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Abstract 

 

A better understanding of genotype x environment interactions (GEIs) can improve the selection and recommendation of wheat 
genotypes that are widely adapted and stable in different environments. The objective of this study was to evaluate a strategy to 

perform a joint analysis in wheat yield trials with genotypes classified according to their interactions with the environment. 

Measurements of the adaptability and stability estimates were used in the proposed strategy. We analyzed grain yield data from 367 

wheat genotypes in 348 yield trials classified into 58 groups. In each group, 25 genotypes at different numbers of locations were 
evaluated using data from 2010, 2011 and 2012. Joint analysis of variance was performed for each group to determine the genotype 

contribution to the GEI. The genotypes were grouped into two classes: genotypes that interacted with the environment and genotypes 

with no interaction with the environment. An additional joint analysis of variance was performed for each class. Grouping genotypes 

into different classes provided valuable information concerning the dynamics of the GEI, which could enable plant breeders to 
maximize the efficiency of selection and offer recommendations for stable and widely adapted genotypes. The highest selective 

accuracy for the genotype effects was obtained for the joint analysis when the GEI was insignificant. The joint analysis of trials for 

wheat genotypes that interacted with the environment presented the highest selective accuracy for the GEI effect and a reduced 

selective accuracy for the genotype effect. 
 

Keywords: AMMI; interactions; joint analysis; multi-environment trial; REML; Triticum aestivum L.  

Abbreviations: hmg
2 _genotype mean heritability; 𝐹𝐺𝐸𝐼_F-test value for genotype x environment interaction; 𝑉𝐺𝐸𝐼_variance of GEI; 

VCU_value for cultivation and use; AMMI1_main effects and multiplicative interaction; FG_F-test value for genotype; 

GEI_genotype x environment interactions; MET_multi-environment trial; MSE_mean square error; NI class_genotypes without 

interaction with the environment; SAg_selective accuracy of genotypes; WI class_genotypes with interaction with the environment  

 

Introduction 
 

Identifying adapted and stable wheat genotypes (Triticum 

aestivum L.) requires the maintenance of multi-environment 

trials (MET) through breeding programs. The response of 
each genotype to environmental variation results in different 

patterns of genotype x environment interactions (GEIs), 

which makes finding a single best variety for all 

environments unlikely. Thus, the selection and 
recommendation of adapted and stable wheat genotypes 

represents one of the limiting factors of breeding programs 

because the cost of developing a MET also needs to be taken 

into account. Improving the accuracy of genotype selection in 
wheat breeding programs is essential in Brazil due to the 

decrease in genetic gain over the last decade (Beche et al., 

2014). 

In Brazil, wheat cultivation is divided into homogeneous 
adaptation regions and value for cultivation and use regions 

(VCU regions 1, 2, 3 and 4) (Brasil, 2008). The 

edaphoclimatic differences among the different VCU regions 

influence the potential crop yield (Benin et al., 2013a; 
Munaro et al., 2014) and change the rank orders of genotypes 

among the tested environments (Silva et al., 2011). In a joint 

analysis with GEI, some genotypes contributed more to the 

GEI than others (Yan et al., 2007; Hristov et al., 2010; De 

Vita et al., 2010; Mohammadi et al., 2011; Araújo et al., 
2012). In this context, the stratification of genotypes 

according to their response patterns to the environment 

represents a feasible strategy to reduce the GEI, thereby 

facilitating the analysis and recommendation of adapted and 
stable genotypes. Francis and Kannenberg (1978) proposed 

grouping genotypes using the mean and coefficient of 

variation among the environments of each genotype. Lin 

(1982) proposed a method of grouping genotypes according 
to their responses to the environment; this method estimates 

the dissimilarity index between pairs of genotypes in terms of 

the distance adjusted for the average effects of the genotypes. 

Subsequently, this method was modified by Ramey and 
Rosielle (1983) and named the hierarchical agglomerative 

method. 

A methodology to enable the identification of genotypes 

that contribute to the GEI was proposed by Araújo et al. 
(2012). This methodology utilizes the decomposition of the 

sum of squares of the interactions (SQGE) resulting from each 

http://link.springer.com/search?facet-author=%22Nikola+Hristov%22
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genotype (Wi); thus, the sum of the Wi values is equal to 

SQGE. This method enables the determination of the exact F-

test for the hypothesis Ho: Wi=0 (i.e., the contribution of 

genotype i to the interaction is null). Thus, the different 

classes of genotypes (i.e., those that do not interact with the 
environment (NI genotypes) and those that interact with the 

environment (WI genotypes)) can be statistically 

distinguished using a different strategy analysis. For the 
genotypes of the NI class, a joint analysis of variance and a 

test of multiple comparisons of means are often performed to 

identify the best genotypes for the region covered by the 

trials. For the genotypes of the WI class, a joint analysis of 
variance and adaptability and stability analyses can be 

performed (Cruz, 2013; Yan et al., 2007; Cargnelutti Filho et 

al., 2009; Miranda et al., 2009). However, how the parameter 

estimates obtained with these joint analyses differ from those 
obtained with analyses performed separately for each 

genotype class as a new strategy is unknown.  

