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Abstract 

 

Salinity stress limits crop yield affecting plant growth and restricting the use of land. As world population is increasing at alarming 

rate, agricultural land is shrinking due to industrialization and/or habitat use. Hence, there is a need to utilize salt affected land to 

meet the food requirement. Although some success has been achieved through conventional breeding but its use is limited due to 

reproductive barrier and scarcity of genetic variations among major crops. The genetic engineering has proven a revolutionary 

technique to generate salt tolerant plants as one can transfer desired gene from any genetic resource and/or alter the expression of 

existing gene(s). There are examples of improved salinity tolerance in various crop plants through the use of genetic engineering. 

However, there is a further need of improvement for successful release of salt tolerant cultivars at field level. In this review, we have 

given a detailed update on production of salt-tolerant plants through genetic engineering. Future prospects and concerns, along with 

the importance of novel techniques, as well as plant breeding are also discussed.  

 

Keywords: Helicases; Ion transporter; Lea proteins; Osmoprotectants; Salinity stress; Transcription factors. 

Abbreviations: DIGE-differential in gel electrophoresis; GB-glycine betaine; MAPK- mitogen activated protein kinase; QTL- 

quantitative trait loci; ROS- reactive oxygen species; TILLING- targeted induced local lesions in genome.  

 

Introduction 

 

Plants are subjected to various abiotic stresses such as low 

temperature, salt, drought, floods, heat, oxidative stress and 

heavy metal toxicity during their life cycle. Among all this, 

salinity is the most typical abiotic stress (Mahajan and Tuteja 

2005). Salinity has negative impact on agricultural 

productivity affecting plant growth and restricting the use of 

land. It is estimated that 6% of the world’s total land and 

20% of the world’s irrigated areas are affected by salinity 

(Unesco Water Portal 2007). World population is increasing 

at an alarming rate and is supposed to reach nine billion by 

2050, but our food production is limited (Varshney et al., 

2011). As green revolution has already reached its ceiling, 

there is a major concern over food supply for the ever 

increasing world population. Rapidly shrinking agricultural 

land, due to industrialization and/or habitat use is a major 

threat to sustainable food production. In light of all this, it is 

almost imperative to raise salt tolerant plants to effectively 

use salt affected agricultural land for sustainable crop 

production. Salinity is a soil condition characterized by a 

high concentration of soluble salts. Soils are classified as 

saline when ion(s) concentration is such that osmotic pressure 

produced by ion(s) are equivalent to that generated by 40 mM 

NaCl  i.e. 0.2 MPa or more (USDA-ARS 2008). As NaCl is 

the most soluble and widespread salt, it is not surprising that 

all plants have evolved mechanisms to regulate its 

accumulation and to select against it in favor of other 

nutrients commonly present in low concentrations, such as 

K+ and NO3− (Munns and Tester, 2008). Salinity problem is 

further aggravated by irrigation and is more in hot temperate 

regions, where there is excessive water loss through 

transpiration. The initial effect of salt stress is osmotic stress 

caused by the presence of ions in rhizosphere which restricts 

extraction of water by roots and results in reduced plant 

growth. The secondary effects of salt stress are caused by 

ionic disequilibrium, which result in inactivation of enzymes, 

nutrient starvation, ionic toxicity in tissues and oxidative 

stress. Reactive oxygen species produced due to oxidative 

stress further damage plants by enhancing lipid peroxidation, 

DNA damage and inhibition of photosynthesis (Flowers et 

al., 1977; Greenway and Munns, 1980; Turan and Tripathy, 

2012). If the concentration of salt is very high, it leads to 

plant death (Niu et al., 1995; Yeo 1998; Glenn et al., 1999).  

There is inter-species and intra-species variability in salinity 

tolerance in plants (Turan and Tripathy, 2012). Plants adopt 

different mechanism to resist salinity stress like excluding 

salts or accumulating ions into different tissue compartments, 

vacuoles or old leaves (Flowers and Yeo, 1992; Munns, 

1993; Yeo, 1998). In most plants, Na+ and Cl− are effectively 

excluded by roots, while water is taken up from the soil 

(Munns 2005). In response to osmotic stress, plants produce 

osmolytes like glycine betaine, trehalose or proline, which 

protect them from dehydration or protein denaturation. 

However, oxidative stress-an outcome of ionic stress lead to 

the production of different enzymatic or non-enzymatic 

antioxidants, which protect plants from harmful effects of 

reactive oxygen species (Shao et al., 2007). Plant breeding is 

being used since long to produce salt tolerant and more 

productive lines. However, its use is limited due to 

multigenic nature of salt tolerance and presence of low 

genetic variation in major crops. In recent times, genetic 

engineering has played a pivotal role in producing salt 

tolerant plants. In this review, major emphasis has been given 
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on different approaches of genetic engineering, used for 

generating salt tolerance plants. Role of quantitative trait loci 

(QTLs) and molecular markers in salinity improvement of 

plants have been briefly described. In the future prospects 

and concerns section, importance of functional genomics and 

use of novel techniques along with important cognizant 

issues, for the successful release of a salt tolerant crop 

cultivar, at field level are discussed. 

