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Abstract 

 

Fruit softening in nectarine is a limiting factor for their extended postharvest life with best quality. Effects of postharvest exogenous 

applications of 1-MCP (1 µL L-1), ethylene (10 µL L-1) or 1-MCP (1 µL L-1) followed by ethylene (10 µL L-1) for 12 h on ‘Arctic 

Pride’ nectarine were investigated for changes in fruit softening and quality during ripening at ambient temperature (20 ± 1o C; 60-
65% RH). Untreated fruit were kept as control and stored at the same conditions i.e. 20 ± 1o C; 60-65% RH. 1-MCP application 

significantly reduced ethylene production and activities of fruit softening enzymes, including pectin esterase (PE), endo-1,4-β-

glucanase (EGase), endo-polygalacturonase (endo-PG), exo-polygalacturonase (exo-PG) as compared to ethylene treatment or 

control. A significant reduction in fruit weight loss, fruit softening, total sugars and organic acids was also observed with the 
application of 1-MCP, as compared to ethylene-treated or control fruit. Exogenous application of 1-MCP maintained individual 

sugars (glucose, fructose and sucrose) and organic acids (malic, shikimic, succinic, and citric acid) at higher levels and delayed 

ripening of nectarine fruit, as compared to ethylene or untreated fruit during ripening. In conclusion, 1-MCP application delayed fruit 
ripening by inhibiting ethylene production and the activities of fruit softening enzymes and maintained the quality of nectarine fruit 

as compared to ethylene-treated or control fruit during ripening. 

 

Keywords:  Endo-1,4-β-glucanase;  Endo-polygalacturonase; Ethylene; Exo-polygalacturonase; fruit ripening; 1-MCP; pectin 
esterase; Prunus persica (L.) Batsch. cv nectarine. 

Abbreviations: EGase _endo-1,4-β-glucanase; Endo-PG_endo-polygalacturonase; Exo-PG_exo-polygalacturonase; 1-MCP_1-

methylcyclopropene; PE_pectin esterase.  

 

Introduction 

 

Nectarine being climacteric fruit ripen very quickly at 

ambient conditions. Rapid fruit softening during ripening, 
consequently limit their postharvest storage and shelf life 

(Ortiz et al., 2011). Softening of these fruit involves series of 

changes in the polysaccharide of middle lamella and primary 

cell wall (Fischer and Bennett, 1991). Possible reasons for 
fruit softening are hydrolysis of polysaccharides and 

modification in the polymers bonds established with turgor 

alterations which results in increased cell separation and 

softening of the cell wall (Brummell, 2006). However, 
softening condition differs among fruits. In peach and 

nectarine, fruit softening has been found to be associated with 

a depolymerization of matrix glycans both loosely and tightly 

attached to cellulose and a loss of galacturonic acids from all 

cell wall fractions (Ortiz et al., 2011). Softening results from 
increased activities of cell wall degrading enzymes including 

pectin esterase (PE),  endo-1,4-β-glucanase (EGase),  exo-

polygalacturonase (exo-PG)  and  endo-polygalacturonase 

(endo-PG) during ripening in peach (Brummell et al., 2004; 

Ullah et al., 2013).  
Ethylene significantly regulates ripening of climacteric fruit 

which consequently influences their eating quality attributes 

such as appearance, texture, colour, flavour and fruit 

softening (Khan et al, 2007; Yang et al., 2013). Ethylene has 
been involved in partial control of fruit ripening as evidenced 

by its exogenous application in pears (Acuna et al., 2011) or 
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propylene in banana (Golding et al., 1998) thus enhancing the 

levels of endogenous ethylene production. Role of ethylene in 

promoting fruit softening has been demonstrated using 

inhibitors of ethylene action, such as polyamines (Khan et al., 
2007; Khan and Singh, 2010), aminoethoxyvinylglycine 

(AVG) (Whale et al., 2008) and 1-methylcyclopropene (1-

MCP) (Khan and Singh, 2007, 2008).  

1-MCP is being used in the postharvest phase to delay 
ripening of various fruits including nectarine and peach. It 

has been classified as ethylene action inhibitor with a 10-fold 

more affinity to bind ethylene receptors than ethylene itself 
(Blankenship and Dole, 2003). Effects of 1-MCP application 
differ in relation to a number of factors including genotype, 

concentration of 1-MCP, method of application and ripening 

conditions (Dal-Cin et al., 2006; Watkins, 2006). Some fruit 

crops benefitted from 1-MCP regardless of the presence of 
exogenous ethylene, whereas, some others showed less 

response to 1-MCP application unless exogenous ethylene 

was present (Watkins, 2008).  