Accordingly, our objective was to evaluate the performance 

of a joint analysis of wheat yield trials with genotypes 
classified according to their interactions with the 

environment. 

 

Results and Discussion  

 

Joint analysis of variance by genotype class 

 

The joint analysis of variance for the grain yield indicated the 
presence of GEI (α < 0.05) in all 58 groups of yield trials 

(Table 1) and a high GEI (α < 0.01) in 56 of them. The 

occurrence of GEIs in multi-environment wheat yield trials is 

common in Brazil (Silva et al., 2011) and other countries 
(Sabaghnia et al., 2012; Graybosch et al., 2012; Tsenov and 

Atanasova, 2013; Cormier et al., 2013; Malik et al., 2013; 

Roostaei et al., 2014). In similar cases where the GEI is 

present in the joint analysis, the characterization of genotypes 
using adaptability and stability analyses is indicated (Yan et 

al., 2007; Miranda et al., 2009; Araújo et al., 2012; Pereira et 

al., 2012; Colombari Filho et al., 2013). 

According to the hypothesis testing proposed by Araújo et 
al. (2012), a mean of 13 out of 25 genotypes in each group of 

yield trials (52%) does not contribute to the GEI (NI 

genotypes). In our study, this number ranged from four to 23 

(Table 2), whereas the other genotypes (48%) interacted with 
the environment (α < 0.05). The number of genotypes in the 

NI class in the 58 groups of yield trials ranged from four to 

eight in seven groups (12%), from eight to 12 in 21 groups 

(36%), from 12 to 16 in 11 groups (19%), from 16 to 20 in 14 
groups (24%) and from 20 to 24 in five groups (9%). The 

proportion of NI genotypes depended on the set of tested 

genotypes in each group of yield trials and the number of 

interactions that occurred within the tested environments. The 
factor that most strongly determined the magnitude of the 

GEI was the genetic composition of the genotype list rather 

than the number of genotypes that interacted with the 

environment (Cooper et al., 2001). 
The Pearson correlation coefficient, which was related to 

the mean yield and the F-test value for the interaction (𝐹𝐺𝐸𝐼) 

(r = -0.64; α < 0.01; n = 58), confirmed that a higher GEI was 

associated with a lower grain yield. This effect is explained 
by the fact that the occurrence of biotic stresses (e.g., pests 

and diseases) and abiotic stresses (e.g., radiation, 

temperature, humidity and water stress) in marginal 

environments for crop development causes greater instability 
of the genotypic performance and consequently a lower mean 

yield. The experimental error (MSE) was also correlated with 

the grain yield (r = 0.67; α < 0.01) and the 𝐹𝐺𝐸𝐼 of the 

interaction (r = -0.61; α < 0.01). These data suggest that GEIs 

under conditions of reduced error variance have lower α-

values when the MSE is the denominator of the 𝐹𝐺𝐸𝐼 and the 

yields decrease due to stresses that promote instability 
(environmental variation).  

Farmers are interested in genotypes without GEIs (NI class) 

as long as the average production of the crop remains high 

because more predictable behavior is guaranteed and the 
genotypes can be used in a wider cultivation area. Genotypes 

that interact with the environment (WI class) complicate the 

interpretation of the results from the multi-environment yield 

trials and thus the cultivar recommendation. The analyses of 
sets of genotypes including those that interact with the 

environment can lead to inaccurate estimates of phenotypic 

stability. Hu et al. (2014) reported that the heterogeneity of 

the GEI must be considered in data analyses to obtain more 
precise conclusions regarding genotypes in multi-

environment yield trials. The presence of GEIs compromises 

the reliability of estimates of heritability and makes it 

difficult to accurately predict the genetic progress of a given 

trait (Alake and Ariyo, 2012). Consequently, genotype 

classes (WI and NI) should be analyzed separately because 

the adaptability and stability of a given genotype are 

associated with the tested genotypes. The contribution of NI 
genotypes to the GEI may compromise the ability to describe 

WI genotypes using the stability analysis. 

