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Abstract  

 

Seed availability is a limiting factor in early generations of wheat breeding programs, creating difficulties for the performance of 

replicated trials and leading to selection errors attributed to environmental effects. Thus, the objectives of this study were to 

determine the percentage and spatial distribution of check plots in the experimental area and to propose criterion based on a 

geostatistical analysis for selecting promising non-replicated wheat lines based on their grain yield. In this study, grain yield data 

(GYo) were obtained from 300 plots, arranged in a 15 row × 20 column matrix, from a uniformity trial (one genotype). Multiple 

scenarios were generated by varying the percentage of check plots, which were randomly determined with 1000 re-samplings to 

estimate grain yield (GYe) for non-sampled plots using an ordinary kriging method. The efficiency of the estimation method was 

assessed by calculating the Pearson's correlation coefficient and the mean square error between the GYo and GYe values for each re-

sampling. Various spatial distributions of the check plots were evaluated using distinct models for semivariogram fitting. The 

correlation between the observed and the ordinary kriging-estimated values in the test area plots demonstrates that this approach can 

be used to identify superior lines for allocation with non-check plots. The estimated results (generated from the check plots) can be 

used as a reference point for the observed values of a given line. A systematic distribution of check plots in which the entries are 

alternated with and without checks in the sequence of rows or columns was the best geostatistical approach.  

 

Keywords: Evaluation method; Triticum aestivum; semivariogram; spatial dependence; spatial fitting. 

Abbreviations: GYe_grain yield estimated; GYo_grain yield data; HW_half-width of the confidence interval; LL_lower limit; 

MSE_ mean square error; Nc_number of check plots; OKr_ordinary kriging; r_Pearson's linear correlation coefficient; SD_spatial 

dependence; UL_upper limit.  

 

Introduction 
 

The advances achieved through breeding combined with 

management techniques have enabled an increase in wheat 

yield from 700 to 2,300 kg ha-1 from 1940 to the present in 

Brazil (Conab, 2014). However, the genetic gains are 

decreasing, mainly because of the narrow genetic base, 

prompting the search for new approaches to identify superior 

genotypes. In this context, it has been a challenge for 

breeders to continually provide wheat cultivars with high 

grain yield potentials.  

In the early generations of wheat breeding programs, the 

limited availability of seed is one of the major factors that 

limits the use of designs with replicated plots. At present, 

inbred lines are cultivated in head-rows or small plots without 

replication. Hence, selection is accomplished by comparing 

the performance of these lines with standard or control 

cultivars that are randomly distributed throughout the 

experimental area. The authors hypothesize that this approach 

might not be the most efficient selection methodology. 

Therefore, the most efficient selection techniques should be 

investigated to identify and realize small gains in grain yield 

for lines that are still in the pre-trial phase. Spatial statistical 

analysis based on experiments with replicates has been 

applied in plant breeding to improve genotype selection for a 

long time. Briggs and Shebeski (1968) reported a significant 

correlation (0.88) between check plots spaced at 2.7 m apart 

and that this association decreased as the distance between 

plots increased. Other studies also have indicated that the 

efficiency of genotype selection can be improved by 

employing spatial methods of statistical analysis (May and 

Kozub, 1995; Kehel et al., 2010). Another spatial approach 

for analyzing replicated experiments is the Papadakis 

method. This design uses the mean of the estimated 

experimental error, which is calculated using adjacent plots 

as covariates, to decrease the variance of the experimental 

error. Its use has been effective for improving the values of 

indicators of experimental precision in soybeans (Storck et 

al., 2008), wheat trials (Benin et al., 2013) and other crops. 

An alternative method is the use of a moving average (Stam, 

1984; Weber and Stam, 1988; Edmé et al., 2007), where the 

covariate is estimated as the mean of the values of the 

neighboring plots. This approach has been shown to be 

efficient for the selection of wheat (Townley-Smith and 

Hurd, 1973) and soybean lines (Diers et al., 1991). Applying 

spatial analysis to an augmented block design, Müller et al. 

(2010) also demonstrated that the linear variance model 

(autoregressive variance-covariance structure for rows and 
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columns) and the spherical model (with nugget) were the 

most promising. Alternative methodologies have been studied 

in an attempt to reduce the effect of spatial variation on plots. 

