Keywords: additive-dominance model; experimental design; field variation; spring wheat; variance components. 

Abbreviations: AD_additive-dominance; AED_augmented experimental design; NN_nearest neighbor; ML_maximum likelihood; 

REML_restricted maximum likelihood; MINQUE_minimum norm quadratic unbiased estimation.  

 

Introduction 

 

Genetic data analysis aims to capture useful genetic 

information from field trials that can be used for plant 

improvement. Early generation trials are often focused on 

evaluation of a large number of genotypes where seed and/or 

land availability is limited. Therefore, non-replicated trials 

are generally preferred because the objective of a breeder at 

this stage is limited for selection (Federer, 1956; Federer and 

Crossa, 2012; Lin and Poushinsky, 1983, 1985). Therefore, 

appropriate genetic analysis for early generation trials, 

especially without field replications, is crucial to obtain 

useful information for crop improvement. When a genetic 

experiment is conducted under multiple environments, the 

phenotypic performance of an individual is related to its 

genotypic effect (G), environmental effect (E), and genotype-

by-environment interaction effect (GE). Cockerham (1980) 

proposed a general genetic model to partition the total genetic 

effect (G) that has led to the development of various useful 

genetic models based on the biological meaning associated 

with a trait (Zhu, 1989, 1994; Zhu and Weir, 1994). The 

origin for the development of different genetic models is the 

concept of extendibility.  For example, the additive-

dominance (AD) model (Jenkins et al., 2009; Jenkins et al., 

2006; Wu et al., 2010a) is one of the most popularly used 

genetic models, where the G effect can be partitioned into 

additive (A) and dominance (D) effects. This conventional 

AD model can be further extended to different genetic 

models such as an AD model with cytoplasmic effect (ADC 

model) (Wu et al., 2010b), AD model with maternal effects 

(ADM model) (Zhu, 1994), AD model with additive-by-

additive interaction effects (ADAA model) (Wu et al., 2006b) 

etc. Above mentioned genetic analyses were suitable for  

parents and their bi-parental populations. In some cases, 

some F1 or F2 populations are derived from three or four 

parents in order to increase the possibility of combining more 

desirable alleles into one genotype (Kadariya et al., 2011). 

An AD model works appropriately under a multi-parental 

mating design with repeated observations (Kadariya et al., 

2011). However, the statistical conclusions for multi-

environment experiments are not unknown. Therefore, 

numerical evaluation on data analysis for multi-parent 

crosses under multi-environments will help extend the use of 

such genetic data. On the other hand, these genetic models 

normally require data with replications or a randomized 

complete block (RCB) design, which is commonly used in 

field experiments to control field variation (Cochran and Cox, 

1957). The assumption under an RCB design is that 

experimental units are homogeneous within each block. 

However, the assumption may be violated especially when a 

large number of genotypes are included in one replication. 

Further, partitioning of blocking component (B) as separation 

of field variation has been rarely reported in genetic data 

analysis (Wu et al., 2013; Wu et al., 1998). Federer (1956) 

introduced the class of augmented experimental designs 

(AEDs) to achieve control of variability within each block in 

a practical and efficient manner (Federer, 1956, 1961; 

Federer and Crossa, 2012). These designs are also considered 
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as important alternatives to traditional experimental designs 

when genetic material is limited for replication and/or in the 

presence of many genotypes for testing. In AEDs, local error 

control can be achieved through replication of one or more 

checks or standard genotypes following a traditional 

experimental design. Augmented block designs are one of the 

widely used designs that control systematic field variation in 

one direction (Federer, 1961; Federer and Crossa, 2012). Few 

studies exist in the literature pertaining to the use of 

augmented block designs for screening large numbers of 

genotypes (Elouafi and Nachit, 2004; Kehel et al., 2010). 