The results of the analyses performed separately for the NI 

and WI genotypes are shown in table 2. In the NI class, the 

mean F-test value for the GEI (𝐹𝐺𝐸𝐼) was 1.44 and the mean 

α-value was 0.175. However, GEI was present for 23 of the 

58 groups (40%) in this class; thus, the mean MSE obtained 

in these 23 groups with an interaction (0.12534) was lower 
than the mean MSE obtained in the remaining 35 groups 

(0.18234). The 𝐹𝐺𝐸𝐼 value obtained for the different 

genotypes could not be compared with the 𝐹𝐺𝐸𝐼 value 

obtained using all genotypes (NI+WI class, Table 2) because 
the GEI was present for all groups. Thus, because the MSE of 

the different genotype classes did not different for the 58 

groups, the recurrence of an interaction in the genotypes of 

the NI class occurred in the groups of trials with a lower 
MSE. Additionally, the path analysis (data not shown) 

indicated that the number of genotypes in the NI class was 

directly or indirectly associated with the magnitude of the 

MSE, inversely associated with the magnitude of the 𝐹𝐺𝐸𝐼, 
and not associated with the mean yield. This finding suggests 

that the yield is independent of the magnitudes of the GEI 

and MSE.  

Based on the joint analysis of variance for genotypes of the 
WI class, a GEI (α < 0.05) occurred in 57 of the 58 groups. 

The mean 𝐹𝐺𝐸𝐼 value was 5.448, which was higher than the 

mean 𝐹𝐺𝐸𝐼 obtained when the genotypes of the NI class were 

included (mean 𝐹𝐺𝐸𝐼 = 1.440) and when all genotypes were 

used in the joint analysis (Table 2, mean 𝐹𝐺𝐸𝐼 = 3.352). 

Removal of the NI genotypes increased the magnitude of the 

GEI by 54%, which might improve the parameter estimates 

for the stability and adaptability analyses used for the WI 
genotypes. 

It is important to note that the mean 𝐹𝐺  values (genotype 

effect) were higher for the NI genotypes (Table 2) than for 

the WI genotypes, which could be explained by the crossover 
of an interaction between genotypes in the WI class. A 

crossover interaction occurs when the ranking of two 

genotypes are not identical throughout the environments 

(Truberg and Huhn, 2000). Schulthess et al. (2013) reported 
that the occurrence of a crossover-type interaction was 

important in breeding because it prevented the breeder from 

making a decision based solely on the mean yield of a single  



573 

 

Table 1. Characteristics of the test environments in Brazil evaluated in this study. 

Environment 
(City, State*) 

Years VCU  
region(1) 

Coordinates Elevation 
(m) 2010 2011 2012 Latitude Longitude 

Campos Novos, SC 5(2) 5 
 

1 27°24'S 51°13'W 934 

Castro, PR 8 
  

1 24°47’S 50°00’W 988 

Cruz Alta, RS 2 2 2 1 28°38'S 53°36'W 452 

Guarapuava, PR 5 13 8 1 25°23’S 51°27’W 1120 

Não-Me-Toque, RS 10 10 8 1 28°27'S 52°49'W 514 

Passo Fundo, RS 
  

2 1 28°15'S 52°24'W 687 

Vacaria, RS 
  

2 1 28°30'S 50°56'W 971 

Abelardo Luz, SC 10 10 8 2 26°33'S 52°19'W 760 

Cachoeira Do Sul, RS 
  

3 2 30°02'S 52°53'W 68 

Campo Mourão, PR 8 6 8 2 24°02'S 52°22'W 585 

Cascavel, PR 39 14 30 2 24°57'S 53°27'W 781 

Itaberá, SP 
  

2 2 23°51'S 49°08'W 651 

Santa Rosa, RS 3 
  

2 27°52'S 54°28'W 277 

Santo Augusto, RS 5 
  

2 27°51'S 53°46'W 528 

São Luiz Gonzaga, RS 2 2 2 2 28°24'S 54°57'W 231 

Taquarivaí, SP 5 
  

2 23°55'S 48°41'W 555 

Arapongas, PR 2 2 1 3 23°25'S 51°25'W 729 

Dourados, MS 5 
 

6 3 22°13'S 54°48'W 430 

Goioerê, PR 3 
  

3 24°11'S 53°01'W 505 

Manduri, SP 
  

1 3 23°00'S 49°19'W 710 

Palmital, PR 5 
  

3 24°53'S 52°12'W 840 

Palotina, PR 28 28 20 3 24°17'S 53°50'W 333 

Ponta Porã, MS 3 
  

3 22°32'S 55°43'W 655 

Rolândia, PR 5 
  

3 23°18'S 51°22'W 730 
(1)VCU region: Value for cultivation and use regions based on Brasil (2008); (2) Number of yield trials used to form one or more groups with different genotypes (total of 

348 trials). * RS - Rio Grande do Sul, SC - Santa Catarina, PR - Paraná, SP - São Paulo, MS - Mato Grosso do Sul.  
 

 

Table 2. Number of trials per group (J), mean grain yield (Mg ha-1), mean MSE, F-test value for the interaction (𝐹𝐺𝐸𝐼) and its α-value 

(𝛼𝐺𝐸𝐼), F-test value for the genotype (𝐹𝐺) and its α-value (𝛼𝐺) and the number of genotypes without an interaction with the 

environment per trial group (nNI) with mean, minimum and maximum values. 