A modified augmented design that uses check plots as a 

fertility index is convenient for the measurement of the 

environmental heterogeneity and increases the efficiency of 

the selection process (Snijders, 2002). Similar results have 

been reported by Morejón and Díaz (2013) who combined 

multivariate analysis methods with a Latin square design to 

achieve a higher accuracy for the selection of rice lines.  

Geostatistical resources, including semivariograms and the 

subsequent estimates of values for plots using the kriging 

method, may be employed to use a portion of the plots as a 

control and the remaining plots for non-replicated lines 

(Samra et al., 1990). In this study, the authors analyzed the 

data from 276 plots that were arranged in a grid of six rows 

and 51 columns. In columns 1, 11, 21, 31, 41 and 51, a 

standard genotype (control) was cultivated, while 

unreplicated lines were cultivated in the remaining plots 

(90%). The authors used the residual values to estimate an 

index value for each plot using the kriging method. The data 

were expressed as a percentage of the index value to fit the 

observed data as a function of environmental variability. 

Notably, neither previous studies nor applications that 

include this approach are known.In contrast, several studies 

have tested the use of the ordinary kriging (OKr) method to 

evaluate the spatial variability of soil properties in order to 

estimate unobserved points (interpolation) and to draw spatial 

variability maps (Camargo et al., 2008; Oliveira Júnior et al., 

2011; Santos et al., 2012; Silva Júnior et al., 2012a,b). This 

method is a great local interpolator and is calculated using the 

structural properties of semivariograms (nugget, threshold 

and range), with the minimum variance of its estimate and 

with no trend (Isaaks and Srivastava, 1989; Pebesma, 2004). 

As an application of this methodology, based on a 275-point 

grid, Angelico (2006) observed that a co-kriging method 

could be employed to estimate the pH and Mn with a high 

accuracy using the OM content as a covariate. The use of 

geostatistical methods, i.e., the kriging method, to analyze the 

spatial distribution of the check plots within the non-

replicated lines enables the establishment of better analytical 

approaches. Thus, the analysis of a standard cultivar, that is 

sensitive to variations in soil heterogeneity, allows for the 

estimation of the values of neighboring plots that are 

occupied by different lines. The efficiency of using 

geostatistics to estimate the values of plots occupied by lines 

(without replicates) from the values of plots occupied by the 

same standard cultivar (control), using semivariogram 

parameters, is not well known. In addition, the appropriate 

proportion and positions that are allocated the check plots to 

infer the expected production of plots with lines is also not 

known. Therefore, the objectives of the present study were to 

determine the percentage and spatial distribution of check 

plots in the experimental area and propose criterion based on 

a geostatistical analysis for selecting promising non-

replicated wheat lines based on their grain yield.  

 

Results and Discussion  

 

Description of data  

 

The grain yield ranged from 2.286 to 6.852 t ha-1 with a mean 

of 4.933 t ha-1, a standard deviation of 0.817 t ha-1, and an 

acceptable coefficient of variation (16.5%). A normal 

distribution of values was confirmed using the Kolmogorov-

Smirnov test (p=0.81). These inferences indicate that an 

appropriate standard yield and the normality of the data 

support the validity of this study. The yield contours for the 

10 yield classes generated using the OKr process (Fig 1D) 

also demonstrate that this experimental area is suitable for the 

calibration study, because there are heterogeneity between 

plots and spatial dependence.  

 

Determination of the percentage of check plots  

 

The mean, the lower and upper limits of the "bootstrap" 