 

Conventional breeding approach  
 

Plant breeding has been used since long for the production of 

high yielding and stress tolerant crops. Plant breeders have 

used genetic variation in crops, at intraspecific, interspecific 

and intergeneric levels to produce salt tolerant lines. Lots of 

salt tolerant crop cultivars/lines have been produced by 

breeding; for example, salt tolerant CSR10, CSR13, CSR27 

rice cultivars developed at Central Soil Salinity Research 

Institute, Karnal. However, breeding has the limitation due to 

low magnitude of variation in gene pools of most crops. 

Another problem associated with conventional breeding, is 

that if the gene is present in a wild relative of the crop, there 

is difficulty in transferring it to the domesticated cultivar, due 

to reproductive barrier.  

 

Role of QTL and molecular markers in engineering 

salinity tolerance 

 

QTLs are segment of genetic material, in the genome of an 

organism linked with a particular trait. Salt stress tolerance is 

a complex trait, so the QTLs related with salt tolerance have 

significant role in understanding the stress response and 

generating stress-tolerant plants (Gorantla et al., 2005). There 

has been progress in methods of identifying genes underlying 

QTLs, instead of only map based cloning approach (Salvi and 

Tuberosa, 2005); new approaches like microarray based 

transcriptional profiling of differential gene expression (Sahi 

et al., 2006; Walia et al., 2007) or combination of genetic 

mapping and expression profiling (Marino et al., 2009; 

Pandit et al., 2010) are being used for identifying genes 

linked with QTLs. Several QTLs involved in the salt stress 

responses, have been reported of recent (Cadmac 2005; Ren 

et al., 2005; Thomson et al., 2007; Ammar et al., 2009; 

Pandit et al., 2010). The recent developments in molecular 

marker analysis have made it feasible to analyze both simply 

inherited; as well as the quantitative traits, and identify 

individual gene controlling the trait of interest. Molecular 

markers could be used to tag quantitative trait loci and to 

evaluate their contributions to the phenotype by selecting for 

favorable alleles at these loci in a marker-aided selection 

scheme aiming to accelerate genetic advance. Advanced 

backcross QTL analysis can be used to evaluate mapped 

donor introgression in the genetic background of an elite 

recurrent parent (Tanksley and Nelson, 1996).  

 

Genetic engineering approach for salinity stress tolerance 
 

Plant breeding strategy for salt tolerance is not much 

successful due to reproductive barrier and also as it involves 

the risk of other undesirable traits transfer. So to avoid this 

problem, genetic engineering strategy is more preferred, as it 

only deals with the specific gene(s) transferred. Plants try to 

cope with salinity by inducing various metabolic changes like 

production of osmolytes, antioxidative enzymes and 

upregulating various genes involved in stress response like 

ion transporters, ion channels, transcriptional factors and 

various signaling pathway components. These plant 

responses to salinity have been utilized by scientists to 

generate transgenic; either by, transferring such stress 

responsive gene(s) to salt-sensitive crop plant from different 

genetic background (relatively salt-tolerant plants) or altering 

the expression of existing genes.  

There are a number of gene(s) known which are responsible 

for salinity tolerance when transferred in plants through 

genetic engineering (Fig. 1). Details of these genes with their 

source, target plant and type of gene product are summarized 

in supplementary Table. S1. 

 

Gene(s) for osmoprotectants 
 

When plants are exposed to stress conditions, metabolic 

shifts occur and result in changes in the levels of a various 

cellular metabolites. Such modifications in response to 

abiotic stress appear to be associated with the enhanced 

ability to tolerate such stressful conditions. Metabolites that 

might be expected to contribute to enhanced salt stress 

tolerance include soluble sugars, amino acids, organic acids, 

polyamines and lipids (Guy 1990). One important group of 

such metabolites is so-called ‘compatible solutes’, which are 

small organic metabolites that are very soluble in water and 

are non-toxic at high concentrations.  

 

Trehalose 

 

Trehalose, a nonreducing disaccharide plays a crucial role in 

metabolic homeostasis and abiotic stress tolerance in various 

organisms. In plants, trehalose-6-phosphate synthase (TPS) 

catalyzes the transfer of glucose from UDP-glucose to 

glucose-6-phosphate (G-6-P) to form trehalose-6-phosphate 

(T-6-P) and uridine diphosphate (UDP). Subsequently, the T-

6-P is dephosphorylated into trehalose by trehalose-6-

phosphate phosphatase (TPP) (Cabib and Leloir 1958; 

Goddijn and Smeekens 1998). Li et al., (2011a) have shown 

that overexpression of OsTPS1 gene encoding trehalose-6-

phosphate synthase in rice improved the tolerance of rice to 

high salinity and other abiotic stresses. Overexpression of 

this gene in rice is associated with increased level of 

trehalose and proline along with upregulation of some of the 

stress inducible genes including WSI18, RAB16C, HSP70 and 

ELIP. Transfer of the yeast TPS1 into tomato resulted in 

higher chlorophyll, starch content and enhanced tolerance 

against drought, salt and oxidative stresses (Cortina and 

Culiáñez-Macià, 2005). Rice plants transformed with 

Escherichia coli’s trehalose biosynthetic gene(s) (otsA and 

otsB) as a fusion gene exhibits less photo-oxidative damage 

and a more favorable mineral balance under salt, drought and 

low-temperature stress conditions (Garg et al., 2002). 