Previously exogenous application of 1-MCP has been used 

to delay ripening in peaches and nectarine either alone 

(Bregoli et al., 2005) or in combination with CO2, AVG,  

jasmonates andethephon, under controlled atmosphere and 

cold storage conditions (Mothooko et al., 2001; Hayama et 
al., 2008; Costa et al., 2008; Ortiz et al., 2011; Zhang et al., 

2012;). However, in these studies the main focus was on 

management of fruit quality. However, the mode of action of 

1-MCP in modulating nectarine fruit ripening particularly 
softening or the activities of fruit-softening enzymes at 

ambient conditions warrants to be investigated. It was 

hypothesized that 1-MCP treatment would  retard ethylene 

production; consequently delay fruit softening while reducing 
activities of various fruit softening enzymes including exo-, 

endo-PG and EGase leading to extension of nectarine fruit 

shelf life. Therefore, the mode of action of 1-MCP in 

modulating nectarine fruit softening and ripening by 
employing 1-MCP fumigation or ethylene alone and 1-MCP 

followed by ethylene in regulating ethylene production  and 

rate of respiration, fruit firmness and activities of fruit 

softening enzymes (exo-PG, endo-PG, PE and EGase) were 
investigated in pulp of nectarine during ripening at ambient 

temperature.  

 

Results  

 

Changes in ethylene production and respiration rate 

 

1-MCP-treated nectarine fruit exhibited suppressed ethylene 
production, as compared to ethylene-treated fruit. Nectarine 

fruit of all treatments showed climacteric ethylene production 

peak on day-9 of ripening (Fig. 1A). However, the fruit 

treated with 1-MCP alone or in combination with ethylene 
exhibited about 1.8-fold and 2.5-fold less ethylene production 

as compared to control on day-9 of fruit ripening, 

respectively. On the other hand, about 7-fold and 11-fold 

more ethylene was produced in fruit treated with ethylene 
alone than 1-MCP alone and 1-MCP- treated fruit followed 

by exposure to ethylene, respectively. 

A significant increasing trend was observed in respiration 
rate in 1-MCP-treated nectarine fruit during ripening at 

ambient conditions. However, reduced respiration rate was 

observed in 1-MCP-treated nectarine fruit, as compared to 

untreated control fruit. The fruit treated with 1-MCP followed 
by exposure to ethylene showed the least respiration rate 

which was about 1.1-fold and 1.5-fold less than the 

respiration rate of control fruit and ethylene-treated fruit, 

respectively (Fig. 1B).  

Change in fruit weight loss 

 

Fruit weight loss (FWL) was significantly (P ≤ 0.05) 

increased during fruit ripening following treatment 
applications (Fig. 2A). Minimum FWL (1.6-fold less) was 

observed in fruit treated with 1-MCP followed by ethylene as 

compared to untreated nectarine fruit.  

 

Changes in fruit softening and activities of softening 

enzymes 

 

Postharvest 1-MCP application, significantly delayed 
nectarine fruit softening during ripening. Exogenous 

application of 1-MCP significantly (P ≤ 0.05) reduced the 

fruit firmness as compared to control during ripening at 

ambient conditions (Fig. 2B). Fruit firmness was higher 
(around 1.2-fold and 1.1-fold) in the fruit treated with1-MCP 

alone and 1-MCP followed by ethylene as compared to 

ethylene- alone and control, respectively. Fruit firmness 

decreased rapidly with progression in fruit ripening time. 

Activity of PE was significantly (P ≤ 0.05) reduced in 

nectarine fruit by the application of 1-MCP as compared to 

control and ethylene-treated fruit (Fig. 3A). About 2.3-fold 

and 4-fold higher activities of PE were observed in untreated 
and ethylene-treated nectarine fruit on day-9 than in 1-MCP-

treated fruit during ripening, respectively. Similarly, 

exogenous application of 1-MCP suppressed the EGase 

activity in pulp tissues of nectarine fruit compared to the 
control and ethylene-treated fruit (Fig. 3B). Activity of 

EGase was about 1.9-fold and 4.1-fold higher in control and 

ethylene-treated fruit on day-9 than 1-MCP-treated fruit 

during ripening, respectively.  
Application of 1-MCP significantly (P ≤ 0.05) reduced the 

activities of endo-PG and exo-PG enzymes in pulp tissue of 

nectarine fruit (Figs. 3C, D) compared to control and 

ethylene-treated fruit. In the pulp of control and ethylene-
treated nectarine fruit, on day-9 of fruit ripening, endo-PG 

was about 2.1-fold and 2.8-fold higher than 1-MCP-treated 

fruit, respectively (Fig. 3C). Untreated fruit and ethylene-

treated fruit on day-9, showed about 2.3-fold and 3.2-fold 
higher activity of exo-PG than 1-MCP-treated fruit, 

respectively (Fig. 3D). 