Another commonly used approach to control field variation is 

the use of nearest neighbor (NN) based methods (Besag and 

Kempton, 1986; Cullis and Gleeson, 1991; Gleeson and 

Cullis, 1987; Kempton et al., 1994; Wilkinson et al., 1983; 

Williams, 1986). These methods are based on the assumption 

that errors between neighboring plots exhibit a higher 

correlation compared to the remote plots and have proven to 

be more effective than conventional incomplete blocking 

(Wilkinson et al., 1983). However, neither AEDs nor NN 

methods have been commonly addressed with respect to 

partitioning of the total genetic effect. A major limitation of 

the above mentioned studies is the detection of genetic effect 

components. Therefore, direct application of these methods 

in genetic studies may be limited, especially for complex 

genetic studies having GE interactions (Cockerham, 1980; 

Wu et al., 2010a).  Thus, it will be of great help if AEDs or 

NN-based methods can be more fully integrated with 

complex genetic models.  In this study, our objective was 

to propose an augmented AD genetic model from a multi-

parental mating system using a two-location spring wheat 

(Triticum aestivum L.) data set. Our first component was to 

evaluate this extended genetic model with simulated data. 

Our second component was to apply this model to analyze 

two agronomic traits (grain yield and plant height). The 

ultimate goal of this study was to provide a general genetic 

model framework to incorporate systematic field variation to 

improve capturing desirable genetic effects for crop 

improvement. 

 

Results 

 

Because the Briggs and Oxen check genotypes were planted 

in the border of each row at both locations, it was appropriate 

to treat each row as a sub-block (incomplete blocks). Our 

simulations and actual data analysis were based on such a 

structure. The results are reported as follows. 

 

Model evaluations 

 

The data set included F2 unreplicated populations within each 

environment. In addition, parents were not included among 

the field plots. Therefore, appropriateness of this extended 

AD model for the given data structure needed to be evaluated 

through simulations. Even though simulations were carried 

out for various cases, only three representative cases are 

reported in this study (Table 1). The first case assumed zero 

for all the variance components except residuals. This was 

designed to assess Type I error for all variance components. 

In the second set, all variance components except for the sub-

block effect were set at 20 and the variance component for 

sub-block effect was set at zero. This was designed to assess 

the Type I error for the sub-block effect and testing power for 

all the other components. In the third set, pre-defined values 

for all variance components were set at 20 to assess the 

testing power. Two hundred simulations were carried out to 

evaluate the Type-I error and testing power at a nominal 

probability of 0.05. Results showed that each variance 

component estimate was unbiased or slightly biased for both 

the conventional AD model (without sub-block effect in the 

AD model) and augmented AD model when there was no 

sub-block effect (sets 1 and 2 in Table 1). However, the 

conventional AD model yielded more biased estimates 

compared to the augmented AD model when there was sub-

block effect (set 3 in Table 1). Mean square error (MSE) for 

dominance and dominance-by-environment effects was 

higher (set 1 in Table 1) due to no-replication within each 

location.  Testing powers for environment, dominance and 

dominance-by-environment effects were low (set 2 and 3 in 

Table 1) due to no repeated measurements for these F2 

populations. Testing power for these components can be 

improved by increasing the number of environments and with 

repeated plots for genotypes within each environment.  

Overall, both models yielded similar results when the sub-

block variance component was zero and augmented AD 

model yielded more unbiased results when there was sub-

block effect. Therefore, the augmented AD model can be 

considered as a better choice for this given data structure.  
 

Actual data analysis 

 

Both full and reduced models were applied to actual spring 

wheat data analyses. Variance components and proportional 

variance components are listed in Tables 2 and 3. Since 

additive effects, equivalent to general combining ability, are 

more important for plant breeders, they were predicted using 

the adjusted unbiased prediction (AUP) method (Zhu, 1993) 

and are summarized in Table 4.  