Statistics J Yield MSE 𝐹𝐺𝐸𝐼 𝛼𝐺𝐸𝐼 𝐹𝐺  𝛼𝐺  nNI 
25 genotypes (NI+WI) 

Mean 6.0 3.525 0.16420 3.352 <0.001 3.730 0.001 12.9 

Minimum 4 2.488 0.04350 1.383 <0.001 1.024 0.020 4 

Maximum 11 4.818 0.33270 9.470 0.015 12.676 0.031 23 

Classes of genotypes without interaction (NI Class) with the environment 

Mean  3.569 a* 0.15979 1.440 0.175 5.625 0.006  

Minimum  2.441 0.03670 0.811 <0.001 1.2 <0.001  

Maximum  4.895 0.36020 2.857 0.746 14.2 0.245  

Classes of genotypes with interaction (WI Class) with the environment 

Mean  3.478 a 0.16967 5.448 0.005 2.993 0.145  

Minimum  2.506 0.04391 1.385 0.014 0.482 <0.001  

Maximum  4.621 0.57779 12.705 0.127 13.289 0.925  
*
Means not connected by the same letter were different by the paired t-test (α < 0.05).  

 

 
Table 3. Proportion of trials with non-normal error distributions (No, Shapiro-Wilk test, α < 0.05), the mean of the Spearman 

correlation coefficient (rS) between pairs of environments and proportion of significant tests of rS (pH1, α < 0.05) within each group 

of wheat trials, and the mean squared error (MSE) and proportion of groups in which the MSEs between the environments are 

heterogeneous (Het, Bartlett test, α < 0.05) by the range of the number of genotypes in class NI (nSI).  

Range N groups No rS pH1 MSE Het 
 25 genotypes (NI+WI) 

8 < nNI < 18 37 0.221 0.259 0.253 0.1599 0.919 

nNI ≤ 8 9 0.264 0.248 0.255 0.1245 0.778 

nNI ≥ 18 12 0.289 0.293 0.261 0.2074 0.833 

Mean 58 0.242 0.264 0.255 0.1642 0.879 

Classes of genotypes without interaction (NI Class) with the environment 

8 < nNI < 18 37 0.071 0.374 0.152 0.1552 0.676 

nNI ≤ 8 9 0.088 0.428 0.105 0.1172 0.444 

nNI ≥ 18 12 0.280 0.343 0.257 0.2059 0.750 

Mean 58 0.117 0.376 0.166 0.1598 0.655 

Classes of genotypes with interaction (WI Class) with the environment 

8 < nNI < 18 37 0.120 0.180 0.077 0.1633 0.811 

nNI ≤ 8 9 0.162 0.211 0.204 0.1286 0.667 

nNI ≥ 18 12 0.029 0.118 0.026 0.2201 0.417 

Mean 58 0.108 0.172 0.086 0.1697 0.707 
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environment. This situation may attenuate the discrepancies 

in the means and F-test values for the different lists of 

genotypes. Because the genotypes of the WI class interact 

with the environment, they are more sensitive to 
environmental variation (i.e., they present greater 

adaptability); therefore, they may have a lower overall mean 

yield in stressful environments. The yields were different 

among the genotypes in all groups with NI genotypes, with 
the exception of one group. 

 

Number of genotypes by class  

 
The number of genotypes in each class (NI and WI) was 

variable in the 58 analyzed yield trial groups. Some groups 

contained few genotypes in the NI class and consequently 

many genotypes in the WI class. The separation of groups 
into ranges due to the number of genotypes in the NI class 

(nNI) is shown for three ranges (Table 3). In these ranges, 

there were limited cases with genotypes of the NI class (nNI 

≤ 8; 9 groups) or a few WI class genotypes (nNI ≥ 18; 12 

groups), whereas the other two-thirds of the groups (37/58 = 

64%) represented the majority. In this manner, we attempted 

to show the consequences of the nNI ranges on important 

statistics. The proportion of yield trials with a non-normal 
distribution of errors (No) was lower when the groups were 

analyzed by class (WI class or NI class) versus the class 

NI+WI = 25 genotypes. The absence of normality was also 

smaller when there were fewer WI genotypes in the WI class 
(No = 0.029 = 2.9%) or fewer NI genotypes in the NI class 

(No = 0.088 = 8.8%). We found that 24.2% of the 348 yield 

trials for which all genotypes were considered in the analysis 

did not fit a normal distribution. In an analysis of 572 wheat 
yield trials, Benin et al. (2013b) also found that 12% of the 

trials did not have normality of errors. Therefore, the lack of 

error normality occurs in yield trials with low frequencies and 

can be reduced by stratifying the genotypes based on their 
ability to interact with the environment. As a result of the 

analysis by genotype class, the presuppositions of error 

normality are more frequent and hypothesis tests are favored. 