 

Changes in fruit rheological properties 

 

Number of days at ambient conditions significantly (P ≤ 

0.05) lessened the gumminess of nectarine fruit. However, 1-

MCP application and its interaction with days after treatment 
showed non-significant effect. There was a steep decrease in 

the fruit gumminess on day-9 which was about 2-fold less 

than on day-0 of fruit ripening (Table 1). Cohesiveness of 

nectarine fruit was non-significantly affected by 1-MCP 
treatment, days at ambient conditions and their interactive 

affect (Table 1). Springiness of nectarine fruit was 

significantly (P ≤ 0.05) reduced by 1-MCP treatment, time 

period at ambient and their interaction. Springiness of fruit 
decreased as the fruit ripening period progressed. Overall 

least springy fruit were observed at day-9 of fruit ripening, 

which was about 3-fold less springy than day-0. At day-9 of 
fruit ripening, 1-MCP-treated fruit were about 1.4-fold and 

1.3-fold springier compared to ethylene and control fruit 

(Table 1). 

Chewiness of nectarine fruit was significantly (P ≤ 0.05) 
affected by 1-MCP- treatment during ripening. A rapid loss 

of chewiness was observed in nectarine fruit until day-9 of 

fruit ripening. However, 1-MCP treated fruit retained better 

chewiness than untreated and ethylene-treated fruit. On day-9  
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Table 1. Effect of exogenous application of 1-MCP and ethylene on rheological properties of ‘Arctic Pride’ nectarine fruit. 

Parameters Treatment (T) 
Ripening period (RP) (Days) 

0 3 6 9 

G
u

m
m

in
es

s 

(N
) 

Control 6.15±0.01 0.69±0.2 0.38±0.23 0.20±0.17 

1-MCP 6.15±0.01 0.75±0.26 0.62±0.18 0.26±0.02 

Ethylene 6.15±0.01 0.65±0.05 0.31±0.08 0.10±0.01 

1-MCP + Ethylene 6.15±0.01 1.08±0.38 0.45±0.11 0.15±0.01 

LSD (P ≤ 0.05), T = NS, RP = 0.1298, T × RP = NS 

C
o

h
es

iv
en

es
s Control 0.09±0.02 0.08±0.01 0.08±0.0 0.02±0.01 

1-MCP 0.09±0.02 -1.42±0.33 -0.13±0.02 0.02±0.0 

Ethylene 0.09±0.02 0.20±0.05 0.04±0.01 0.02±0.01 

1-MCP + Ethylene 0.09±0.02 0.08±0.01 0.03±0.02 0.02±0.0 

LSD (P ≤ 0.05), T = NS, RP = NS, T × RP = NS 

S
p

ri
n
g

in
es

s 

(m
m

) 

Control 4.00±0.01b 2.13±0.03cd 1.60±0.026ef 0.93±0.05ij 

1-MCP 4.00±0.01b 2.35±0.05c 1.83±0.09de 1.27±0.07gh 

Ethylene 4.00±0.01b 4.73±0.33a 1.22±0.14ghi 0.81±0.04j 

1-MCP + Ethylene 4.00±0.01b 4.97±0.01a 1.50±0.15fg 1.03±0.06hij 

LSD (P ≤ 0.05), T = 0.1617, RP = 0.1617, T × RP = 0.3234 

C
h

ew
in

es
s 

(N
 m

m
) 

Control 25.02±0.4 a 1.83±0.02de 0.83±0.08 efg 0.41±0.05 g 

1-MCP 25.02±0.4a 2.09±0.11 cd 1.53±0.02 def 0.46±0.01 fg 

Ethylene 25.02±0.4 a 3.16±0.15 c 0.52±0.06 fg 0.11±0.01 g 

1-MCP + Ethylene 25.02± 0.4a 5.39±0.19 b 0.83±0.05 efg 0.18±0.02 g 

LSD (P ≤ 0.05), T = 0.5356, RP = 0.5356, T × RP = 1.0711 

A
d
h

es
iv

en
es

s 

(N
 m

m
) 