confidence interval (1-p= 0.95) of the Pearson's correlation (r, 

Fig 2) and the mean square error (MSE, Fig 3) between the 

observed (GYo) and estimated (GYe) values in the plots with 

trial lines were correlated to the percentage (p) of check plots 

for each scenario. With an increase in the percentage of check 

plots, there was a significant second-degree polynomial 

function (p<0.05) in terms of the correlation coefficient (r = 

0.5461 + 0.00219p - 0.0000091p2) and a significant second-

degree polynomial function in terms of the MSE (MSE = 

0.4899 – 0.002167p + 0.0000096p2), with maximum r values 

and minimum MSE values for p>100%. However, the width 

of the "bootstrap" confidence interval (LL-UL) for the 

correlation coefficient (r) and MSE was minimal when 

p=51% and p=50% for r and MSE, respectively. The increase 

in the width of the estimates for r and MSE from the 

midpoint (p= 50%) was attributed to a decrease in the sample 

size, the number of check plots with trial lines used to 

estimate the r, and the MSE statistics, which was predictable 

based on statistical theory.  The ideal proportion of 

checks/entries can vary according to several factors, such as 

the availability of seeds and spatial heterogeneity, among 

others. Müller et al. (2010) recommended the proportions of 

1/8 and 1/5, and the latter was also recommended by Martin 

et al. (2006). In the current study, it was not possible to use 

smaller values for p (p< 30%) because the sampling 

procedure for a smaller number of check plots may have 

selected for plots that were spatially grouped and, 

consequently, to flaws when evaluating larger areas; a 

smaller number of check plots may have also inhibited the re-

sampling process because of the indeterminacy of estimating 

the semivariogram parameters. Using a proportion of 10% 

check plots and a similar methodology, Samra et al. (1990) 

also reported a low efficiency for the selection of wheat lines. 

For greater values of p (p> 80%), the applicability of the 

process is no longer feasible because of the costs of 

evaluating the controls. Hence, breeders could assess the real 

gain of using the selection method proposed in this study. 

Further studies should select inbred lines using traditional 

methods in addition to the methods proposed in this study in 

order to enable proper comparisons. Analyzing the outcomes 

of the 11 simulated scenarios, we verify that using a 

percentage of 50% check plots was sufficient to estimate the 

values of the non-check plots. This determination was based 

on the mean and confidence interval of the correlation 

coefficient and the mean square error for the remaining plots 

in which the trial inbred lines were placed. If a lower p is 

used, the efficiency width increases and can result in a lower 

(or higher) accuracy when selecting lines because of the 

increased unpredictability of the efficiency. 

 

Approach for line selection 

 

Table 1 provides the Pearson's correlations observed between 

the real values and those estimated for the non-check plots 

using OKr. The parameters (nugget, threshold and reach 

effects) of the semivariogram were fitted using different 

models (exponential, Gaussian and spherical) and different 

spatial distributions of the check plots (random, strips and  
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Table 1. Percentage (n%) of check plots, the estimated Pearson's linear correlation coefficient (r) between the observed grain yield (t 

ha-1) and the yield estimated by applying ordinary kriging with different semivariogram models (Exponential, Gaussian and 

Spherical), estimates of the nugget (semivariance), threshold (semivariance) and range (m) effects, and estimates of the spatial 

dependence (SD) for the evaluated check plot spatial distributions within the wheat line trial area.  

Type / n% Statistic Exponential Gaussian Spherical 

Random / 50 r 0.676* 0.693* 0.702* 

 Nugget 0.416 0.432 0.404 

 Threshold 0.495 0.485 0.476 

 Range 6.98 3.51 2.73 

 SD+ Weak Weak Weak 

Random 1 to 10 / 50 r 0.509* 0.499* 0.509* 

 Nugget 0.888 0.301 0.669 

 Threshold 20.04 666.2 4.207 

 Range 1831 243.1 139.6 

 SD Strong Strong Strong 

Random 11 to 20 / 50 r 0.732* 0.729* 0.731* 

 Nugget 1.027 1.191 1.007 

 Threshold 92.11 3600 15.19 

 Range 3192 234.8 205.1 

 SD Strong Strong Strong 

Strips / 46 r 0.449* 0.415* 0.410* 

 Nugget 0 0.182 0.086 

 Threshold 0.445 0.424 0.422 

 Range 3.40 2.83 2.85 

 SD Strong Moderate Strong 

Strips 1 to 10 / 52 r 0.288* 0.320* 0.328* 

 Nugget 0 0.045 0.043 

 Threshold 0.344 0.311 0.311 

 Range 3.12 1.58 2.24 

 SD Strong Strong Strong 

Strips 11 to 20 / 52 r 0.459* 0.554* 0.443* 

 Nugget 0 0.130 0.001 

 Threshold 1.045 0.709 0.677 

 Range 7.84 2.44 2.98 

 SD Strong Strong Strong 

Systematic / 50 r 0.691* 0.694* 0.689* 

 Nugget 0 0.051 0.330 

 Threshold 0.373 0.865 0.575 

 Range 2.40 1.15 2.62 

 SD Strong Strong Moderate 

Systematic 1 to 10 / 50 r 0.484* 0.484* 0.526* 

 Nugget 1 1 1 

 Threshold 1.201 1.201 1.201 

 Range 9.00 5.10 3.00 

 SD Weak Weak Weak 

Systematic 11 to 20 / 50 r 0.684* 0.689* 0.718* 

 Nugget 1 1 1 

 Threshold 1.424 1.424 1.424 

 Range 9.00 5.10 3.00 

 SD Moderate Moderate Moderate 

* Significant according to the t-test (p < 0.01); +SD (< 25% = Strong; 25-75% = moderate; > 75% = weak) 

