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Abstract  

 

A greenhouse research was conducted to evaluate the ameliorative effects of zinc application on soybean photosynthetic parameters, 
leaf relative water content (RWC), relative electrolytic leakage (REL), chlorophyll contents (Chl), and leaves and roots lipid 
peroxidation rate under salinity stress (0, 33, 66 and 99 mM NaCl). The results revealed that zinc application on plants exposed to 
salinity stress caused a noticeable enhancement of photosynthesis (Pn) by 110%, water use efficiency (WUE) by 54%, mesophyll 
efficiency (ME) by 98% and quantum yield (Φ) by 102% compared with plants exposed to salinity stress alone. The chlorophylls a, b 
and total chlorophyll content and relative water content were significantly reduced with increasing NaCl salinity. The highest REL 
and lipid peroxidation were occurred at the highest salinity level. 
  
Keywords: Chlorophyll, photosynthesis, salinity stress, soybean, transpiration, zinc. 
Abbreviations: Ci: internal CO2 concentration, Tr: transpiration rate, Pn: net photosynthetic rate, WUE: water use efficiency, ME: 
mesophyll efficiency, Φ:  quantum yield, RWC: leaf relative water content, REL: relative electrolytic leakage, Chl: chlorophyll.  
 
Introduction 

 

Salinity is one of the major environmental stresses affecting 
the performance of many crop plants. Salinity has various 
effects on plant physiological processes such as increased 
respiration rate and ion toxicity, decreased leaf net CO2 
assimilation rate (Hajlaoui et al., 2006), efficiency of 
photosynthesis (Ashraf and Shahbaz, 2003; Kao et al., 2006; 
Sayed, 2003), and membrane disruption (Marschner, 1986; 
Gupta et al., 2002). Decreased photosynthetic rates may 
result from the closure of stomata and decreased mesophyll 
conductance, induced by osmotic stress, or from salt-induced 
damage to the photosynthetic apparatus (Flexas et al., 2004). 
The first step of photosynthetic CO2 assimilation is catalyzed 
by ribulose-1,5-bisphosphate carboxylase/oxygenase 
(RuBPCO) in C3 plants, and by phosphoenolpyruvate 
carboxylase (PEPC) in C4 plants. Salinity enhances the 
oxygenase activity of RuBPCO, while it curtails its 
carboxylase activity (Sivakumar et al., 2000). Salinity often 
leads to decrease in chlorophyll contents and photosynthetic 
rates (Lee et al., 2004; Kao et al., 2006). It can seriously 
change the photosynthetic carbon metabolism, leaf-
chlorophyll content, and photosynthetic efficiency (Seeman 
and Critchley, 1985; Sharkey et al., 1985). Zinc supply could 
mitigate the adverse effects of NaCl (Parker et al., 1992). 
Inside the chloroplasts proteolytic activities are dependent on 
zinc, for example, the repair processes of photosystem II 
through turning over photo-damaged protein (Bailey et al., 
2002). The reduction in chlorophyll level and the destruction 
of chloroplast ultra structure led to decrease in photosynthesis 
in Zn-deficient plants. Zinc is a constituent of other enzymes 
involved in photosynthesis, including ribulose-1,5-
bisphosphate carboxylase (RuBPC), which has been found to 
catalyse the initial step of carbon dioxide fixation in 
photosynthesis (Brown et al., 1993). Zinc deficiency is now 