Similarly, in tobacco, heterologous expression of AtTPS1 

gene from Arabidopsis increased tolerance to several abiotic 

stresses such as drought, desiccation and temperature stresses 

(Almeida et al., 2005). However, the gene transfer for 

trehalose can also produce aberrations in plant growth such 

as dwarfism, delayed flowering, abnormal root development  

and lancet-shaped leaves (Romero et al., 1997; Avonce et al., 

2004; Cortina and Culiáñez-Macià, 2005). 

 

Glycine betaine 

 

Glycine betaine (N, N, N-trimethyl glycine) is a quaternary 

ammonium compound found in bacteria, haemophilic 

archaebacteria, marine invertebrates, plants and mammals 

(Rhodes and Hanson, 1993; Chen and Murata, 2002; Takabe 

et al., 2006; Chen and Murata, 2008). GB is synthesized; 

either by, the oxidation (or dehydrogenation) of choline or by  
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Fig 1. Genes coding for different transcription factors, lea proteins, osmolytes, helicases, molecular chaperones, antioxidative 

enzymes, signalling molecules, ion channels and transporter which are known to impart salinity tolerance to different plants when 

overexpressed. 

 

the N-methylation of glycine (Chen and Murata, 2002). It 

accumulates to osmotically significant levels in many salt-

tolerant plants (Rhodes and Hanson, 1993) and halotolerant 

cyanobacteria (Chen and Murata, 2008). Levels of GB vary 

considerably among plant species and organs. Plants of many 

taxonomically distant species normally, contain low levels of 

GB (these plants are known as natural accumulators of GB), 

but they accumulate larger amounts of GB when subjected to 

abiotic stress (Storey et al., 1977). In many other species GB 

is not detectable under normal or stressful conditions. There 

are now strong evidences that GB plays an important role in 

abiotic stress tolerance. The biological functions of GB have 

been studied extensively in higher plants such as spinach, 

sugar beet, barley and maize (Rhodes and Hanson, 1993; 

Chen and Murata, 2008). The availability of GB-

accumulating transgenic plants has provided insight into its 

plant cell protection mechanism. Furthermore, many lines of 

GB-accumulating transgenic plants exhibit greatly improved 

tolerance to various types of abiotic stresses and their 

properties suggest promising strategies for the development 

of stress-tolerant crop plants. Gene(s) that encoding GB-

biosynthetic enzymes have been cloned from different 

organisms to generate transgenic plants (for recent reviews 

see: Chen and Murata, 2008; 2011). The transgenic plants 

accumulate GB at different levels and exhibit enhanced 

tolerance to salt and other abiotic stresses. Exogenous 

application of glycine betaine improves salinity tolerance in 

many plant species enhancing plant growth and yield 

(Harinasult et al., 1996; Mäkela et al., 1999). Transgenic 

tomato and rice expressing codA gene from Arthrobacter 

gobiformis show enhanced salinity tolerance (Goel et al., 

2011; Sakamoto et al., 1998). Similarly,; transgenic rice 

plants, for cox gene coding for choline oxidase from 

Arthrobacter pascens were found salt tolerant (Su et al., 

2006). Genetically engineered tobacco (Nicotiana tabacum) 

plants for betA gene from E.coli coding for choline 

dehydrogenase exhibit salt tolerance (Holmstrӧm et al., 

2000). In the same vein, transgenic plants for enhanced 

synthesis of glycine betaine have also been produced in 

Brassica, Arabidopsis and Solanum tuberosum showing 

enhanced salinity tolerance (Hayashi et al., 1997; Hong et al., 

2000; Prasad et al., 2000; Sulpice et al., 2003; Ahmad et al., 

2008). 

 

Mannitol, Sorbitol and Ononitol 

 

Bacterial gene mtlD, which codes for mannitol-1-phosphate 

dehydrogenase, when expressed in tobacco, causes mannitol 

accumulation (Tarczynski et al., 1993). Similarly, ectopic 

expression of mtlD from E.coli in wheat plants results in 
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enhanced tolerance to salt stress due to protective role of 

mannitol (Abebe et al., 2003). Arabidopsis plants 

transformed with celery’s mannose- 6-phosphate reductase 

(M6PR) gene produced mannitol and were found more 

tolerant as comparative to wild type under salinity stress 

(Sickler et al., 2007). Japanese persimmon (Diospyros kaki 

Thunb. cv Jiro) when transformed with apple cDNA for 

S6PDH encoding NADP dependent sorbitol-6-phosphate 

dehydrogenase, accumulates sorbitol and showed higher 

salinity tolerance than untransformed plants as reflected by 

higher ratio of variable to maximum fluorescence (Fv/Fm, 

Gao et al., 2001). Likewise improved salt and drought 

tolerance was found in Nicotiana tabacum, when transformed 

with cDNA of imt1 encoding for myo-inositol-o-

methyltransferase. This was indicated by accumulation of 

methylated inositol D-ononitol exceeding 35 mmol/g fresh 

weights and higher CO2 fixation capacity in transgenic plants 

under stress condition (Sheveleva et al., 1997).  