 

systematic) in the trial area and in the two portions of the trial 

area. Using all the plots (N = 300) in the trial area and a 

systematic spatial distribution of 50% check plots, the 

correlation coefficient between the estimated values (GYe), 

based on OKr and exponential models, and the observed 

values (GYo) was significant (r= 0.691, p< 0.01). These 

results also agree with those reported by Müller (2010), who 

reported that a systematic arrangement is more effective. This 

result is attributed to the strong spatial dependence between 

neighboring plots in the trial area (SD = nugget effect / 

threshold effect, as a percentage, which was less than 25%) 

(Cambardella et al., 1994). The precision of the moving 

average estimator for genotypic values is considered 

satisfactory for a neighborhood when the radius is slightly 

greater than twice the interplant distance of the circular area 

(Stam, 1984). This value is equivalent to the range (2.4 

distances between plots) obtained in this study, when using 

the exponential model for a systematic spatial distribution of 

check plots. Estimating the first order spatial autocorrelation 

(ρ) (Paranaíba et al., 2009) for the 15 plots in each of the 20 

columns of the trial area, the mean estimate was ρ = 0.32 and 

the "bootstrap" confidence interval (1-p = 0.95; 3,000 re-

samplings) had limits of ρ = 0.22 and ρ = 0.42. These results 

also indicate a well-defined spatial dependency for the trial 

area and can account for the significant correlation between 

the observed values and the values estimated using the OKr 

process. Significant correlation between the observed and the 

estimated values for the test area plots was verified, 

demonstrating that this information can be used to identify 

superior lines. In practice, if different wheat lines are allocated  
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Fig 1. Model of a random spatial distribution (A, 50% check plots), model of a spatial distribution in strips (B, 46% check plots), and 

model of a systematic spatial distribution (C, 50% check plots) of check plots ("0") in the test area to evaluate grain lines and grain 

yield results (D) using an ordinary kriging method.  

 

into plots in which the check lines are not allocated in the 

initial selection process (progeny), or a different line is 

allocated to each non-check plot, it is possible to use the GYe 

results (generated from the check plots) as a reference point 

for the observed values (GYo) of a line. In the process of 

estimating the plot values (GYe), the variance and half-width 

of the confidence interval (HW, 1-p = 0.95) of each plot also 

are estimated (see the R commands in Supplementary data). 

We could establish the following criterion: if "GYo > GYe + 

HW" or if "GYo < GYe - HW (for undesirable 

characteristics)", thus the line should be selected as more 

favorable than expected based on its estimated value (per 

point and interval) compared to the neighboring check plots, 

as determined using the range of the semivariogram. This 

criterion can be altered depending on the desired selection 

index when selecting one group of lines, or depending on 

whether the elevated values for a certain characteristic are 

favorable or unfavorable. The efficiency of the selection 

process relies on the correlation between GYo and GYe. In 

the current study, this efficiency was quantified by 

calculating the Pearson’s correlation (r = 0.691). The 

efficiency of the selection process may change depending on 

the genotype used as the check line (adaptability and 

sensitivity of the genotype in response to variations in soil 

heterogeneity), the history of the trial area, the model used to  

fit the semivariogram (exponential, or Gaussian or spherical), 

the number of plots, and the format of the area, among others. 

The R programming codes used for selection based on the 

criteria GYo > GYe + HW, or GYo < GYe - HW for 

unfavorable characteristics, can be modified and are given in 

the appendix (R code in Supplementary data). The commands 

can be rearranged for any type of check plot spatial 

distribution and for any format and size of data matrix (rows 

and columns). In a study that considered a spatial distribution 

with 10% check plots and 90%  non-replicated lines (Samra 

et al., 1990), the authors reported that an index value could be 

obtained only with check plots. Even after noting the 

efficiency of such a method compared to other methods, this 

strategy requires additional verification of its applicability for 

breeding. In fact, the method presented in our study appears 

to validate that proposed by Samra and to be applicable to 

breeding evaluations based on the reliability given by already 

established geostatistical methodology. According to the 

yield data generated for 89 points in a 22-ha area of wheat, 

Roman et al. (2008) reported a moderate spatial dependence. 