 

Variance components 

 

 Estimated variance components associated with full and 

reduced models are listed in Table 2. Results showed that 

sub-block effects significantly influenced grain yield and 

plant height (model I in Table 2). Also, residual variance 

(Ve) decreased by 29% for grain yield and 22% for plant 

height by using the full model (Model I vs Model II in Table 

2). This suggests that field variations affected grain yield and 

plant height and could cause biased results if field variation 

was not controlled. Additive effects were significant for both 

grain yield and plant height. Dominance effects and additive-

by-environment interaction effects were significant only for 

plant height. Proportional additive variance is equivalent to 

narrow-sense heritability. The estimated narrow-sense 

heritability for grain yield was about 28.9% based on the 

conventional AD model while 42.1% on the augmented AD 

model. The estimated narrow-sense heritability for plant 

height was similar for both genetic models (37.9% vs 

38.5%). Therefore, the augmented AD model could improve 

the accuracy of estimation for genetic variance components 

and heritability. However, based on the estimated narrow-

sense heritability for these two traits, selection for these traits 

in advanced generations are recommended.  

 

Additive effects 
 

Additive effects, equivalent to general combining ability 

effects, are important genetic effects for inbred line 

development. Predicted additive effects for grain yield and 

plant height are summarized in Table 4. Thirty six out of 57 

parents had significant additive effects associated with grain 

yield. Twelve parents (00S0262-4W, 2006-10129, 2006-

10130, ‘Danby’, HW010, HW316, MN03119-4, N-33, 

NDSW0601, NDSW0612, S/W COMP.W, and SD06W117)  
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Table 1. Estimated Type-I error, testing power, and mean square error (MSE) for variance components using both conventional and 

extended AD models from 200 simulated data sets based on the spring wheat data structure. 

 
Pre-set 

valuea 
Model Ib Model II 

Biasc MSEd Powere Bias MSE Power 

Set 1 

VE   0 0.07 0.01 0.01 0.08 0.01 0.01 

VA   0 0.44 0.19 0.04 0.45 0.20 0.08 

VD   0 3.38 11.56 0.08 3.34 11.23 0.11 

VAE 0 0.48 0.23 0.07 0.46 0.22 0.08 

VDE 0 4.77 22.96 0.09 4.39 19.51 0.08 

VSB 0 0.16 0.03 0.04 - - - 

Ve  20 0.01 0.01 1.00 0.02 0.01 1.00 

Set 2 

VE   20 0.18 3.46 0.70 0.19 3.42 0.72 

VA   20 0.20 0.35 0.99 0.20 0.34 0.99 

VD   20 -1.53 2.89 0.52 -1.33 2.30 0.51 

VAE 20 -0.24 0.22 1.00 -0.15 0.18 1.00 

VDE 20 0.78 1.58 0.43 0.57 1.26 0.50 

VSB 0 0.18 0.03 0.06 - - - 

Ve  20 0.01 0.01 1.00 0.02 0.01 1.00 

Set 3 

VE   20 -0.56 4.99 0.60 0.45 4.97 0.60 

VA   20 0.64 0.78 0.99 1.32 2.23 0.97 

VD   20 1.81 3.94 0.60 4.55 23.03 0.46 

VAE 20 -0.02 0.15 1.00 3.97 16.02 1.00 

VDE 20 -0.64 1.28 0.44 3.68 16.87 0.31 

VSB 20 0.28 0.19 1.00 - - - 

Ve  20 -0.08 0.02 1.00 14.99 224.69 1.00 
a Pre-set variance component is set at zero to evaluate Type-I error and is set at a non-zero value to assess testing power at 0.05 probability level. 
b Model I refers to extended AD model after including sub-block effect and model II refers to the conventional AD model without sub-block effect. 
c Deviation of mean estimate from the pre-set value 
d Represents Type-I error for pre-set variance component zero and testing power for non-zero pre-set value. 
e Mean square error related to bias and variation. 

 

Table 2. Estimated variance components for grain yield and plant height from both conventional AD model and extended AD 

models. 