Control 2.23±0.01 0.61±0.01 0.41±0.07 0.36±0.06 

1-MCP 2.23±0.01 1.36±0.17 0.80±0.08 0.58±0.03 

Ethylene 2.23±0.01 1.02±0.06 0.23±0.01 0.38±0.01 

1-MCP + Ethylene 2.23±0.01 1.68±0.16 0.52±0.02 0.41±0.03 

LSD (P ≤ 0.05), T = 0.2538, RP = 0.2538, T × RP = NS 

S
ti

ff
n
es

s 

(N
 m

m
-1

) 

Control 18.66±0.03 7.40±0.64 6.01±0.72 4.71±0.68 

1-MCP 18.66±0.03 8.45±1.03 5.34±0.09 4.89±0.28 

Ethylene 18.66±0.03 8.89±0.71 251.90±38.9 4.99±0.41 

1-MCP + Ethylene 18.66±0.03 10.67±0.42 91.87±12.2 4.52±0.16 

LSD (P ≤ 0.05), T= NS, RP = NS, T × RP = NS 
Values within a row and column sharing different letter were significant (P ≤ 0.05), NS = non-significant, values followed by ± denotes standard deviation of means (n=3).  
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Fig 1. Ethylene production (A) and respiration rate (B) of ‘Arctic Pride’ nectarine fruit as influenced by exogenous application of 1-

MCP and ethylene (T) and ripening period (RP) at ambient temperature. Vertical bars represent S.E. of means and are invisible when 

the values are smaller than the symbol. n = 3, LSD (***, ** represents significantly different at P ≤ 0.001, 0.01 and NS= Non 

significant). Ethylene production: T = 30.203***, RP = 45.305***, T × RP = 90.610***; respiration rate: T = 9.8044***, RP = 

14.797***, T × RP = 29.593*. 
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Table 2. Relationship between ethylene production, fruit firmness and various softening enzymes as affected by exogenous 

application of 1-MCP and ethylene in ‘Arctic Pride’ nectarine fruit. 

Variable compared Pearson’s correlation (r) 

Ethylene vs. Firmness -0.5833**a 
Ethylene vs. pectin esterase 0.7929** 

Ethylene vs. endo-1,4-β-d-glucanase 0.7795** 

Ethylene vs. endo-polygalacturonase 0.6707** 

Ethylene vs. exo-polygalacturonase  0.7404** 
Firmness vs. pectin esterase -0.6880** 

Firmness vs. endo-1,4-β-d-glucanase -0.6420** 

Firmness vs. endo-polygalacturonase -0.7281** 

Firmness vs. exo-polygalacturonase  -0.7095** 
                              aSignificant at P ≤ 0.01. 

 

 
Fig 2. Fruit weight loss (A) and fruit firmness (B) of ‘Arctic Pride’ nectarine fruit as influenced by exogenous application of 1-MCP 

and ethylene (T) and ripening period (RP) at ambient temperature. Vertical bars represent S.E. of means and are invisible when the 

values are smaller than the symbol. n = 3, LSD (**,* represents significantly different at P ≤ 0.01, 0.05 and NS= Non significant). 

Fruit weight loss: T = 0.4228**, RP = 0.5979**, T × RP = 1.1958*; Fruit firmness: T = 1.5964**, RP = 1.5964**, T × RP = 
3.1928***. 

 

 

of fruit ripening, about 1.7-fold and 1.5-fold higher 
chewiness was retained by 1-MCP-treated fruit as compared 

to ethylene-treated and untreated fruit, respectively (Table 1). 

A significant reduction in adhesiveness of nectarine fruit was 

noticed until day 9 of fruit ripening which was about 80% on 
day- 0. Adhesiveness of nectarine fruit was significantly 

reduced by 1-MCP treatment during ripening. About 1.3-fold 

and 1.2-fold more adhesiveness was found in 1-MCP-treated 

fruit as compared to ethylene treated and untreated fruit on 
day-9 of fruit ripening, respectively (Table 1). Stiffness of 

nectarine fruit during ripening was non-significantly affected 

by all the treatments (Table 1).  