 

Proline 

 

In plants, proline is synthesized from its precursor glutamic 

acid and acts as an osmoprotectant under osmotic stress 

condition (Delauney and Verma, 1993). Two enzymes play 

important role in the biosynthesis of proline which are 

pyrroline-5-carboxylate synthase (5PCS) and pyrroline-5-

carboxylate reducatse (P5CR) (Ashraf and Foolad, 2007). 

Transgenic rice plants of mouth bean P5CS gene encoding 

for pyrroline-5-carboxylate synthase under constitutive or 

stress inducible promotor showed significant salinity 

tolerance (Su and Wu, 2004). Likewise transformed 

Nicotiana tabacum plants with cDNA encoding delta-1-

pyrroline-5-carboxylate synthetase (P5CS) from Vigna 

acontifolia were found more tolerant to salinity and drought 

stress (Kishore et al., 1995). Similarly, tobacco plants 

engineered for higher proline production by removing 

feedback inhibition of rate limiting enzyme in proline 

biosynthesis showed drought tolerance (Hong et al., 2000). 

 

Engineering plants for transporters and ion channels 

 

There is a lot of genetic diversity in plants with respect to 

sensitivity to NaCl. Accordingly, they are classified as 

halophyte (salt tolerant) and glycophyte (salt sensitive). 

Halophyte can grow at higher concentration of salt than 

glycophyte, they do it; either by, excluding Na+ or 

accumulating Na+ in cellular compartments like vacuoles 

higher K+/Na+ ratio is maintained in the cytoplasm. Excess 

Na+ leads to the loss of ionic homeostasis. Potassium acts as 

a coenzyme for many cytoplasmic enzymes, but when excess 

Na+ is present in rhizosphere, it competes for K+ particularly 

at low affinity K+ channels, leading to low K+/Na+ ratio in 

cytoplasm. Excess Na+ in cytoplasm is equally harmful to 

both halophyte and glycophyte. Genetic engineering of genes 

for antiporter or ion channels have been successful in 

generation of salt tolerant plants by maintaining higher 

K+/Na+ ratio. Overexpression of AtSOS1 encoding a plasma 

membrane Na+/H+ antiporter which share sequence similarity 

to Na+/H+ antiporters from bacteria and fungi leads to salt 

tolerance in Arabidopsis (Shi et al., 2000, 2003). In the same 

vein,  plasma membrane Na+/H+ antiporter gene SOD2  from 

Schizosaccharomyces pombe resulted in enhanced salt 

tolerance in Arabidopsis when overexpressed (Gao et al., 

2003). Similarly, nhaA of E.coli which encodes for Na+/H+ 

antiporter when expressed in rice improved salt tolerance 

(Wu et al., 2005). Another strategy of salinity tolerance by 

plants is to sequester Na+ ion into vacuole, so as to prevent 

cytosol from its toxicity. The transfer of Na+ into vacuole is 

driven by a vacuolar Na+/H+ antiporter which in turn is 

driven by the electrochemical gradient of protons generated 

by the vacuolar H+-ATPase and H+-pyrophosphatase 

(Blumwald 1987). The overexpression of AVP1 encoding for 

vacuolar H+-pyrophosphatase in Arabidopsis results in 

salinity tolerance (Gaxiola et al., 2001). Recently Liu et al. 

(2011) have isolated and characterized a gene ScVP from 

Suaeda corniculata, encoding a vacuolar H+-pyrophosphatase 

(V-H+-PPase), whose ectopic expression in Arabidopsis 

caused salinity tolerance. Genetic engineering of cotton 

plants with vacuolar H+-pyrophosphatase (AVP1) from 

Arabidopsis confers salinity and drought tolerance (Pasapula 

et al., 2011). Apse et al. (1999) showed that Arabidopsis 

thaliana plants expressing AtNHX1, a vacuolar Na+/H+ 

antiporter, were salt tolerant. Similarly, overexpression of 

AtNHX1 in tomato and Brassica enhances their salt tolerance 

(Zhang et al., 2001; Zhang and Blumwald, 2001). Likewise 

when a vacuolar Na+/H+ antiporter gene AgNHX1 from 

Atriplex gmelini, is overexpressed in rice, it enhanced salt 

tolerance (Ohta et al., 2002). Rice OsNHX1 encoding for 

vacuolar Na+/H+  antiporter when overexpressed, results in 

increased salinity tolerance (Fukuda et al., 2004). Transgenic 

maize and wheat for AtNHX1 showed higher tolerance to 

salinity (Xue et al., 2004; Yin et al., 2004). Similarly, the 

overexpression of vacuolar Na+/H+ antiporter genes; 

HbNHX1 (barley), GhNHX1 (cotton) and  BnNHX1 (Brassica 

napus) in tobacco, improved salinity tolerance (Wang et al., 

2004; Wu et al., 2004; Lu et al., 2005). Recently, it was 

found that when AtNHX5 was expressed in Paper mulberry, it 

conferred salinity and drought tolerance in transgenic (Li et 

al., 2011b).   Sodium ions enter the cell through several low 

and high affinity potassium carriers. There are three types of 

low affinity K+ transporters: inward rectifying channels 

(KIRC), outward rectifying channels (KORC) and voltage 

independent non-selective cation channels (NSCC). 