Variance 

componenta 
Model Ib Model II 

Grain yield Plant height Grain yield Plant height 

VE 57905.54 **   1.67 * 62669.78 **   2.55 ** 

VA 17755.65 ** 24.04 ** 16375.25 ** 27.93 ** 

VD    4645.55 15.57 ** 16981.24 * 18.69 ** 

VAE    2313.76   6.94 **   3571.75    6.80 ** 

VDE    3668.75   0.00     350.54   0.00 

VSB(E)    7132.56 **   6.64 **           -       - 

Ve  13757.80 ** 15.83 ** 19442.55 ** 20.35 ** 
a Variance components calculated based on F1, VE=𝜎𝐸

2; VA=𝜎𝐴
2; VD=𝜎𝐷

2; VAE=𝜎𝐴𝐸
2 ; VDE=𝜎𝐷𝐸

2 ; VSB=𝜎𝑆𝐵
2 ; and Ve=𝜎𝑒

2. 

b Model I refers to extended AD model after including sub-block effect and model II refers to the conventional AD model without sub-block effect. 

*, ** Significant at 0.05 and 0.01, respectively. 

 

exhibited negative additive effects, indicating that these 

parents are more likely to reduce grain yield if used as 

parents for crossing. Parents 00S0219-10W, 2006-10126, 

‘Glenn’, ND04/3-20 and 20 SD lines (29 SD lines in total) 

exhibited positive additive effects for grain yield. Therefore, 

these parents can be used as general combiners to improve 

grain yield. Thirty seven of 57 parents exhibited significant 

additive effect for plant height. Twenty parents (00S0120-

3W, 00S0262-4W, 98S0113-20-23, HW316, ‘Kelby’, 

‘RB07’ and 14 SD lines) exhibited significant negative 

additive effects for plant height, indicating that they can be 

used as general combiners to reduce the plant height. On the 

other hand, 17 parents (00S0129-10W, 2006-10129, ‘Alice’, 

BC98334-10W-8W, Danby, Glenn, ‘Howard’, HW010, N-

31, N-33, ND04/3-20, NDSW0612, SD06W117, SD3997, 

SD4073, SD98W175-1-14, and ‘Wendy’) exhibited 

significant positive additive effects for plant height, 

indicating that these parents are likely to increase plant height 

if used as parents.  Overall, grain yield and plant height were 

significantly influenced by field variations and this extended 

AD model improved the data analysis by including it in the 

AD model. Genetic effects revealed that some parents, 

especially SD lines, could be used as general combiners for 

improving yield and reducing plant height.  

 

Discussion 

 

Experiments in many plant breeding trials at early stages 

often involve a large number of test entries, which can 

increase the possibility of selecting the desirable genotypes or 

genetic effects. One challenging issue is that some test 

populations could be derived from more than two parents 

such as some F2 populations used in this study. The second 

critical issue commonly associated with these experiments is 

no replication when availability of seed or land is limited. 

This study aimed to target these two issues with the 

applications of appropriate statistical model and 

methodologies. Based on the data structure used in this study,  
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Table 3. Estimated variance components expressed as proportion to the phenotypic variance for two spring wheat traits from the 

extended AD model (model I). 
Variance componenta Grain yield Plant height 

VA/VP 0.42 ** 0.38 ** 

VD/VP 0.11 0.25 ** 

VAE/VP 0.06 0.11 ** 

VDE/VP 0.08 0.00 

Ve/VP 0.33 ** 0.26 ** 
a 

The total variance VP is the sum of VA, VD, VAE, VDE, and Ve.
 *, ** Significant at 0.05 and 0.01, respectively 

 

Table 4. Predicted additive effects for two spring wheat traits from the extended AD model (model I). 