 
 

Changes in SSC, TA and SSC: TA ratio 

 

Soluble solid content (SSC) of nectarine fruit juice was 

significantly (P ≤ 0.05) reduced by treatment with 1-MCP; 

however control and ethylene-treated fruit showed increased 
levels of SSC during fruit ripening at ambient conditions 

(Fig. 4A). The highest SSC was observed in ethylene-treated 

fruit, while the lowest SSC was recorded in 1-MCP + 

ethylene-treated fruit. TA and SSC: TA ratio of nectarine 
fruit was not significantly affected by exogenous application 

of 1-MCP or in combination of ethylene during ripening. 
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Fig 3. Activities of pectin esterase (PE) (A), endo-(1-4)-β-d-

glucanase (EGase) (B), endo-polygalacturonase (endo-PG) 

(C) and exo-polygalacturonase (exo-PG) (D) enzymes of 
‘Arctic Pride’ nectarine fruit as influenced by exogenous 

application of 1-MCP and ethylene (T) and ripening period 

(RP) at ambient temperature. Vertical bars represent S.E. of 

means and are invisible when the values are smaller than the 
symbol. n = 3, LSD (***, ** represents significantly different 

at P ≤ 0.001, 0.01 and NS= Non significant). PE  activity: T = 

0.1332**, RP = 0.1332**, T × RP = 0.2665***; EGase 

activity: T = 0.0713**, RP = 0.0713***, T × RP = 0.1427**; 
endo-PG activity: T =0.1331**, RP = 0.1331***, T × RP = 

0.2661***; exo-PG activity: T =0.3555**, RP = 0.3555**, T 

× RP = 0.711***. 

 

 

 

Relation of ethylene production, fruit firmness and fruit 

softening enzymes  

 

A significant (P ≤ 0.001) negative correlation (r = -0.5833) 
was observed between ethylene production and fruit firmness 

as influenced by ethylene and 1-MCP treatment. Activity of 

PE enzyme was significantly (P ≤ 0.001) and positively 

correlated (r = 0.7929) with ethylene production;  however 
PE was significantly (P ≤ 0.001) and negatively correlated (r 

= -0.6880) with fruit firmness of nectarine fruit. Similarly, a 

significant (P ≤ 0.001) positive (r = 0.7795) and a significant 

(P ≤ 0.001) negative correlation (r = -0.6420) was exhibited 
by EGase activity with ethylene and fruit firmness of 

nectarine fruit, respectively. The endo-PG and exo-PG 

activities, exhibited significant (P ≤ 0.001) positive (r = 

0.6707 and 0.7404) correlations with ethylene, while 
significant (P ≤ 0.001) negative (r = -0.7281 and -0.7095) 

correlations with fruit firmness, respectively (Table 2). 

 

Discussion 
 

Exogenous application of 1-MCP- significantly (P ≤ 0.05) 

suppressed the ethylene production in nectarine fruit as 

compared to the untreated fruit. Reduced level of ethylene 
production in treated fruit is due to irreversible blockage of 

sites of autocatalytic ethylene production  with 1-MCP- 

(Sisler et al., 1996).  Similarly, findings of Khan and Singh 

(2007) in plum and Mathokoo et al. (2001) in peach support 
our results.  

However, the climacteric rise of ethylene production was 

not delayed in 1-MCP-treated nectarine fruit during ripening. 

It is possible that fruit have the capacity to overcome the 
ethylene inhibition caused by 1-MCP- by synthesising new 

receptors (Sisler and Serek, 1997). Therefore, 1-MCP-treated 

fruit in study may have generated new ethylene receptors 

within the short time after the application of 1-MCP. On the 
other hand, nectarine fruit exogenously treated with ethylene 

showed rapid rise in ethylene peak as compared to other 

treatments.  This may be due to the fact that different 

climacteric fruit show variation in response to exogenous 
application of ethylene. Melting and non-melting cultivars of 

peaches and nectarines exhibit differences in ethylene 

production in response to its exogenous application (Biggs et 

al., 1982). 1-MCP- treated fruit showed reduced respiration 
rate as compared to ethylene- treated and untreated fruit. As 

ethylene is strongly associated with respiration rate of 

nectarine fruit during ripening, enhanced respiration rate in 

ethylene-treated fruit is attributed to the role of ethylene in 
triggering their respiratory climacteric. Khan and Singh 

(2007) have also reported reduced respiration rate along with 

reduced level of ethylene in 1-MCP treated plum.  

FWL was decreased in the fruit with 1-MCP alone and 1-
MCP treated fruit exposed to ethylene treated as compared to 

control fruit. Reduced FWL might be due to the fact that 1-

MCP suppresses respiration rate resulting in lower water loss 

from produce. However, results of some studies showed that 
application of 1-MCP did  not delay the FWL as inhibition of 

ripening in 1-MCP treated fruit was  not persistent (Liu et al., 

2005) and it depends on the concentration and exposure time 
as reported in peaches (Hayama et al., 2005). Our results 

were supported by those reported by Valero et al. (2003) who 

also mentioned delayed FWL in 1-MCP treated plum fruit. 