Arabidopsis AtHKT1 carry out circulation of Na+ in plant by 

mediating Na+ loading in leaf phloem and Na+ unloading 

from the root phloem sap (Berthomieu et al., 2003). A 

mutation in AtHKT leads to increase of Na+ concentration in 

shoot and enhancement of plant Na+ sensitivity (Maser et al., 

2002). Mian et al. (2011) have shown that when barley 

HvHKT2;1 was overexpressed, transgenic plants were more 

tolerant to salt due to  increased Na+ loading into xylem and 

accumulation of Na+ into shoot. Therefore, the increased 

uptake and translocation of Na+ is also responsible for 

salinity tolerance. 

 

Engineering of antioxidative enzymes 

 

Reactive oxygen species (ROS) are produced under normal 

conditions in plants; but under stress conditions, their level is 

highly increased. Plants have devised antioxidative defense 

system to scavenge harmful ROS, and protect plant cells 

from oxidative injury. This antioxidative defense involves 

both enzymatic and non-enzymatic metabolites. Various 

transgenic overexpressing antioxidative enzymes like 

superoxide dismutase, glutathione reductase, glutathione 

peroxidase and ascorbate peroxidases; have been generated, 

which show tolerance to various abiotic stresses (Bowler et 

al., 1991; Sen-Gupta et al., 1993; Slooten et al., 1995; Van 

Camp et al., 1996; Roxas et al., 1997; Prashanth et al., 2008).  

Alfalfa helicase MH1 when expressed in arabidopsis 

enhances salinity and drought tolerance, by improving its 

antioxidative defense (Luo et al., 2009). Lots of transgenic 

have been produced by engineering methylglyoxal pathway. 

Methylglyoxal is a cytotoxic compound which accumulates 
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to higher concentration in plants during stress conditions. 

Glyoxalase I and glyoxalase II are the enzymes involved in 

detoxification of methylglyoxal. Many transgenic plants 

overexpressing genes; GlyI and GlyII encoding for enzymes 

glyoxalase I and glyoxalase II respectively, have been found 

to show salinity tolerance (Singla-Pareek et al., 2003, 2008; 

Yadav et al., 2005). 

 

Engineering for transcription factors 

 

In line with this argument that single gene level management, 

for stress tolerance is not so affective; efforts were made to 

raise transgenic plants for stress inducible transcription 

factors: as a transcription factor regulates many genes. It is 

also likely that many stress responsive genes, may share a 

common transcription factor. Various transcription factors 

belonging to the families of DREB, NAC, MYB, MYC, 

Cys2His2 zinc finger, bZIP, AP2/ERF and WRKY are 

known to be involved in salt stress tolerance. They bind to 

the promoter and/or regulatory elements of genes responsive 

to stress. Member(s) of different groups may be involved in a 

single response, and members of the same group may also be 

responsible for different kind of stress responses. Many 

transgenic tolerant to salinity stress have been produced 

through genetic engineering of gene(s) for transcription 

factors. Transgenic Arabidopsis plants overexpressing 

AtDREB1A were found tolerant to dehydration and freezing 

(Liu et al., 1998). Similarly, overexpression of rice 

OsDREB1A in Arabidopsis results in freezing dehydration 

and salt tolerance (Dubouzet et al., 2003). Rice plants 

overexpressing OsDREB2A are comparatively tolerant to 

salinity and dehydration stress than untransformed plant 

(Mallikarjuna et al., 2011). The plant specific transcription 

factor group NAC (NAM, ATAF1/2, and CUC2) is required 

for its role in plant development and stress response. 

Transgenic rice plants overexpressing SNAC1 (stress 

responsive NAC 1) showed enhanced salinity and drought 

tolerance (Hu et al., 2006). Similarly, rice plants 

overexpressing SNAC2 (a rice NAC transcription factor 

group), exhibit higher salinity tolerance (Hu et al., 2008). 

Overexpression of OsNAC5 in rice  and Arabidopsis ectopic 

expression in enhanced salinity and drought tolerance, while 

knockdown of this gene in rice by RNAi lead to salt 

susceptibility (Song et al., 2011). Likewise overexpression of 

ONAC045 encoding for NAC transcription factor gene in rice 

enhanced salinity and drought tolerance (Zheng et al., 2009). 