ID Parents Grain yield Plant height 

  Estimate Pvalue Estimate Pvalue 

1 00S0120-3W -33.29 0.29 -4.66 0.00 

2 00S0219-10W 104.29 0.04 2.75 0.01 

3 00S0262-4W -86.74 0.00 -2.83 0.00 

4 02V03*N1545 -26.67 0.47 1.87 0.09 

5 2006-10126 68.97 0.01 0.12 0.98 

6 2006-10129 -180.54 0.00 3.75 0.00 

7 2006-10130 -107.95 0.04 1.69 0.10 

8 98S0113-20-23 -28.62 0.58 -14.46 0.00 

9 ALICE -76.55 0.07 4.62 0.00 

10 BC98334-10W-8W -55.32 0.09 2.73 0.03 

11 Danby -147.29 0.01 4.81 0.00 

12 GLENN 39.58 0.00 1.88 0.00 

13 HOWARD -2.05 0.98 2.57 0.00 

14 HW010 -165.47 0.00 1.79 0.00 

15 HW316 -128.21 0.00 -1.52 0.03 

16 KELBY 35.48 0.07 -2.59 0.01 

17 LOLO 59.46 0.10 0.76 0.77 

18 MN03119-4 -40.53 0.00 -0.74 0.07 

19 MTHW0471 -11.41 0.60 -0.54 0.28 

20 N-31 -43.50 0.18 5.86 0.00 

21 N-33 -76.08 0.00 1.96 0.02 

22 ND04/3-20 37.16 0.01 2.99 0.00 

23 NDSW0601 -136.19 0.03 -1.36 0.72 

24 NDSW0612 -113.75 0.00 1.10 0.05 

25 RB07 -38.32 0.07 -0.87 0.04 

26 S/W COMP.W -49.67 0.00 0.47 0.73 

27 SD02W129 246.84 0.00 0.74 0.86 

28 SD06W117 -230.89 0.00 6.20 0.00 

29 SD3851 36.72 0.01 -0.56 0.23 

30 SD3868 -1.70 0.99 0.47 0.96 

31 SD3900 14.38 0.22 0.43 0.95 

32 SD3942 81.81 0.00 -8.62 0.02 

33 SD3943-21 150.77 0.00 -2.03 0.00 

34 SD3944 147.85 0.00 -1.10 0.00 

35 SD3948 38.17 0.02 -0.40 0.27 

36 SD3956 25.21 0.11 -0.63 0.25 

37 SD3997 -10.46 0.90 3.12 0.00 

38 SD4011 72.00 0.00 -3.19 0.00 

39 SD4018 -17.87 0.45 -2.24 0.00 

40 SD4027 89.50 0.00 -1.26 0.01 

41 SD4032 89.57 0.00 -1.34 0.00 

42 SD4036 52.97 0.00 -0.50 0.19 

43 SD4056 76.23 0.01 2.28 0.10 

44 SD4070 39.24 0.00 -0.61 0.05 

45 SD4073 89.37 0.00 1.72 0.00 

46 SD4076 87.39 0.00 -2.04 0.00 

47 SD4078 139.91 0.00 -4.05 0.00 

48 SD4081 74.34 0.00 -1.45 0.00 

49 SD4085 35.26 0.01 -2.24 0.00 

50 SD4101 26.31 0.02 0.02 0.99 

51 SD4102 14.50 0.30 -2.06 0.00 

52 SD4105 39.90 0.14 -2.15 0.00 

53 SD4106 42.87 0.04 -0.23 0.84 

54 SD98W175-1 68.97 0.01 0.12 0.98 

55 SD98W175-1-14 -50.56 0.43 6.80 0.00 

56 TRAVERSE 12.40 0.83 1.40 0.07 

57 WENDY -12.38 0.85 5.34 0.00 
                                          *, ** Significant at 0.05 and 0.01, respectively. 
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we proposed to use each row as a sub-block because each 