However, contradictory findings of Fan et al. (2000) stated 
that there was no or limited effect of 1-MCP application on 

apricot FWL.  

The results suggest that loss of fruit firmness in nectarine is 

closely related to the activities of fruit softening enzymes.  
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Fig 4. Change in soluble solids concentration (SSC) (A), 

titratable acidity (TA) (B) and SSC: TA ratio (C) of ‘Arctic 

Pride’ nectarine fruit as influenced by exogenous application 

of 1-MCP and ethylene treatment (T) and ripening period 
(RP) at ambient temperature. Vertical bars represent S.E. of 

means and are invisible when the values are smaller than the 

symbol. n = 3, LSD (**,* represents significantly different at 

P ≤ 0.01, 0.05 and NS= Non significant). SSC: T = 0.0175**, 
RP = 0.0175**, T × RP = 0.7389*; TA: T = 0. 1482*, RP = 

0. 1482*, T × RP =NS; SSC:TA: T = NS, RP = 3.051*, T × 

RP = NS. 

 
Loss of fruit firmness was inversely related to activities of 

fruit softening enzymes.  Higher the activity of fruit softening 

enzymes, lower was the firmness of fruit (Table 2). The 

results further suggested that ethylene was involved in loss of 
fruit firmness loss as it was concomitant with increase in 

ethylene production. There was a significant negative 

correlation between fruit firmness and fruit softening 

enzymes (Table 2). Fruit firmness showed a significant (P ≤ 
0.001) negative (r = -0.5833) correlation with ethylene during 

the ripening of nectarine fruit. Higher firmness recorded in 1-

MCP-treated fruit may be due to inhibition of ethylene by the 

action of 1-MCP in nectarine fruit. Moreover, ethylene- 

treated fruit were softer compared to untreated fruit.  

Reduction in fruit firmness with the application of 1-MCP 

have also been reported during ripening in peaches and 

nectarine (Ziosi et al., 2007), plum (Khan and Singh, 2007; 

2008) and papaya (Fabi et al., 2007). Moreover, respiration 

rate also play an important role in maintenance of fruit 

firmness during storage. Similarly, Chen et al. (2011) also 
reported that plum fruit with reduced level of respiration rates 

exhibited higher firmness during cold storage.  

The reduced SSC in 1-MCP- treated fruit might be due to 

delay in ripening of nectarine fruit as outlined by the report in 
plum where 1-MCP significantly delayed the rise in total 

soluble solids and decline in the TA during ripening and 

storage with lower SSC:TA ratio (Khan and Singh, 2008). 1-

MCP treatment reduced the loss of springiness in nectarine 
fruit as compared to untreated and ethylene-treated fruit 

(Table 2).  In addition, it might be ascribed that reduced 

activities of fruit softening enzymes in 1-MCP-treated fruit 

maintained intercellular tissue integrity and adhesiveness at 
higher level. It had been known that fruit softening enzymes 

are involved in the reduction of intercellular adhesiveness 

and tissue rigidity during fruit ripening (Alonso et al., 1997). 

Therefore less rigidity and intercellular adhesiveness in flesh 

tissues of untreated nectarine fruit lead to less springy fruit. 

Increased chewiness in 1-MCP-treated nectarine fruit might 

be attributed to reduced activities of fruit softening enzymes 

as compared to untreated fruit.  Increase in fruit softening is 
correlated with increased activities of fruit softening enzymes 

such as endo-PG, exo-PG and PE during ripening (Table 2), 

which consequently increased the activities of these enzymes 

to produce higher levels of soluble pectins through pectin 
degradation (Kays, 1997), thus making fruit less chewable. 1-

MCP treatment had been reported to reduce activities of fruit 

softening enzymes in plum (Khan and Singh, 2007) and 

peach (Ortiz et al., 2011). 
The reason that more adhesion was found in 1-MCP-treated 

fruit than untreated and ethylene-treated fruit might be due to 

the reduced activities of fruit softening enzymes in response 

to 1-MCP application. Adhesion is the most critical factor 
influencing the perception of fruit texture and considered to 

be related with different structure of temperate fruit -melting 

and non-melting type of fruit (Harker et al., 1997). Most 

cultivars of the peaches and nectarine are classified as 
melting type of fruit. Activities of fruit softening enzymes are 

responsible for fruit softening in melting flesh peaches and 

nectarine. The above results suggested a strong role of 

ethylene in fruit tissue softening in nectarine during ripening. 
Similar relationship was reported in 1-MCP-treated plum 

fruit between ethylene and fruit softening enzymes during 

ripening (Khan and Singh, 2007). Multiple role of ethylene is 

known to regulate different ripening related process including 
fruit softening (Khan and Singh, 2007, 2008) and ethylene 

biosynthesis (Acuna et al., 2011). In our results, reduced fruit 

softening by 1-MCP-treated nectarine fruit might be due to 

reduced ethylene production and action, leading to direct 
reduction in the activities of fruit softening enzymes. 