In the same vein,  OsbZIP23, a member of basic leucine 

zipper (bZIP) transcription factor family from rice, when 

overexpressed results in drought and salt tolerance (Xiang et 

al., 2008). Recently a gene, GmbZIP1, encoding for a novel 

bZIP transcription factor from soybean was found to provide 

multiple abiotic stress tolerance (salt, drought and low 

temperature) to transgenic plants of Arabidopsis and tobacco, 

when overexpressed (Gao et al., 2011). The constitutive 

expression of maize ABP9; encoding a bZIP type 

transcription factor in Arabidopsis, results in enhancement of 

multiple stress tolerance including high salt, drought, 

freezing and oxidative stress (Zhang et al., 2011a). Ectopic 

expression of a maize gene ZmbZIP72 (a bZIP transcription 

factor) in Arabidopsis, result in salinity tolerance (Ying et al., 

2012). Tomato plants overexpressing SlAREB1 show drought 

and salt tolerance (Orlenna et al., 2010). Similarly, ZFP179 

(a salt responsive gene) imparts enhanced salt tolerance after 

it was overexpressed in rice (Sun et al., 2010). Likewise 

transfer of wheat TaMYB2A in Arabidopsis provides multiple 

stress tolerance including salt and drought (Mao et al., 2011). 

Zhang et al. (2009) have shown that Ectopic expression of 

soybean GmERF3 gene encoding for AP2/ERF transcription 

factor tobacco enhances tolerance to both biotic and abiotic 

stresses. Transgenic Trifolium alexandrinum L. of a gene 

HARDY from Arabidopsis were found more tolerant to 

salinity and drought stress (Abogadallah et al., 2011). When 

MtCBF4 gene from M.truncatulla encoding for a 

transcription factor was overexpressed in Arabidopsis 

resulted in enhanced salinity and drought tolerance (Li et al., 

2011c). Similarly, transgenic Arabidopsis plants 

overexpressing of BrERF4 from Brassica showed enhanced 

salinity and drought tolerance (Seo et al., 2010). 

 

 

 

Transgenic for Helicases 

 

Helicases (RNA or DNA) are proteins involved in unwinding 

double stranded DNA / RNA. These ATP dependent 

molecules play a regulatory role in basic genetic processes 

including replication, transcription, translation and repair or 

recombination (Lohman and Bjornson, 1996; West 1996; 

Tuteja and Tuteja, 2004a; b). They have been classified in 

five superfamilies based on their amino acid sequence, from 

superfaimily 1 (SF1) to superfamily 5 (SF5) (Gorbalenya and 

Koonin, 1993). Sanan-Mishra et al. (2005) have shown that 

pea DNA helicase gene (PDH45), when overexpressed in 

tobacco enhances salinity tolerance in transgenic plants 

without affecting yield. Pea DNA helicase 47 (PDH47) 

transcripts were found induced in both shoot/root in response 

to salinity and cold. This purified recombinant protein 

showed ATP dependent DNA/RNA helicase activity and 

DNA dependent ATPase activity (Vashisht 2005). Liu et al. 

(2008) have isolated and characterized a salt inducible DEAD 

box helicase; AvDH1, from halophyte Apocynum venetum 

and suggested its possible role in salt tolerance. Similarly, 

ectopic expression of a DEAD box helicase (MH1) from 

Medicago sativa in Arabidopsis, results in salinity and 

drought tolerance by enhancing ROS scavenging capacity 

and osmotic adjustment (Luo 2009). Chung et al. (2009) have 

isolated salt inducible DEAD box helicase from soybean 

named GmRH and speculated its role in RNA processing 

under salinity and chill stress. Dang et al. (2011a) have 

shown that DNA helicase MCM6 transcript was upregulated 

in pea during salt and cold stress but not in drought or ABA 

treatment. Transgenic tobacco plants overexpressing MCM6 

were found salinity tolerant. The investigators also reported 

stress responsive elements in promotor of MCM6 (Dang et 

al., 2011b).  

 

Engineering of molecular chaperones 

 

Molecular chaperones are a diverse group of proteins 

involved in various cellular functions comprising 

folding/unfolding, macromolecular assembly/disassembly, 

keeping proteins in their native state and preventing their 

aggregation under various stress conditions, helping in 

protein synthesis/degradation and targeting to their cellular 

compartments (Boston et al., 1996). Of late they have been 

implicated in various physiological processes and plant 

defense under stress conditions (Chen and Shimomoto, 2011; 

Gupta and Tuteja, 2011; Hahn et al., 2011; Qi et al., 2011). 

Reddy et al. (2011) have isolated pgHsc70 (encoding for 

cytoplasmic HSP70) from Pennisetum glaucum and 

suggested its probable role in plant salinity tolerance as it 

imparts salinity tolerance to transformed Similarly, 

transformed E.coli with salt inducible gene DcHsp17.7 

encoding for a small heat shock protein (SHSP) from Daucus 
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Fig 2. Schemataic diagram showing strategies and techniques involved for the production of salt tolerant cultivar at field level.  