row included one or two common genotypes. Simulation 

showed that when the sub-block component is found to be 

insignificant, it can safely be removed from consideration 

because when there is no significant variation due to sub-

blocks, both the extended AD model (Model I in Table 1) and 

the conventional AD model (Model II in Table 1) perform 

equally well. However, when there was a significant variation 

due to the sub-block component, the extended AD model in 

this study appeared to more desirable because it could yield 

less biased estimation for variance components compared to 

the AD model without including sub-block effects. The 

results were consistent with our previous study where an AD 

model was based on bi-parental crosses under a generalized 

lattice experimental design (Wu et al., 2013). This study was 

generalized from our previous study with extension to multi-

parental cross data. In our previous study, a generalized 

lattice experimental design was applied because the field 

plots were arranged rectangularly; however, the field layout 

in this study did not allow the use of a generalized lattice 

design. With the applications of linear mixed model 

approaches, the simulated results for the AD model derived 

from bi-parental and/or multi-parental data structures were 

consistent (Wu et al., 2013). The actual data analysis showed 

that the augmented AD model was more preferred over the 

conventional AD model. Therefore, the augmented AD 

model can be recommended for a general use. Though 

augmented AD models such as used in previous this study 

(Wu et al., 2013) and this study could provide better results 

compared to the conventional AD models, it must be pointed 

out that testing power for dominance effects and dominance-

by-environment interaction effects is relatively low compared 

to additive effects without field replications. To improve 

testing power for dominance effects and their interactions 

with environments, repeated field plots are highly 

recommended. 

 

Materials and Methods 

 

Plant materials and experiment 

 

The data set used in this study included 334 F2 spring wheat 

populations generated from 57 parents. Among the 334 F2 

populations, 269 were obtained from bi-parental crossing, 49 

were obtained from tri-parental crossing and 16 were 

obtained from tetra-parental crossing. All 334 F2 populations 

were grown in 2009 at Aurora, SD, and 323 F2 populations 

were grown in Watertown, SD. In addition to the F2 

populations, ‘Briggs’ and ‘Oxen’ were grown as comparative 

checks and were repeated 21 and 20 times in Aurora and 

Watertown, respectively. In addition, Briggs was used as a 

plot filler on eight occasions in each location and ‘Chris’ was 

used 3 times in Aurora and 16 times in Watertown. None of 

the genotypes Briggs, Oxen, or Chris were used as parents for 

F2 populations.  All F2 populations were planted at each 

location without replications. Field layout in Aurora was a 

rectangular arrangement of plots with 20 rows and 21 

columns. Individual plots were planted to measure 1.5 by 4.6 

m consisting of 7 rows (21.4 cm row spacing). Prior to 

heading, however, all plots were trimmed to a final length of 

4.1 m. Briggs was planted twice within each row in columns 

1 and 21,  while Oxen was planted in each row at 11th 

column. All the F2 populations and fillers (Briggs and Chris) 

were randomly planted in the remaining plots. Layout in 

Watertown was similar to Aurora except the last two rows 

(19 & 20) were planted parallel to rows 1 and 2 due to space 

constraint. 

Statistical model  

 

The linear model presented in eq. (1) is a general genetic 

model. Based on the spring wheat data structure and field 

layouts used in this study, complex genetic models can be 

derived from eq. (1).  

 𝑦 = 𝜇 + 𝐸 + 𝐺 + 𝐺𝐸 + 𝑆𝐵(𝐸) + 𝑒                      (1) 

Where, µ represents the population mean, E represents the 

environmental effect, G represents the total genotypic effect, 

GE represents genotype-by-environment interaction effect, 

and SB(E) represents the sub-block effect  within each 

environment. A random error is represented by e. A sub-

block can be either a single or multiple rows or columns or a 

combination of rows and columns dependent on field layout 

and/soil conditions. It is recommended that at least one 

control line be embedded in each sub-block and the plots 

within each sub-block are more similar than between sub-

blocks. If a sub-block includes a complete/incomplete 

replication of check genotypes, the general model in eq. (1) 