However, 1-MCP treatment followed by ethylene exposure 

was not able to reduce the activities of fruit softening 

enzymes in nectarine as compared to the sole application of 
1-MCP especially in endo-PG and exo-PG enzymes 

activities. The reason might be the induced competition of 

ethylene with 1-MCP for binding to ethylene receptors in 
tissue of nectarine fruit resulting in reduced ability of 1-MCP 

to regulate ethylene responses during ripening. Similar 

reports are available on tomato indicating the direct role of 1-

MCP to delay fruit ripening (Zhang et al, 2009). However, 
findings of Fan et al. (2002) contradicts  our results, as there 

was limited response of 1-MCP in delaying peach fruit 

ripening. It might be due to single or multiple factors as 

effectiveness of 1-MCP depends upon fruit pulp temperature 
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at the time of application and concentration and exposure 

time (Liguori et al., 2004). It has also been reported that 1-

MCP is steadier in controlling fruit softening with repeated 

application (Liu et al., 2005).  

 

Materials and Methods 

 

Fruit source  
 

Six-year-old nectarine (Prunus persica (L.) Batsch var. 

Nectarina ‘Arctic Pride’) trees grafted on ‘Nemaguard’ 

rootstock, planted at 2.4 m × 4.5 m in the East-West row 
direction, trained as a central leader, cultivated at Perth Hills 

(34°15ˈS; 116°09ˈE), in the South West region of Western 

Australia were used  in the experiment. All the experimental 

trees received uniform commercial cultural practices and 
plant protection measures. During 2013, uniform sized 

nectarine fruit, free from visual symptoms of any disease or 

blemishes at commercial maturity (14.93 ± 0.4% SSC and 

64.6±1.2 N firmness) were harvested from the experimental 

trees and transported to the laboratory immediately after 

harvest. 

 

Treatments and storage 
 

On arrival in the lab, fruit were equally divided into four lots 

of each 360 fruit. Each lot was further subdivided into three 

sub lots of 90 fruit which served as one replication. 
Following four treatments were used in the experiment (i) 

untreated control fruit, (ii) fruit treated with either 1 μL L-1 1-

MCP, or (iii) 10 μL L-1 ethylene, or (iv) 1 μL L-1 1-MCP 

followed by 10 μL L-1 ethylene at 20 ± 1oC for 12 h.  
The fruit were kept in a hermetically sealed plastic drum of 

60 L capacity.  1-MCP concentrations (1.0 µL L-1) were 

obtained by mixing the calculated amount of freshly prepared 

1-MCP solution with ethanol in a petri dish with a filter paper 
according to volume of closed container.  The required 

ethylene concentration (10 μL L-1 ethylene) was injected into 

the drums through rubber septum by using a syringe. Fruit 

were treated with 1-MCP for 12 h at 20 ± 1oC and were kept 
at ambient conditions (20 ± 1oC) with 60-65% RH. The 

experiment was designed as two factors (treatments and 

ripening period) with tree replications. In order to check, if 

there was any delayed climacteric ethylene production in 1-
MCP-treated fruit, ethylene production and respiration rate 

were determined daily up to ten days of fruit ripening; 

whereas, the activities of fruit softening enzymes including 

pectin esterase (PE; EC 3.1.1.11), endo-1, 4-β-d-
glucanase (EGase; EC3.1.1.4),  exo-polygalacturonase (exo-

PG; EC 3.2.1.67)  and  endo-polygalacturonase (endo-PG; 

EC 3.2.1.15) were determined in fruit pulp only on days 0, 3, 

6 and 9 days after treatment (DAT) at ambient conditions. 
 

Determination of fruit weight loss 

 

Fruit weight loss was determined by a gravimetric method 
and calculated as percentage of the initial fresh weight as 

described by Ullah et al. (2013). 