Estimates of the values for non-sampled sites were 

determined using an OKr method, and the observed and 

estimated results are presented as a scatterplot. In this 

scatterplot, the width of the variation of the estimated values 

is approximately one quarter of the width of the variation of 

the observed values, implying a low correlation or low 

efficiency. In contrast, a positive and relatively high 

correlation coefficient (r= 0.691) was observed between GYo 

and GYe in the present study. The efficiency of the procedure 

when using a random spatial distribution of check plots 

depends on the sampled positions in each case. The results of 

the study for the random spatial distribution (Table 1, Fig 1A) 

indicate that the efficiency is similar to that obtained for the 

systematic spatial distribution, although there are differences 

in the SD and in the estimates for the semivariogram 

parameters (nugget, threshold and range effects) between the 

models for semivariogram fitting. Therefore, this type of 

spatial distribution can be employed to validate studies of 

various scenarios for determining an appropriate percentage 

of check plots. Despite the better appearance in the field and 

the more practical arrangement for controlling planting and 

harvesting, the spatial distribution of check plots in the strips 

(Fig 1B) was associated with a lower efficiency (lower value 

for r), even with a strong (exponential and spherical model) 

or moderate (Gaussian model) spatial dependence between 

the check plots. The magnitude of the correlation between the 

observed and estimated values may differ based on changes 

in the position or the direction of the strips; hence, this type 

of spatial distribution can be more vulnerable to variation 

compared to a systematic approach. When the trial area (300 

plots) is divided into two portions of 150 plots each to 

simulate a smaller area, the results indicate a difference in 

efficiency between the two portions (Table 1). The 

differences in the semivariogram parameters and in the 

efficiency (r) occur for all three types of spatial distributions 

(random, strips and systematic) for the check plots. These 

differences are believed to be attributed to the smaller 

numbers of non-check plots in each individual portion. The 

widths of the variation (UL - LL) in r (Fig 2) and the 

variation in the MSE (Fig 3) increased as the number of non-

check plots decreased. Müller et al. (2010) also verified that 

in several cases, greater block sizes result in lower MSEs. 

Therefore, the impact of a reduction in area is similar, and the  
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Fig 2. Mean of the estimate of the Pearson's correlation coefficient between the observed and estimated values using an exponential 

model and the ordinary kriging method as a function of the percentage (p) of check plots, including the lower limit (LL) and upper 

limit (UL) of the "bootstrap" confidence interval (1-p= 0.95; 1,000 re-sampling). 

 

 
 

Fig 3. Mean of the mean square error (MSE) between the observed and estimated values using an exponential model and the ordinary 

kriging method as a function of the percentage (p) of check plots, including the lower limits (LL) and upper limits (UL) of the 

"bootstrap" confidence interval (1-p= 0.95; 1,000 re-sampling. 

 

most extreme r or MSE values may occur in association with 

the smallest numbers of plots (smaller sample sizes). 

Therefore, the efficiency of the selection process may depend 

upon the positioning of the group of check plots within the 

larger area. However, it cannot be concluded that the 

semivariogram model performed better than the other models 

because the exponential, Gaussian and spherical models 

produced similar results (similar correlation coefficients) 

from the data set used in this study. 

 

Materials and Methods  

 

Plant material  

 

The wheat experiment, cultivar Marfim, was sown on June 

20, 2013 in the experimental area of the Federal 

Technological University of Paraná, which is located at 

26º10'S, 52º41' W and is 730 m above sea level. The seeding 

density was 350 viable seeds per square meter. The base 

fertilization consisted of 30 kg N ha-1, 60 kg P2O5 ha-1, 60 kg 

K2O ha-1 and an additional 70 kg N ha-1 in the form of urea 

(45% N), which was applied at the beginning of tilling (Z2.2 

on the Zadoks scale). The controls for weeds, insects and 

diseases were performed based on the technical 

recommendations for the wheat crop. At wheat maturity, the 

grain yield data were obtained from 300 plots that were 

arranged in the field in a 15 row × 20 column matrix (Fig 1). 