The nNI ranges from all pairs of environments did not affect 
the average estimate of the Spearman’s correlation 

coefficients (rS) (Table 3). However, the rS estimates were 

lower in the WI genotype class (rS = 0.172) and greater in the 

NI genotype class (rS = 0.376). This result was expected 
because the order of genotypes for different environments 

remained the same in the absence of GEI. As expected, the 

proportion of significant rS estimates (pH1) was lower in the 

WI genotypes class and even lower when nNI ≥ 18. These 
results showed that although the separation of genotypes into 

the WI and NI classes was not perfect, the test proposed by 

Araújo et al. (2012) might be suitable to improve the analysis 

of each class separately. Estimates of the MSE in the three 
classes of genotypes (WI, NI and WI+NI) were similar 

(Table 3). The average MSE was lower in the range of nNI ≤ 

8 (few genotypes in the NI class) in class WI (MSE = 0.1286) 

and in the range nNI ≤ 8 of the NI class (MSE = 0.1172). 
Hence, analysis of only a few genotypes and their interaction 

with the environment implied a lower MSE and a high 

precision on multiple comparisons of means using the NI 
class genotypes. The proportion of yield trial groups in which 

the homogeneity presupposition of the MSE between 

environments was not acceptable (Het) was high when all 

genotypes were considered (Het = 0.879). This proportion 
was lower when the genotypes were analyzed by their WI 

(Het = 0.707) and NI (Het = 0.655) interaction classes. 

Moreover, the Het was lower in the range nNI ≥ 18 class WI 

(Het = 0.417) and in the range nNI ≤ 8 class NI (Het = 

0.444). Similar behavior was also observed for the normal 

presupposition test. The high proportion of groups with MSE 

heterogeneity between environments was in response to the 

data used in this application. In this case, the heterogeneity 
should be lower in groups with yield trial MSEs that do not 

exceed a ratio of approximately 7:1. Alternatively, Hu et al. 

(2013) showed that the consequences of MSE heterogeneity 

could be minimized by the use of a mixed model procedure 
with restricted maximum likelihood (REML) estimation. 

Modeling the between-yield trial residual heterogeneity can 

greatly improve the combined analyses of multi-location 

yield trials. 
 

Additive main effects and multiplicative interaction 

(AMMI) analysis 

 
According to the AMMI1 method, the variability in grain 

yield (mean 56%) explained by the environment (E) when all 

25 genotypes of each yield trial were used did not differ from 

the estimated variability obtained when only the genotypes of 

the WI class were used (mean 51%) (Table 4). However, the 

variability was different (α < 0.05) when the genotypes of the 

NI class were used (mean 68%). The genotypes of the NI 

class were less sensitive to environmental variation than the 
genotypes of the WI class. The variability explained by the 

genotype (G) and by the interaction (GEI) was lower than the 

variability explained by the environment (E). The variability 

due to the genotypes was not different among the classes of 
genotypes (NI+WI, NI and WI). Large proportions of the 

variability in the grain yield in wheat crops were previously 

demonstrated to be due to the environment (Silva et al., 2011; 

Zhang et al., 2013). The average variability explained by the 
GEI interaction (multiplicative effect) was higher for the WI 

genotypes than for the NI genotypes, whereas the joint class 

(NI+WI) demonstrated an intermediate variability. Similar 

results were obtained when the classes of genotypes were 
compared using statistical analyses that included the variance 

of GEI (𝑉𝐺𝐸𝐼), genotype mean heritability (ℎ𝑚𝑔
2 ) and selective 

accuracy of genotypes (SAg) of the REML method. These 

results demonstrate that there is a real advantage in separating 

the genotypes into two classes and analyzing each class 

separately. 

 

Correlations among statistics 

 
The proportion of variation due to the environment, the 

genotype and both statistics together did not differ among the 

classes (all genotypes, genotypes of the WI class and 

genotypes of the NI class). Furthermore, a positive linear 
correlation (Table 5) was observed between the WI+NI and 

WI classes, indicating that the removal of the genotypes in 

the NI class did not change the way that the environment 

affected the performance of the genotypes and/or the way that 

they interacted with the environment. The main advantage of 

analyzing the NI genotype separately was to maximize the 

ability to successfully identify genotypes with superior 

performances that were characterized by a heterogeneous 
response to the environment within groups; this ability is 

particularly important because adaptability and stability are 

related to the total set of genotypes included in the 

experiment. Furthermore, separate analysis of the genotypes 
is important because the effect of the residue on the selection 

of genotypes becomes non-significant.  

The proportion of variation explained by the environment 

(E) for the 58 groups was similar for all classes of genotypes, 
regardless of whether they interacted with the environment (r 

= 0.89, α < 0.05) (Table 5). However, the variation explained  
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Table 4. The mean proportion of variation (AMMI1 model) explained by the effects of environment (E), genotype (G), their 

interaction (GEI), variance of GEI (𝑉𝐺𝐸𝐼), genotype mean heritability (hmg
2 ), and accuracy of the selection of genotypes (SAg) in the 

analysis of the grain yield of 25 wheat genotypes using all genotypes (NI + WI classes), the genotypes in the NI class and the 

genotypes in the WI class; mean, minimum and maximum. 