recognized as one of the most critical micronutrient 
deficiency in plants grown on calcareous, saline, and sodic 
soils with high pH values. It is well known that zinc is an 
important component of many vital enzymes, and a structural 
stabilizer for proteins, membrane, and DNA-binding proteins 
(Aravind and Prasad, 2004). In addition, zinc plays a 
fundamental role in several critical cellular functions such as 
protein metabolism and IAA metabolism (Marschner, 1995).  
   Soybean is a major food and oil crop in the most countries 
where salinity problems exist or might develop. Large areas 
of formerly arable land are being removed from crop 
production every year due to increasing soil salinity. 
Therefore, it is necessary to evaluate the physiological 
responses of crop plants to salt stress in order to develop 
appropriate strategies to sustain food production under 
adverse environmental conditions. Leaf photosynthetic 
capacity is suggested to be a key parameter determining crop 
yield (Jiang et al., 2002; Zhang et al., 2007). Furthermore, 
zinc can noticeably enhance photosynthesis parameters and 
chlorophyll content under saline conditions. However, the 
effects of zinc application on physiological performance of 
soybean are poorly understood. Thus, this research was 
aimed to evaluate this subject with considerable details. 
 

Results and discussion 

 

Photosynthesis parameters 

 
According to the results of this study, net photosynthesis 
(Pn), internal CO2 concentration (Ci), water use efficiency 
(WUE), mesophyll efficiency (ME), and quantum yield (Φ) 
significantly decreased with increasing salinity (Figure 1). 
Salinity also significantly reduced transpiration rate (Tr), 
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compared with control (Figure 1B). But, during increasing 
salinity level, the differences between each level compared 
with the next one were mostly not significant (Figure 1B). 
Similar results were reported by Flexas et al. (2004) for C3 
plants. Salinity causes a range of deleterious effects such as 
inhibition of photosynthesis, pigment synthesis, damage to 
plasma membrane permeability, and other metabolic 
disturbances (Sasaki et al., 1998; Karimi et al., 2005). 
Reduction in Pn may result from the restriction on CO2 
diffusion into the chloroplast, via limitations on stomatal 
opening mediated by shoot and root-generated hormones, and 
on the mesophyll transport of CO2, to alterations in leaf 
photochemistry and carbon metabolism (Flexas et al., 2004). 
Inhibition of photosynthetic capacity may also result from a 
reduced efficiency of ribulose-1,5-bisphosphate (RuBP) 
carboxylase, or a reduction of RuBP regeneration capacity, or 
from the sensitivity of PSII to NaCl (Ball and Anderson, 
1986). The Zn addition under salt stress showed an obvious 
enhancement of Pn, WUE, ME, and Φ through increasing 
chlorophyll content of the soybean plants. Reduction of WUE 
under salinity stress without zinc application was due to a 
decline in Pn (Figure 1E). The reduction in Tr and Ci can be 
related to stomata closure (Lee et al., 2004). Reduction in ME 
may be also related to a decline in Pn (Figure 1A). Zn 
application on the plants exposed to salt stress caused 
noticeable enhancement of Pn, WUE, ME, and Φ compared 
with the plants exposed to salt stress alone (Figure 1A, D, E 
and F). Zn, acting as an inhibitor on hyperactive 
polarization -activated inward anion/Cl- channels, may be 
beneficial for reducing the Cl- absorption and enhancing the 
NO3

- uptake to plants leaves exposed to salt stress 
(Yamaguchi and Blumwald, 2005). In photosynthesis, 
carbonic anhydrase (CA) is a Zn-containing enzyme that 
catalyzes the reversible conversion of carbon dioxide and 
water into carbonic acid, and requires Zn for its catalytic 
activity. Therefore, carbonic anhydrase employs a two-step 
mechanism: at in the first step, there is a nucleophilic attack 
of a zinc-bound hydroxide ion on carbon dioxide; at in the 
second step, the active site is regenerated by the ionization of 
the zinc-bound water molecule and the removal of a proton 
from the active site (Lindskog, 1997). Zn enhancement can 
be very beneficial for plants in order to facilitate the supply 
of CO2 from the stomatal cavity to the site of CO2 fixation 
(Sasaki et al., 1998). Furthermore, zinc is a constituent of 
other enzymes involved in photosynthesis, including 
ribulose-1, 5-biphosphate carboxylase (RuBPC), which has 
been found to catalyze the initial step of carbon dioxide 
fixation in photosynthesis and has been found in navy beans, 
barley, rice, and pearl millet (Brown et al., 1993). 
 