SNP: single nucleotide polymorphism; ESTs: express sequence tags; qPCR: quantitative real time ployperase chain reaction; SAGE: 

serial analysis of gene expression; DIGE: differential in gel electrophoresis; iTRAQ: isobaric  tag for relative and absolute  

quantification; MALDI-TOF: matrix assisted laser desorption ionization-time of flight; LC-MS: liquid chromatography coupled with 

mass spectrometry; ELISA: enzyme linked immunosorbent assay; TILLING: targeted induced local leisions in genome; RNAi: RNA 

interference. 

 

carota L. were found to show enhanced salinity tolerance 

(Song and Ahn 2011). Jiang et al. (2009) observed that 

E.coli, yeast and Arabidopsis transformed with RcHsp17.8 

(encoding for a SHSP) from Rosa chinensis were tolerant to 

multiple stresses. According to Montero-Barrientos et al. 

(2010) ectopic expression of Trichoderma harzianum’s 

T30hsp70 gene in Arabidopsis results in salt, osmotic and 

oxidative stress tolerance. The heat shock proteins aren’t 

functionally limited to stress conditions, but do play role in 

normal development and function of plant and various 

cellular organelles. Constan et al. (2004) have shown that 

stromal HSP100 protein is required for normal chloroplast 

development. The mutant of atHSP93-V which encodes for 

the homolog of HSP93, are smaller, paler than wild type and 

have chloroplasts with less thylakoid membranes.  

 
Engineering for lea proteins 

 

Late embryogenesis proteins are a group of hydrophilic 

proteins produced late during embryo development, and 

constitute about 4% of the total cellular proteins. These 

proteins have been classified into six groups; based on their 

amino acid sequence, mRNA homology, and expression 

pattern (Wise 2003). They carry out various functions like 

acting as hydrating buffers, sequestering ions, helping in 

renaturation of proteins and acting as chemical chaperones 

(Dure 1993; Goday et al., 1994). It was found that late 

embryogenesis abundant (LEA) protein gene HVA1 from 

Hordeum vulgare L. upon transformation into rice confers 

salinity and drought tolerance to transgenic plants (Xu et al., 

1996). The stress tolerant features (including salt and drought 

tolerance) of HVA1 gene transformed plants have further 

been proven in Basmati rice (Rohila et al., 2002) and Morus 

indica (Lal et al., 2008). In the same vein, ectopic expression 

of PM2 from soybean; encoding for a type 3 LEA protein in 

E.coli, results in salinity tolerance and therefore suggesting 

its probable role in salinity tolerance in plants Liu et al., 

2010. 
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Engineering plants for signaling molecules 

 
Exposure of any stress to plants causing change in normal 

plant development is perceived by some kinds of sensor 

which leads to a signaling cascade resulting in a stress 

response by plant. These signaling pathways may be specific 

or non-specific depending upon the type of stress. Signaling 

pathways for different stresses may crosstalk. These signaling 

pathways involve many signaling molecules, and may be 

ABA dependent or independent. Ca2+ is most common 

secondary messenger in plants responding to various stimuli 

(Harper et al., 2004). Ca2+ is known to be involved in most 

common pathway for salt stress; Salt Overly Sensitive (SOS) 

pathway. A change in cytoplasmic Ca2+ transient is sensed by 

SOS3; a calcium binding protein (Ishitani et al., 2000). This 

in the presence of Ca2+ activates SOS2; a serine-threonine 

protein kinase (Sanchez-Barrena et al., 2007). SOS3-SOS2 

kinase complex regulate the expression, as well as activity of 

Na+/H+ exchanger, which is responsible for salinity tolerance 

(Qiu et al., 2002). Mitogen activated protein kinases (MAPK) 

are known to be involved in signaling of multiple abiotic 

stress including salt, drought, temperature, and other 

physiological processes like cell division (Andreasson and 

Ellis, 2010; Wu et al., 2010). MAPK cascade involve three 

tiers of protein kinases: MAPK, MAPK kinase (MAPKK) 

and MAPKkinase kinase (MAPKKK). MAPK is activated by 

MAPKK (MAPK kinase) by phosphorylation at two residues 

and MAPKK in turn is activated by MAPKKK. (Pitzschke et 

al., 2009). Many transgenic plants have been produced with 

high salinity tolerance by engineering MAPK cascade. 

Ectopic expression of Nicotiana protein kinase 

MAPKKK/NPK1 in maize, leads to the activation of oxidative 

signal eventually enhancing salt, heat and cold tolerance 

(Shou et al., 2004). A novel MAPKK from maize, ZmMKK4, 

when overexpressed in arabidopsis, confers salinity and 

drought tolerance (Kong et al., 2011). Zhang et al. (2011b) 

have shown that a MAPK from cotton GhMPK2 is induced 

by salt, ABA and drought stress. Its overexpression into 

tobacco leads to salinity and drought tolerance. In another 

study it was found that rice plants overexpressing 

OsMAPK33 are more sensitive to salt stress than wild type 

(Lee et al., 2011). There are also calcium dependent protein 

kinases (CDPKs), which are involved in salt stress response. 