Region Ng E G GEI Sum 𝑉𝐺𝐸𝐼 hmg
2   SAg 

25 genotypes (NI+WI Class) 

Mean - 56.1 18.7 13.1 87.9 0.11 0.63 0.79 

Minimum - 4.7 1.4 2.2 73.4 0.10 0.62 0.77 

Maximum - 91.9 58.7 36.6 98.0 0.13 0.66 0.81 

Classes of genotypes without interaction (NI Class) with the environment 

Mean - 67.5 18.1 6.8 92.4 0.02 0.77 0.87 

Minimum - 57.5 9.6 4.0 90.2 0.02 0.71 0.83 

Maximum - 80.5 23.0 9.7 94.1 0.02 0.81 0.90 

Classes of genotypes with interaction (WI Class) with the environment 

Mean - 50.8 17.5 18.9 87.2 0.22 0.48 0.65 

Minimum - 4.2 0.7 3.2 67.7 0.17 0.47 0.64 

Maximum - 89.9 63.7 51.5 98.6 0.28 0.49 0.67 

 

Table 5. Estimates of Pearson correlation coefficients for the mean yield (Yield), mean squared error (MSE), F-test value for the 

interaction (𝐹𝐺𝐸𝐼), the proportion of variation explained by the effects of the environment (E), the genotype (G), and their interaction 

(GEI), component of variance of GEI (𝑉𝐺𝐸𝐼), genotype mean heritability (ℎ𝑚𝑔
2 ) and selective accuracy of genotypes (SAg) between 

the classes of genotypes that interact with the environment (WI class), the classes of genotypes that do not interact with the 

environment (NI class) and the total (WI+NI class). 

Class WI+NI WI  WI+NI WI  WI+NI WI 
 Yield  MSE  𝐹𝐺𝐸𝐼 
WI 0.98*   0.73*   0.74*  

NI 0.99* 0.96*  0.89* 0.47*  0.39* 0.05 

 E  G  GE 

WI 0.98*   0.90*   0.90*  

NI 0.92* 0.891*  0.78* 0.47*  0.75* 0.76* 

 𝑉𝐺𝐸𝐼  ℎ𝑚𝑔
2   SAg 

WI 0.55*   0.75*   0.75*  

NI 0.34* 0.05  0.35* 0.11  0.29* 0.06 

* Significant by t-test (α < 0.05); n = 58 groups. 

 

by the genotype (G) was weakly correlated for the different 
classes of genotypes (r = 0.47, α < 0.05), which demonstrated 

that the NI and WI classes responded differently. The 

variation of the interaction (𝑉𝐺𝐸𝐼, r = 0.05), which was related 

to the magnitude of the GEI, and the values for ℎ𝑚𝑔
2  (r = 

0.11) and SAg (r = 0.06) differed by genotype class. Thus, 
the classification of genotypes into classes according to the 

occurrence of GEIs is reasonable because these estimators do 

not behave similarly. Karimizadeh et al. (2012) reported that 

genotype grouping was important because it allowed plant 
breeders to group a set of data in homogeneous subsets that 

facilitated the study of the GEI structure. Moreover, grouping 

the genotypes improved the identification of variation among 

the genotypes. Higher F values (𝐹𝐺𝐸𝐼 and 𝐹𝐺) indicate greater 

selective accuracy (SA) where 𝑆𝐴 = (1 − 1/𝐹)1/2 (Resende 

and Duarte, 2007). The NI class demonstrated a higher value 

for 𝐹𝐺  and therefore was characterized by a greater SA or a 

greater efficiency in identifying genetic values and 
performing multiple comparisons of the means of the 

genotypes. The WI class demonstrated a higher value for 

𝐹𝐺𝐸𝐼, indicating a higher accuracy for the estimation of the 

effects of the interaction and for the various statistics used to 
analyze the adaptability and stability. According to Resende 

and Duarte (2007), the accuracy of an experiment is very 

high when the SA > 0.90 (i.e., when F >5.26). The mean 𝐹𝐺𝐸𝐼 

in the WI class and the mean 𝐹𝐺  in the NI class were higher 
than this threshold, which indicated that the interaction in the 