Leaf chlorophyll content 
 

Chlorophylls a, b, and a+b content of leaves were 
significantly decreased as NaCl salinity increase (Table 2). 
Similar result was reported by Hasaneen et al. (2009) for 
Lactuca sativa Plant. This deduction was greater in 
treatments without Zn application. There were no significant 
differences among the treatments in the ratio of Chl a/b. 
Salinity decreased nitrogen availability which could be one of 
the reasons for decreased chlorophyll content (Parashar and 
Verma, 1993). The reduction of total chlorophyll content was 
probably related to the enhanced activity of the enzyme 
chlorophyllase (Reddy and Vora, 1986) and inducing the 
destruction of chloroplast structure and the instability of 
pigment protein complex (Singh and Dubey, 1995). Plants 
treated with NaCl and Zn had significantly greater pigment 

contents than those exposed to salt stress alone. Zn probably 
maintains chlorophyll synthesis through sulphydryl group 
protection, a function primarily associated with Zn (Cakmak, 
2000). Moreover, it participates in the synthesis of 
chlorophyll (Li et al., 2006). 
 

Relative water content (RWC) 

 
RWC significantly was decreased with increasing salinity. 
Nevertheless, when plants were subjected to different salt 
treatments along with zinc, the relative water content 
significantly improved (Table 3). The relative water content 
of non-salinized plants grown either in presence or in absence 
of zinc remained relatively at high levels (Table 3). The 
decrease in leaf RWC could be related to low water 
availability under stress conditions (Shalhevet, 1993), or to 
root systems, which are not able to compensate for water lost 
by transpiration through a reduction of the absorbing surface 
(Gadallah, 2000). Salt stress induced a reduction in the 
relative water content of the leaves, which indicates a loss of 
turgor that resulted in limited water availability for cell 

extension process (Katerji et al., 1997). Zinc may participate 

in stomatal regulation due to its role in maintaining 
membrane integrity. Sharma et al., (1995) observed a 
decrease in the K+ content of guard cells in non-zinc 
application plants. This may be linked to enhanced K+ efflux 
relative to influx, through leaky cell membranes, as absence 
zinc reduces membrane integrity. However, the specific role 
of zinc in stomata regulation requires further investigation. 
Generally, when stomatal closure is induced by salinity 
stress, there is a near constancy in leaf water use efficiency as 
the reduction in transpiration is slightly greater than a 
reduction in net photosynthesis (Figure 1A). However, no 
zinc application caused lower Pn and WUE. The data 
indicate that absence zinc and salinity stress, plants not only 
use less available water, but also the water transpired is used 
less efficiently.  
 
Relative electrolytic leakage (REL) and Lipid peroxidation 

rate 
     
The REL of the leaf tissue was significantly increased as 
salinity increased. The highest REL was observed under 99 
mM NaCl conditions. REL was reduced with Zn application, 
compared to no Zn application treatments (Table 3). The 
oxidative damage was observed as MDA content, which is a 
product of lipid peroxidation increased during salinity 
treatment. Peroxidation of membrane lipids is an indication 
of membrane damage and leakage under salt stress conditions 
(Katsuhara et al., 2005). MDA is the decomposition product 
of polyunsaturated fatty acids of membranes under stress. 
The rate of lipid peroxidation level in terms of MDA can, 
therefore, be used as an indication to evaluate the tolerance of 
plants to oxidative stress as well as the sensitivity of plants to 
salinity stress (Jain et al., 2001). The results presented in 
Table 3 clearly show that in both leaf and root, MDA is 
influenced by salt stress as leaf and root MDA was higher 
under saline conditions, compared to control. Variations in 
MDA contents have been found in rice (Tijen and Ìsmail, 
2005), cotton (Diego et al., 2003) cultivars differing in salt 
tolerance, and in two alfalfa cultivars under salt stress (Wang 
et al., 2005). Probably it was connected with the decrease in 
water potential just from the beginning of the severe salt 
stress, which might have limited H2O2 diffusion from the 
place of its generation.  Together  with  higher  hydration   of  
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 Table 1. Some physical and chemical properties of the soil used in the experiments. 