refers to augmented block designs. Moreover, if a RCB 

design is employed, the block effect can be integrated as a 

sub-block effect including a complete replication of 

genotypes. Therefore, the model in eq. (1) applies to a more 

generalized experiment including the experimental design 

used in this study.  In an AD genetic model used in this 

study, the genetic effect (G) is partitioned into additive (A) 

and dominance (D) effects (Cockerham, 1980; Jenkins et al., 

2009; Jenkins et al., 2006). No other genetic effects are 

assumed. In the same manner, the GE effect can be 

partitioned into additive-by-environment (AE) and dominant-

by-environment (DE) effects. The total G effect in eq. (1) is 

different for parents and F1 or F2 generations derived from a 

cross of two, three, and four homozygous lines. For 

generalization, assume that female is a F1 cross of parents j 

and k; and male is a F1 cross of parents l and m. Generalized 

additive-dominance (AD) model for the cross of 𝐹1(𝑗𝑘) and 

𝐹1(𝑙𝑚) in the ith sub-block nested with in hth environment can 

be expressed as: 

𝐹1: 𝑦ℎ𝑖𝑗𝑘𝑙𝑚(𝐹1) = 𝜇 + 𝐸ℎ + 𝑆𝐵𝑖(ℎ) +
1

2
(𝐴𝑗 + 𝐴𝑘 + 𝐴𝑙 + 𝐴𝑚)

+
1

4
(𝐷𝑗𝑙 + 𝐷𝑗𝑚 + 𝐷𝑘𝑙 + 𝐷𝑘𝑚)

+
1

2
(𝐴𝐸ℎ𝑗 +  𝐴𝐸ℎ𝑘 + 𝐴𝐸ℎ𝑙 + 𝐴𝐸ℎ𝑚)

+
1

4
(𝐷𝐸ℎ𝑗𝑙 + 𝐷𝐸ℎ𝑗𝑚 + 𝐷𝐸ℎ𝑘𝑙 + 𝐷𝐸ℎ𝑘𝑚)

+ 𝑒ℎ𝑖𝑗𝑘𝑙(𝐹1)                              (2) 

𝐹2:    𝑦ℎ𝑖𝑗𝑘𝑙𝑚(𝐹2) = 𝜇 + 𝐸ℎ + 𝑆𝐵𝑖(ℎ)

+
1

2
(𝐴𝑗 +  𝐴𝑘 + 𝐴𝑙 + 𝐴𝑚)

+
1

8
(𝐷𝑗𝑗 + 𝐷𝑘𝑘 + 𝐷𝑙𝑙 + 𝐷𝑚𝑚+𝐷𝑗𝑙 + 𝐷𝑘𝑙

+ 𝐷𝑗𝑚 + 𝐷𝑘𝑚)

+
1

2
(𝐴𝐸ℎ𝑗 +  𝐴𝐸ℎ𝑘 + 𝐴𝐸ℎ𝑙 + 𝐴𝐸ℎ𝑚)

+
1

8
(𝐷𝐸ℎ𝑗𝑗 + 𝐷𝐸ℎ𝑘𝑘

+ 𝐷𝐸ℎ𝑙𝑙 + 𝐷𝐸ℎ𝑚𝑚+𝐷𝐸ℎ𝑗𝑙 + 𝐷𝐸ℎ𝑘𝑙

+ 𝐷𝐸ℎ𝑗𝑚 + 𝐷𝐸ℎ𝑘𝑚)

+ 𝑒ℎ𝑖𝑗𝑘𝑙(𝐹2)                                 (3) 

where 𝜇, 𝐸ℎ, and 𝑆𝐵𝑖(ℎ) were defined as above. 