WI class and the genotype effect in the NI class were 

estimated with great accuracy. In summary, the results and 

interpretations presented here indicate that the analysis of the 
experimental network to assess wheat genotypes should be 

performed separately for each genotype class. The 

conduction of hypothesis testing using the error (MSE) 

variances of each genotype class will improve the data 
quality of the yield trails. The occurrence of heterogeneity in 

error variance could be eliminated using this approach, 

leading to greater accuracy for the tests in the joint analysis 

of multi-environment yield trials (Hu et al., 2013). A single 
test to compare the means could be sufficient for the 

genotypes in the NI class, and the best genotypes for a given 

environment (i.e., one in which the genotype was evaluated 

or a similarly representative environment) could be quickly 
identified. In contrast, for the WI class the analysis should be 

used to classify genotypes in terms of their adaptability and 

stability and to decide which genotype should be used in 

environments with specific characteristics (e.g., superior, 
medium, inferior or overall). The joint analysis of yield trials 

in the absence of GEIs has the highest selective accuracy for 

the genotype effect. Furthermore, the joint analysis of yield 
trials for wheat genotypes that interact with the environment 

presents the highest selective accuracy for the GEI effect and 

a reduced selective accuracy for the genotype effect. This 

strategy also enables the selection of wheat genotypes for 
specific environments that is not confounded by genotypes 

without GEIs. 
 

Materials and Methods  
 

Description of data 
 

 
A total of 367 genotypes (34 cultivars and 333 inbred lines) 

were evaluated in 348 yield trials from 2010-2012. Each 

yield trial was formed by 25 genotypes that were grouped 

according to the year, test location and growing season to 
generate 58 groups of experiments. Table 1 shows the 

experiments conducted at 24 selected test locations. These 

sites are representative of the main wheat-growing regions in 
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Brazil. Some genotypes were exchanged during the three test 

years and sites due to the usual practice of discarding inferior 

genotypes and including new breeding lines. A mean of 14.7 

coincident genotypes (59%) was identified in the different 
yield trial groups. The most common genotypes in the yield 

trials were the following cultivars: BRS Guamirim (52 

groups); Quartzo and Mirante (36 groups); CD 114 (30 

groups); CD 150 (20 groups); and Fundacep Raízes, Onix 
and BRS Pardela (18 groups). Additionally, 196 genotypes 

were tested in one or two groups, 114 genotypes were tested 

in three to five groups, 32 genotypes were tested in six to 

eight groups, and 17 genotypes were tested in nine to twelve 
groups. 

All yield trials were conducted using a completely 

randomized block design with three replications. The plots 

consisted of six rows 5 m in length spaced 0.20 m apart for a 
total area of 6.0 m². The grain yield was measured by 

harvesting the whole area of each plot and then corrected to 

13% moisture (on a wet basis) and converted into kg ha-1. 

 

Genotype class identification 

 

A joint analysis of variance was performed (block within the 

environment, genotype, environment and GEI) for each yield 
trial group (25 genotypes in J environments). Genotype 

effects were assumed to be fixed, whereas the blocks, 

environment and GEI were assumed to be random effects. 

This analysis was performed using the Genes software (Cruz, 
2013). The overall mean, mean squared error (MSE), F-test 

for the genotype (𝐹𝐺) and its α-value   (𝛼𝐺) and F-test for the 

GEI (𝐹𝐺𝐸𝐼) and its α-value (𝛼𝐺𝐸𝐼) were recorded in a 

worksheet.  
The analyses of stability and adaptability were performed 

according to the Wricke method using the Genes software 

(Cruz, 2013). The known ecovalence (Wi) values for the 

genotype i = 1, 2, ..., I=25 were recorded from this analysis. 

The estimate Wi corresponded to the sum of squares of the 

environment effect of the estimates of the GEI effects for the 

genotype i (i.e., Wi = K ∑ τ̂ij
2J

j=1 ), where τ̂ij was the estimate 

of the GEI effect obtained in k replications (i.e., τ̂ij = Y̅ij. −

Y̅i.. − Y̅.j. + Y̅…), Y̅ij. was the estimated mean of the i-th 

genotype in the j-th environment, Y̅i.. was the estimated mean 

of the i-th genotype, Y̅.j. was the estimated mean of the j-th 

environment and �̅�… was the estimate of the overall mean. 

The significance of the Wi values (Ho: Wi = 0) was tested 

with the F-test (α < 0.05) using the F-test proposed by Araújo 

et al. (2012) (i.e., Fwi = (Wi/DFwi)/MSE)) with the degrees 

of freedom (DF) for the numerator and denominator equal to 
DFwi = (I-1)(J-1)/I and DFe = J(I-1)(K-1), respectively, and 

the MSE representing the mean square error of the joint 

analysis of variance. The hypothesis testing was performed in 

Excel using the Wi, MSE, DFwi and DFe values. The 
genotypes that did not contribute to the GEI (class NI 

genotypes) (i.e., the genotypes for which the hypothesis Ho: 

Wi = 0 was accepted with α > 0.05) were identified. Two 

classes of genotypes (i.e., NI and WI genotypes) were 
distinguished. Thus, we identified three classes of genotypes: 

NI class, WI class and NI+WI class. 