K P Mg Zn Mn Fe Cu Texture pH 
 

EC (dSm-1) 
 (mg kg-1soil) 

Sandy clay loma 7.82 0.038 281  17.73  191.3 0.466  6.654  07.27 0.726 
 
 

Table 2. Total chlorophyll concentration (T Chl ), Chlorophyll a (Chl a), Chlorophyll b (Chl b) (mg g−1 FM) and Chl a /Chl b 

ratio in soybean leaves under different salinity levels with and without Zn application.  
Treatments Chl a Chl b Chl a/Chl b ratio T Chl 
NaCl levels (mM) 
without Zinc 

    

0 1.13 ± 0.19a 0.52 ± 0.11a 2.19 ± 0.09ab 1.60 ± 0.30a 
33 0.36 ± 0.09bc 0.17 ± 0.04b 2.11 ± 0.22b 0.54± 0.13c 
66 0.28 ± 0.02c 0.11 ± 0.01b 2.38 ± 0.04ab 0.40 ± 0.03d 
99 0.22 ± 0.04c 0.09 ± 0.008b 2.31 ± 0.24ab 0.32 ± 0.04e 
NaCl levels (mM) 
along with Zinc 

    

0 1.29 ± 0.10a 0.59 ± 0.07a 2.18 ± 0.09ab 1.89 ± 0.17a 
33 0.85 ± 0.21ab 0.36 ± 0.04ab 2.37 ± 0.03ab 1.21 ± 0.30b 
66 0.91 ± 0.06ab 0.33 ± 0.04ab 2.85 ± 0.42ab 1.24 ± 0.04b 
99 0.86 ± 0.38ab 042 ± 0.23ab 2.31 ± 0.27ab 1.29 ± 0.62ab 
Each value is the mean (± SE) of three replicates (Duncan’s test, P ≤ 0.05). 

 
 
tissues, H2O2 migrates more easily within a cell and reacts 
with some cell compounds resulting in lipid peroxides 
formation (Halliwell and Gutteridge 1999). However, MDA 
was significantly reduced under NaCl+Zn treatments, 
compared with NaCl treatments without zinc application. In 
present work, zinc application compensated Zn shortage in 
plant (data are not shown) and reduced the deleterious effects 
of salinity on Pn, WUE, ME, Φ, Chl, RWC, REL, and MDA 
in soybean (Figure 1and Tables 2, 3). The principal role of 
zinc in preserving the integrity of cell membranes lay in its 
ability to protect membrane proteins and lipids from the 
destructive effects of superoxide radicals and their 
derivatives produced by redox reactions within the cell 
(Cakmak and Marschner, 1988). Zn can also interfere with 
reactive oxidative species (ROS) produced by the membrane-
bound NADPH oxidase, and thus represents an excellent 
protective antioxidant against the oxidation of several vital 
cell components such as chlorophyll, membrane lipids, and 
proteins (Cakmak 2000). 
 

Materials and methods 

 

Plant material and growth conditions  

 

The experiments were conducted in 2009 at the greenhouse 
of the Faculty of Agriculture, University of Kurdistan, Iran. 
Some physical and chemical properties of the soil are given 
in Table 1. The soil samples were air-dried, crushed to pass 
through a 2-mm sieve, and mixed with sand at 2:1 ratio. Then 
zinc was combined thoroughly with soil at a rate of 10 mgkg-