 

Determination of fruit ethylene production and respiration 

rate 

 

Ethylene production was determined by enclosing 6 fruit 
from each treatment in airtight jars of 1000 mL for 1 h at 

20°C.  Gas samples ( 1.0 mL) taken from jars were injected 

into gas chromatograph (Agilent Technologies, 6890N 

netwrok GC system, Palo Alto, CA, USA) at 110oC. 

Temperature of 2 m-long stainless steel supelco column 

(Porapack-Q 1/8ʺ, mesh size 80/100) and a flame ionization 

detector were kept at 150 and 250°C, respectively. Ethylene 

production was expressed in μ moL kg-1 h-1 as described by 
Khan and Singh (2007). Respiration rate of nectarine fruit 

was determined on the basis of amount of CO2 evolved 

following incubation, using an infrared gas analyser 

(Servomex, Gas Analyser, Analyser Series 1450; Servomex 
Ltd., East Sussex, UK). Respiration was expressed in mmole 

CO2 kg-1 h-1as reported by Khan and Singh (2007). 

 

Determination of rheological properties  
 

Texture analyser (TPA Plus, AMETEK Lloyd Instruments 

Ltd, Hampshire, UK) was used to determine rheological 

properties of nectarine fruit such as chewiness, springiness, 
hardness, stiffness, cohesiveness and adhesiveness were 

determined as described earlier by Razzaq et al. (2015).  

These properties were further defined and expressed as 

outlined by Bourne (1978).  

 

Determination of SSC, TA and SSC:TA 

 

Pulp of fruit was used to extract juice using a Mini Wizz® 
fruit juicer (WT 400, Breville, Sydney, Australia). SSC was 

determined using a digital refractometer (Atago-Palette PR 

101, Atago Co. Ltd., Tokyo, Japan) and expressed as °Brix. 

Ten mL of freshly extracted juice was diluted with 20 mL 
distilled water. Titratable acidity (TA) was measured by 

titrating an aliquot (5.0 mL) of juice against 0.1 N NaOH 

solution using phenolphthalein as an indicator to a pink 

colour end point and expressed as % malic acid (Khan and 
Singh, 2010). The calculation of SSC:TA ratio was done by 

dividing SSC (%) with the corresponding TA (%). 

 

Determination of fruit softening enzymes 
 

To determine activity of softening enzymes fruit pulp 

samples were frozen in liquid nitrogen (-196 °C) and stored 

in ultra-low freezer (-86 °C ULT, Thermo Fischer Scientific, 
Australia) at -80°C until further analysis. For enzyme 

extraction nectarine frozen fruit flesh (13 g) was blended in a 

precooled pestle and mortar with 13 mL cold 12% 

polyethylene-glycol (PEG) and 0.2% sodium bisulfite with 
400 mg white quartz sand until a homogenous mixture was 

obtained. The homogenate was centrifuged in a refrigerated 

centrifuge (Eppendorf 5810R, Hamburg, Germany) for 20 

min at 13000 × g and the pellet washed with 4°C aqueous 
0.2% sodium bisulfite. Pellets (13 g) extracted for each 

softening enzymes including PE, endo-PG, exo- PG, and 

EGase were stored in ultra-low freezer (-86 °C ULT, Thermo 

Fischer Scientific, Australia) at -80 °C until further analysis. 
The method outlined by Khan and Singh (2007) was used for 

the determination of exo-PG and endo-PG, PE and EGase 

activities and were expressed as μg of galacturonic acid mg 

protein-1 h-1, viscosity changes in mg protein–1 h–1 mM NaOH 

mg protein−1 h−1 and viscosity changes mg protein−1 h−1, 

respectively. Protein content from fruit pulp tissue were 

estimated using the method of Bradford (1976) and were 
expressed as mg protein mL-1 of enzyme extract.  

 

Statistical analysis 

 
The data were analysed by analysis of variance (ANOVA) 

using GenStat Release 13 (VSN International Ltd., Hemel 

Hempstead, UK). The treatment effects on various 

parameters were assessed within ANOVA and the least 
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significant differences (LSD) were calculated following 

significant F-test at P ≤ 0.05. Relationship between fruit 

firmness, ethylene production and fruit softening enzymes 

were also determined through Pearson correction using same 
software at P ≤ 0.05. 

 

Conclusion 

 
1-MCP application alone or 1-MCP treated fruit exposed to 

ethylene resulted in significantly reduced ethylene 

production, reduced activities of softening enzymes, fruit 

softening, and maintained quality of nectarine fruit during 
ripening at ambient temperature.  
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