 

Statistical methods for adaptability and stability  
 

The joint analysis of variance was performed using the same 

model used for all genotypes (NI+WI) through the Genes 

software for each class of genotype (NI and WI). The 
estimated mean, MSE, F-test value for the effect of genotype 

(𝐹𝐺) and its α-value (𝛼𝐺), and the F-test value for the GEI 

(𝐹𝐺𝐸𝐼) and its α-value (𝛼𝐺𝐸𝐼) were recorded from these 

analyses. The results for the 58 groups were recorded in 

Excel to examine the frequencies and means of the statistics 

in general. The efficiency of separating the genotypes into 
two classes (WI and NI) within each yield trial group was 

estimated by averaging the Spearman correlation coefficients 

(rS) from the yield rank of the genotypes between all pairs of 

environments. The ratio of significant correlations (α < 0.05; 
two-sided test) was also determined between all pairs of 

environment types for each genotype class. We calculated the 

proportion of yield trials with non-normal error distributions 

(Shapiro-Wilk test, α < 0.05) within each group and for each 
genotype class. The proportion of groups of yield trials in 

which the MSE between the environments was heterogeneous 

was also calculated (Bartlett test, α < 0.05) for each genotype 

class. Features available in the R software (R Development 
Core Team, 2014) were used to calculate these statistics. The 

adaptability and stability analyses were performed for all 

genotypes and classes (WI and NI) with the additive main 

effects and multiplicative interaction (AMMI1) model, which 

combined an analysis of variance with principal component 

analysis to adjust for the main effects (genotypes and 

environments) and the GEI effects, respectively (Zobel et al., 

1988). The AMMI1 model was represented by the equation 

εijρijα jkγik

n

1k
e jgi

μ
ij

Y λk



 , where 

ij
Y  

was the mean response of the i-th genotype (i = 1, 2, ..., I 

genotypes) in the j-th environment (j = 1, 2,..., J 

environments),  was the overall mean of the yield trial, 
ig  

was the fixed effect of the i-th genotype, 
je  was the fixed 

effect of the j-th environment, 
k


was the k-th singular value 

(scalar) of the original matrix interactions (denoted by GEI), 

ikγ  was the element that corresponded to the i-th genotype in 

the k-th singular vector of the GEI matrix column, 
jk  was 

the element that corresponded to the j-th environment in the 

k-th singular vector of the GEI matrix row, 
ijρ  was the noise 

associated with the expression (ge)ij of the classical 

interaction between the i-th genotype and the j-th 

environment, and 
ij was the mean experimental error. The 

percentage of explanation (contribution) captured by the main 
effects of the environment, genotype and the first main 

component of the GEI (Zobel et al., 1988) were determined. 

This analysis was performed using the GGE biplot software 

(Yan, 2001). 
The genetic parameters, including the variance of the GEI 

(𝑉𝐺𝐸𝐼), the genotype mean heritability (hmg
2 ) and the selective 

accuracy of genotypes (SAg), were determined using REML 

analysis. This statistical model was described by Resende 

(2007) and was expressed by the equation 𝑌 = Xr + Zg +

Wi + ε, where 𝑌 was the data vector, r was the vector of the 

effects of replication (fixed effects) summed to the overall 

mean, g was the vector of the genotypic effects (random 

effects), i was a vector of the GEI (random effects) and 𝜀 was 

the vector of the errors or residues (random effects). 𝑋, 𝑍 and 

𝑊 represented the matrices of the incidence of the respective 

effects. The genotype mean heritability (hmg
2 ) was estimated 

through the inverse of the coefficients of the mixed model 

equation (MME) matrix (Resende, 2007). The accuracy of 
the genotype selection (SAg) was estimated by the equation 

SAg = (hmg
2 )

0,5
. Using the AMMI1 model, the proportion of 

variance explained by the environment (E), genotype (G) and 

GEI (GE), the sum of these variables (E+G+GE), the REML, 
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the variance of the GEI (𝑉𝐺𝐸𝐼), the genotype mean heritability 

(hmg
2 ) and the selective accuracy of genotypes (SAg) were 

used to determine the minimum, maximum and the overall 

means. Pearson’s correlation coefficients were calculated for 

the estimated grain yields and the statistics (MSE, 𝐹𝐺𝐸𝐼, E, G, 

EG, sum, 𝑉𝐺𝐸𝐼, ℎ𝑚𝑔
2  and SAg) between each genotype class 

(NI + WI class, WI class and NI class). 
 

Conclusion 

 

The grouping of genotypes into different classes provided 
valuable information on the dynamics of the GEI, which 

could enable plant breeders to maximize the efficiency of the 

selection and the recommendation of stable, widely adapted 

genotypes. The highest selective accuracy for the genotype 
effects was obtained for the joint analysis when there the GEI 

was not present. The joint analysis of trials for wheat 

genotypes that interacted with the environment presented the 

highest selective accuracy for the GEI effect and a reduced 
selective accuracy for the genotype effect. 
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