1 as ZnSO4.7H2O. Each 4-L plastic pot was filled with 3.5 kg 
zinc treated soil. The certified seeds of soybean (cv. 
Williams) were obtained from Agricultural Research Center 
of Kurdistan, Iran. These seeds were surface-sterilized with 
0.1% MgCl2 solution for 5 min and washed thoroughly five 
times with distilled water. The experiment was carried out 
using a complete randomized design with three replications. 
Treatments applied in four NaCl levels (0, 33, 66, and 99 
mM) with and without zinc application. The pots were kept 

under natural photoperiod and watered regularly. Light 
duration was about 13 h. Temperature and relative air 
humidity were 27 ± 3ºС and 60 ± 5% respectively. The 
salinity treatments were applied when plants were 4 weeks 
old (three nodes on the main stem with fully developed 
leaves beginning with the unifoliate nodes) and maintained 
until final harvest. Ten leaves on the above one-half to one-
third of the stem were harvested for the evaluation of the 
experimental parameters.  
 

Net photosynthesis rate  
 

Net photosynthesis (Pn) and transpiration (Tr) rates and 
internal CO2 concentration (Ci) were measured on a fully 
expanded youngest leaf of each plant using an open system 
LCA-4 ADC portable infrared gas analyzer (Analytical 
Development Company, Hoddesdon, Herts, England), 
Measurements were performed from 09:30 to 11:30 A.M. 
with the following specifications and adjustments: leaf 
chamber area was fixed at 6.25 cm2, ambient CO2 
concentration (Cref) 295.35 µmol mol-1, temperature in leaf 
chamber in the range of 28.67–30.24◦C, leaf chamber gas 
flow rate (V) of 4.20–4.26 cm3 s-1, molar flow of air per unit 
leaf area (Us) of 404.8 mmol m2 s-1, ambient pressure (p) of 
99.9 kPa and PAR at leaf surface (Qleaf) of 1100-1453 µmol 
m-2 s -1. All the analyses were carried out using the middle 
trifoliate of the third expanded trifoliate leaf from the apex. 
Water use efficiency and mesophyll efficiency were 
calculated using the formula of Ashraf et al., (2002). The 
value of quantum yield (Φ) was calculated according to de 
Palma (1996). 
 

Leaf chlorophyll content 
 

For chlorophyll determination, the fifth fully expanded leaves 
were detached from the plants after the salinity treatment. 
Prior to extraction, fresh leaf samples were cleaned with 
deionized water to remove any surface contamination. Fresh 
leaf samples (1 g) were ground in 90% acetone using a pestle  
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Fig 1. Means of A: photosynthesis rate (Pn), B: transpiration rate (Tr), C: internal CO2 concentration (Ci), D: water use efficiency 
(WUE), E: mesophyll efficiency (ME) and F: Quantum yield (Ф) in leaves of soybean under NaCl stress (0, 33, 66, and 99 mM 
NaCl) with and without Zn application. Each value is the mean (± SE) of three replicates (Duncan’s test, P ≤ 0.05). 
 
 
 
and mortar. The absorbance was measured using a 
UV/visible Shimadzu 160 A spectrophotometer, and 
chlorophyll content were calculated using the equation 
proposed by Strain and Svec (1966). 
 

Relative water content (RWC) 

 
Relative water content (RWC) of leaves was measured at 
stage of pod formation. Twenty healthy leaf discs of 1 cm 
diameter were cut from the plants using a leaf punch. RWC 
was calculated as: (FM - DM)/(TM - DM) × 100, where FM 
is the fresh mass, TM is the mass after rehydrating samples 
for 24 h by soaking the leaves in water, and DM is the dry 
mass obtained after oven-drying at 70°C for 36 h. 
 

 

 

 

Relative electrolytic leakage (REL) 

 
Ten leaf discs (5 mm2) from the young fully expanded leaves 
were placed in 50 mL glass vials, rinsed with distilled water 
to remove electrolytes released during leaf disc excision. 
Vials were then filled with 30 mL of distilled water and 
allowed to stand in the dark for 24 h at room temperature. 
Electrical conductivity (EC1) of the bathing solution was 
determined at the end of the incubation period. Vials were 
heated in a temperature-controlled water bath at 95ºC for 20 
min and then cooled to room temperature and the electrical 
conductivity (EC2) was again measured. The REL was 
calculated as REL = (EC1/EC2) × 100 (Shi et al., 2006). 
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Table 3. Amounts of MDA in leaves and roots, RWC, and REL of soybean subjected to different NaCl treatments (0, 33, 66 and 
99 mM) with and without Zn application. 