Asano et al. (2011) have characterized one CDPK gene 

OsCDPK21 from rice which when  was overexpressed, 

results in enhanced salinity tolerance in transgenic. Ectopic 

expression of GsCBRLK gene; encoding plant specific 

calcium-dependent calmodulin binding receptor like kinase 

from Glycine soja in Arabidopsis, enhanced salt and ABA 

tolerance (Yang et al., 2010). Another signaling molecule, 

Calcineurin B-like (CBL) proteins, are a group of Ca2+ sensor 

in plants. They play an important role in relaying the signal in 

diverse stress response by interacting with CBL-interacting 

protein kinases (CIPKs) (Batistic and Kundla, 2009; Weinl 

and Kundla, 2009). Xiang et al. (2007) have characterized a 

number of OsCIPKs genes in rice, for their stress inducibility 

and stress tolerance, out of those OsCIPK15 was responsible 

for salinity tolerance in transgenic when was overexpressed. 

Another family of kinases which play important role in 

signaling stress response belongs to; sucrose non-fermenting 

1-related protein kinase 2 (SnRK2) families (Coello et al., 

2011). Recently a gene from maize, ZmSAPK8 of SnRK2 

family, has been cloned. The overexpression of this gene into 

Arabidopsis confers salinity tolerance, along with 

upregulation of transcription of other stress marker genes like 

RD29A, RD29B, RAB18, P5CS1, ABI1 and DREB2A (Ying et 

al., 2011). Similarly, in an another study it was found that 

ectopic expression of wheat TaSnRK2.8 of SnRK2 family, in 

Arabidopsis improves salinity tolerance along with 

upregulation of transcripts of ABA biosynthesis genes 

(Zhang et al., 2010). Plant lectin receptor like kinases 

(LecRLKs) are also known to mediate signaling during stress 

response (Joshi et al., 2010). G-Protein coupled receptors 

(GPCRs) are known to perceive extracellular signals, and 

transduce subsequently to heteromeric G-proteins, which 

further pass signal to downstream effector (Tuteja 2009; 

Yadav and Tuteja, 2011). When gene from Pisum sativum 

(Galpha1); encoding for G-alpha subunit, was overexpressed 

in Arabidopsis, it enhanced salinity and heat tolerance (Misra 

et al., 2007). Ectopic expression of Rab7 from pennisetum 

glaucum; encoding for Rab-GTPase (a GTP binding protein), 

in tobacco enhanced salinity tolerance (Agarwal et al., 2008). 

Conti et al. (2008) have identified two SUMO proteases; 

OVERLEY TOLERANT TO SALT 1 (OTS1) and OTS2, in 

Arabidopsis. Double mutant of ots1 and ots2 is salt sensitive; 

whereas, overexpression of ots1 confers salinity tolerance to 

the transgenic. 

 

Future prospects and Concerns 

 

Plant breeding has been mainly used as a tool in the last 

century to raise abiotic stress tolerant plants and many salt 

tolerant varieties for different crops were developed. But due 

to reproductive barrier and narrow genetic variations present 

in food crops, use of this technique is limited. On the other 

hand, genetic engineering has successfully utilized the 

genetic variations present for salt tolerance in different wild 

relatives of crops and other organisms for the production of 

salt tolerant plants. There are many genes of unknown 

function (20-30% in every genome sequenced) which can 

impart multiple stress tolerance to plants. There is still scope 

in understanding the functional genomics which will further 

facilitate the generation of salt tolerant crop plants.  The use 

of “omics” tool and next generation sequencing have 

promising role in elucidating gene function and response of 

plant to salt stress. The use of more advanced and less time 

consuming technologies like Deep Super SAGE, ligation free 

cloning, Multi-SNP analysis, Glyco-proteomics and Phylo-

CSF (a comparative genomics tool to distinguish coding and 

non-coding region) along with genetic engineering through a 

systematic approach (Fig. 2) will  be time saving and more 

fruitful in production of salt tolerant crop plants at field level. 

Despite progress in technologies and genetic 

engineering of salt tolerance in plants, success has not been 

achieved at field level. Majority of the salinity tolerant plants, 

produced through genetic engineering, are tested for 

tolerance under laboratory controlled conditions at seedlings 

stage or reproductive stage in green house. Salinity stress is a 

multigenic trait which is very complex and often mixed with 

more than one stress at field level under fluctuating 

conditions. For developing a successful salt tolerant cultivar 

at field level, following parameters need be taken into 

account (of the transgenic plant generated):- 

1. How transgenic plant behaves in natural environment 

under mixed stresses and/or fluctuating environmental 

conditions? 

2. How much it is tolerant at reproductive and/or seed set 

stage? 

3. Effect on yield potential: Transgenic with decreased yield 

are not desirable. 

4. Disease susceptibility. 

5. Plant height and root size are of immense importance. 

6. Photosynthetic performance and nitrogen use efficiency 

(NUE) under field conditions. 
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7. Salt testing of soil after each crop harvest. Whether the 

transgenic is an ion excluder or not?  

8. Finally, the seed cost and availability to farmers. 
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