          𝐴𝑗 (𝐴𝑘, 𝐴𝑙 , 𝐴𝑚) is the additive effect;  

            𝐷𝑗𝑗 (𝐷𝑘𝑘, 𝐷𝑙𝑙 , 𝐷𝑗𝑘 , 𝐷𝑗𝑙 , 𝐷𝑘𝑙 , 𝐷𝑗𝑚, 𝐷𝑘𝑙) is the dominance  

effect; 

          𝐴𝐸ℎ𝑗 (𝐴𝐸ℎ𝑘 , 𝐴𝐸ℎ𝑙 , 𝐴𝐸ℎ𝑚) is the additive-by-

environment interaction (AE) effect; 
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𝐷𝐸ℎ𝑗𝑗 (𝐷𝐸ℎ𝑘𝑘, 𝐷𝐸ℎ𝑙𝑙 , 𝐷𝐸ℎ𝑗𝑘 , 𝐷𝐸ℎ𝑗𝑙 , 𝐷𝐸ℎ𝑘𝑙 , 𝐷𝐸ℎ𝑗𝑚, 𝐷𝐸ℎ𝑘𝑙)  is 

the dominance-by-environment interaction (DE) effect, 

respectively.  

The eq.s (2) and (3) can be converted to different mating 

designs.  For example, if j=k=l=m, then the AD model in 

eq.s (2) and (3) becomes an AD model for parents. If j=k and 

l=m, then the above equations are for a bi-parental cross. If 

j=k and m≠l or j≠k and m=l, then these two equations are for 

a tri-parental cross. If j≠k and m≠l then the above equations 

represent an AD model for tetra-parental cross. 

 

Methodology 

 

There are three commonly used linear mixed model 

approaches: maximum likelihood (ML), restricted maximum 

likelihood (REML), and minimum norm quadratic unbiased 

estimation (MINQUE) (Hartley and Rao, 1967; Rao, 1971; 

Searle et al,. 1992). Since MINQUE approach does not 

require iterations (Rao, 1971), it has less computational load 

and it was used in this study to perform simulations and the 

actual data analyses. MINQUE requires prior values to 

estimate variance components. Since different prior values 

yield similar variance component estimations (Zhu, 1989), 

we set  𝛼𝑢 = 1 (𝑢 = 1,2, … 7) for both simulation study and 

actual data analysis.  In addition to the variance components, 

genotypic effects were predicted using the adjusted unbiased 

prediction (AUP) approach (Zhu, 1993). A g-fold non-pseudo 

jackknife technique described by Wu et al. (2013) was 

applied to calculate the standard deviations and to conduct 

statistical tests for these parameters of interest. Our various 

simulations showed that g=10 is an ideal choice for this 

study to control Type-I error and to obtain desirable testing 

power. All results presented in this study were based on using 

five repetitions of this 10-fold jackknife process and 

produced very consistent results among replications. Thus, 

this non-pseudo jackknife technique was employed to detect 

significance for each parameter. Based on the data structure, 

this study included two important components. The first was 

a model evaluation for the spring wheat data set using three 

parameter configurations (Table 1). Bias, empirical Type I 

error, testing power, and mean square error (MSE) (Wu et al., 

2006a; Wu et al., 2006b) were calculated for each variance 

component based on 200 simulated data sets. The second 

component was the actual data analysis for two agronomic 

traits (grain yield and plant height). All data analyses were 

completed using R-software and GenMod (an R-package) 

(Wu, 2012) which can be used for various genetic data 

analyses. 

 

Conclusions 

 

In this study, we proposed an augmented AD genetic model 

for multi-parental spring wheat F2 hybrids with control of 

field variation when repeated field plots for F2 hybrids were 

not available in two locations in South Dakota. Simulation 

results showed that the augmented AD models yielded 

unbiased estimates with and without presence of field row 

effect and can be recommended for a general use. Augmented 

AD model analysis revealed that grain yield and plant height 

were significantly influenced by the systematic field 

variations and could improve estimation of heritability for 

these traits. The results also showed that most spring wheat 

lines developed by South Dakota State University breeding 

program were good general combiners for increasing grain 

yield and reducing plant height. Thus, this augmented AD 

model can provide more accurate genetic information for 

crop improvement. 
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