Each plot consisted of five rows that were 1.0-m long and 

spaced 0.20 m apart (1 m2 area). The grain yield (GYo) was 

determined by weighing the grains of each plot and adjusting 

the weight to 13% of moisture content (wet basis) and then 

converting to kg ha-1.  

 

Geostatistical analysis 

 

The grain yield data were georeferenced by the row number 

(1 to 15) and column number (1 to 20), as a matrix 15 x 20.  

The experimental semivariogram is estimated by γ(h) =
1

2N(h)
∑ {Z(xi) − Z(xi + h)}2N(h)

i=1  for the h class distance and 

N(h) represents the number of the regionalized variable pairs 

separated by an h distance.  

Features available in the R software (R Development Core 

Team, 2013) were used to calculate the semivariogram, and 

the functions available in the "gstat" package (Pebesma, 

2004) to estimate the parameters of the exponential model  

γ(h) = Co + C1[1 − e−3(h/a)], for all h; the Gaussian model 

γ(h) = Co + C1[1 − e−3(h/a)−3(a/h)2
], for all h; and the 

spherical model γ(h) = Co + C1 [
3

2

h

a
−

1

2
(h/a)3], for 0≤h≤a, 

and γ(h; θ)= 𝐶𝑜 + 𝐶1 for a<h. In “gstat” package, a iterative 

process is used until convergence to obtain estimates for the 
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nugget (Co), threshold (Co+C1) and range effects (a) (Isaaks 

and Srivastava, 1989).  

Using an ordinary kriging (OKr), a non-observed xo point can 

be predicted. We calculate the n by n distances matrix (D) 

and the estimated value (GYe) for this point as:   

 

GYe = M + (Co+C1) ro´ S (GYo-M), where:  

M = (1´ S 1) (1´ S GYo),   1´ = [1  1  1 … n]   

ro = exp(-(Do/a)2),  Do is n-vector of distances from xo point;   

S = Co In + (Co+C1) R,   n x n variances-covariances matrix; 

R = exp(-(D/a)2),  is the matrix with distances between all 

points and with 1´s in the diagonal;  

GYo = the n observed values.  

The estimated variance of GYe is: Var(GYe) = (Co+C1) - 

(Co+C1) ro´ S (Co+C1) ro  

and the half-width of the confidence interval (HW) can be 

calculated using the standard normal distribution.  

 

Determining percentage of check plots 

 

The percentage (p) of check plots ranged from p= 30% to p= 

80% at 5% intervals (a total of 11 scenarios was considered). 

The number of check plots (Nc) for each scenario was 

calculated using the equation Nc = pN/100; where, N = 300 

plots in the trial area (15 rows × 20 columns). For each 

scenario, repeated 1,000 times, the GYo data for the Nc 

check plots were resampled (without replacement). A 

semivariogram was generated for each set of Nc check plots, 

and the exponential model was adjusted to obtain estimates 

for the nugget, threshold and range effects. Features available 

in the R software (R Development Core Team, 2013) were 

used to calculate the semivariogram, and the functions 

available in the "gstat" package (Pebesma, 2004) of the R 

software were used to estimate the parameters of the 

exponential model of the semivariogram. Subsequently, the 

estimates per point and per interval were generated for the N-

Nc non-check plots (plots with inbred lines), a process known 

as ordinary kriging (OKr) (Isaaks and Srivastava, 1989), 

using commands in the R software environment (R 

commands in Supplementary data). The GYo was designated 

as the value for the wheat grain yield observed in one non-

check plot, and the GYe was the respective estimated value 

for the yield for this plot, based on OKr. To evaluate the 

efficiency of the estimation process for the non-check plots 

for each resample of 11 scenarios, the Pearson's linear 

correlation coefficient (r) between the GYo and GYe was 

calculated, with (N-Nc)-2 degrees of freedom. The mean 

square error (MSE) was also calculated as MSE =
(1/n) ∑ (GYo − GYe)2n

i . The r and MSE values are the 

measurements for the validation of the estimation process, 

which can only be performed in cases where the observed 

data (GYo) from the non-check portion used to generate the 

estimates (GYe) are available. In each scenario, the mean and 

0.025 (LL, lower limit) and 0.975 (UL, upper limit) quantiles 

were calculated based on 1,000 estimates of r and MSE, 

which were estimated using the "bootstrap" (p=0.05) 

(Ferreira, 2009) interval for the mean, r and MSE. These 

estimates (mean, LL and UL) for r and the MSE are 

presented graphically with the percentage (p) of the check 

plots, in an attempt to identify, using the lower width of the 

confidence interval, an appropriate range of values for p. All 

of the analyses were performed in the R software 

environment (R Development Core Team, 2013) and 

Microsoft Office Excel.  