Treatments Leaf MDA 

(nmol MDA g−1 FM) 

Root MDA 

(nmol MDA g−1 FM) 

RWC 

(%) 
REL 

(%) 

NaCl levels (mM) 
without Zinc 

    

0 2.58 ± 1.21d
 2.07 ± 0.61c

 70.4 ± 1.56b
 16.0 ± 2.92e

 

33 9.93 ± 2.42bc
 8.09 ± 2.49ab

 57.3 ± 1.56d
 32.4 ± 4.26c

 

66 15.3 ± 0.11a
 10.0 ± 0.42a

 49.5 ± 5.48e
 58.2 ± 2.04b

 

99 16.0 ± 0.89a
 12.1 ± 4.22a

 38.9 ± 6.94e
 65.5 ± 4.92a

 

NaCl levels (mM) 
along with Zinc 

    

0 3.72 ± 1.18d
 1.29 ± 0.41c

 76.4 ± 0.69a
 12.3 ± 0.47f

 

33 6.30 ± 2.07cd
 4.12 ± 0.85bc

 69.1 ± 0.26b
 24.3 ± 1.15d

 

66 19.1 ± 1.31bc
 3.67 ± 0.25bc

 68.8 ± 1.20b
 23.4 ± 2.91d

 

99 11.8 ± 1.18ab
 4.19 ± 0.836bc

 63.9 ± 2.06c
 20.2 ± 5.69de

 

Each value is the mean (± SE) of three replicates (Duncan’s test, P ≤ 0.05). 
 

 

Lipid peroxidation rate 

 
Oxidative damage to leaf lipids, resulting from salt stress, 
was estimated by the content of total 2-thiobarbituric acid 
reactive substances (TBARS) expressed as equivalents of 
malondialdehyde (MDA). TBARS content was estimated 
using the method of Cakmak and Horst (1991) with some 
modifications. Fresh leaf samples (0.2 g) were ground in 5ml 
of 0.1% (w/v) trichloroacetic acid (TCA) at 4ºC. Following 
the centrifugation at 12000×g for 5 min, an aliquot of 1ml 
from the supernatant was added to 4 ml of 0.5% (w/v) 
thiobarbituric acid (TBA) in 20% (w/v) TCA. Samples were 
heated at 90◦C for 30 min. Thereafter, the reaction was 
stopped in ice bath. Centrifugation was performed at 
10000×g for 5 min, and absorbance of the supernatant was 
recorded at 532 nm on a spectrophotometer (Model Camspec  
M330 UV/Vis) and corrected for non-specific turbidity by 
subtracting the absorbance at 600 nm. The following formula 
was applied to calculate MDA content using its absorption 
coefficient (ε) and expressed as nmol MDA g−1 fresh mass: 
MDA (nmol g-1 FM) = [(A532-A600) ×V×1000/ε] ×W 
Where, ε is the specific extinction coefficient 
(=155mMcm−1), V is the volume of crushing medium, W is 
the fresh weight of leaf, A600 and A532 are the absorbance at 
600 nm and 532 nm wavelength respectively. 
 

Statistical analysis 

 
Analysis of variance was performed using the SAS software 
(Ver. 9.1). The data were presented as the means for each 
treatment (n = 8). Means were compared using the Duncan 
test at the 5% probability level. 
 
Conclusion 

 
In summary, these results demonstrated different roles of Zn 
in decreasing the effects of salt -stress on soybean. Zn may 
not act as its own direct nutritional function on soybean under  
salinity stress, but indirectly act as a scavenger of ROS for 
mitigating the injury on bio-membranes (including plasma 
membrane, chloroplast membrane, thylakoid membrane, and 
so on) (Cakmak 2000). 
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