 

 

 

Procedure for selecting lines  

 

Tests to evaluate the normality of the distribution of values 

(Kolmogorov-Smirnov) were performed. Based on the 

previously defined suitable percentage (p) of check plots, 

three types of spatial distributions for the plots in the trial 

area were simulated. A random distribution was one 

distribution evaluated to determine the percentage of check 

plots as described. Fig 1A shows, in part, a potential scenario 

for a design with a random distribution of 50% check plots. 

The trial area was divided into two portions: one portion 

included columns C1 to C10 and the other portion included 

columns C11 to C20 (Fig 1A), although these two groups did 

not necessarily contain the same percentage of check plots. 

This division was established to evaluate the effects of using 

a smaller trial area. The second type of spatial distribution of 

check plots evaluated was check plots in strips, including 

strips of check plots on the borders and inner strips (Fig 1B), 

for a total of 46% check plots. For this type of spatial 

distribution, the trial area was also divided into two portions. 

The first portion, columns 1-9 was arranged the same as in 

Fig 1B, while column 10 was the same as column 20. The 

spatial distribution of the second portion (columns 11-20) of 

the check plots was the same as the first portion. This portion 

(smaller area) contains a higher percentage of check plots (p= 

52%). The third type of spatial distribution of check plots was 

a systematic distribution consisting of a control plot followed 

by a non-check plot, followed by a control plot, and repeated 

(Fig 1C), resulting in 50% control plots. For this type of 

spatial distribution, the trial area was also divided into two 

portions, applying the same systematic spatial distribution 

criteria to the distribution of check plots on each side, with a 

total of 50% check plots. For each type of spatial distribution 

of check plots and for each trial area size, semivariograms 

were generated, and exponential, Gaussian and spherical 

models were adjusted (Isaaks and Srivastava, 1989; Pebesma, 

2004). Using the nugget (Co) and threshold (Co+C1) effects, a 

spatial dependence (SD) coefficient was estimated: SD = 

100Co/(Co+C1). The spatial dependence is strong when SD is 

< 25%, moderate when 25% < SD < 75%, and weak when 

SD is > 75% (Cambardella et al., 1994).  The Pearson’s 

correlation coefficient (r) between the observed (GYo) and 

estimated (GYe) values was also calculated for the non-check 

plots. Correlation values can be used to predict the efficiency 

of the estimation or validation method, given that it is not 

possible to estimate this value in real cases of line 

evaluations. The R software was used for this analysis, 

including the functions available in the "gstat" package 

(Pebesma, 2004). The commands used to select lines are 

available as supplementary information (R commands in 

Supplementary data 1). In this application, the user prepares a 

text file of data where the first column indicates the plot row 

number; the second column indicates the plot column number 

of sort; the third column contains the values for the grain 

yield; and the last column identifies the classification of the 

plot (zero for the check plots and a number of the line being 

evaluated for the remaining plots). At the end of processing, 

the same input data were reported (row, column, GYo and 

classification), in addition to the estimates for the values 

(GYe) and the half-width of the confidence interval (HW, p= 

0.05) for all of the plots and the suggestions for selection. 

Lines were selected in which GYo > GYe + HW for 

favorable characteristics, or GYo < GYe - HW for 

unfavorable characteristics.  
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Conclusions 

 

The efficiency of selection can be maximized by designating 

50% of the experimental area for check plots. A systematic 

spatial distribution in which plots are alternated with and 

without checks in the sequence of plots is the best approach 

for a non-replicated design. The correlation between the 

observed and the ordinary kriging estimated values in the test 

area plots demonstrates that this information can be used to 

identify superior lines allocated to the parcels with non-check 

plots. It is possible to use the estimated results (generated 

from the check plots) as a reference point for the observed 

values of a line.  
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