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Abstract 

 

Transporting vibration is a major cause of bruising damage in apples. In this study the potential of Artificial Neural Network (ANN) 

technique to predict bruise volume of apple was evaluated and a prediction model for bruising apple in transport condition (by truck) 

was developed. For this purpose, firstly significant or non-significant effects of transport vibration parameters (frequency and 

acceleration) and fruit properties (mass, curvature radius, acoustical stiffness) on bruising of apple in transport condition was 

investigated and the parameters that have significant effects identified. This parameters were considered as input variables in the 

develop model. In the second stage, by using of these input variables a multilayer perceptron (MLP) network trained and prediction 

model was developed. Results indicated that the model with 5-7-1 instruction, sigmoid transfer function in hidden layer and linear 

transfer function in output layer with 40000 epochs gives the best correlation between predicted and actual values, with correlation 

coefficient (R2) of 0.9998 and 0.9996 in training and testing phase, respectively. It can predict the bruise volume with acceptable root 

mean-squared error (RMSE) of 4.21. Also a regression model for prediction with correlation coefficient (R2) of 0.9996 was 

developed. These results indicated that the Artificial Neural Network technique could potentially be used to predict apple bruising in 

transport condition. 

 

Keywords: Bruise volume, Prediction model, Transport vibration. 

Abbreviations: ANN- Artificial Neural Network; BV- Bruise Volume; RMSE- Root Mean Square Error; MLP- Multilayer 

Perceptron; R2- Correlation coefficient. 

 

Introduction 

 

The apple fruit is an important dietary product while it is one 

of the most consumed products around the world. Hence, 

improving apple quality and appearance is one of the most 

crucial challenges that the fruit industry is engaged on. 

Bruising is the most common type of postharvest mechanical 

damage that reduces the quality (Knee and Miller, 2002). 

Studies indicated that apple bruising can result in losses up to 

50%, although typically loss levels are in the (10–25) % 

range, depending on consumer awareness (Studman et al., 

1997). For the study of apple bruising and developing 

prediction model identifying the effective factors is 

necessary. Some of these effective factors are such as, type of 

contact forces, the number of contacts, maturity stage, 

temperature, curvature radius, firmness and fruit mass 

(Zarifneshat et al., 2010). The three types of forces which can 

cause bruising in apples are impact, compression load and 

vibration forces. Vibration forces that usually occur during 

transportation are difficult to avoid and can be repeated at 5 

to 15 times each second, for many hours of the trip (Vergano 

et al., 1991). Detailed information about bruise prediction 

models of Golden Delicious apple reported in the references 

is limited, and developed models are mostly limited to the 

effect of two properties of fruit (either maturity or 

temperature of fruit), and mostly are inconsistent (Studman et 

al., 1997). This is due to the negation of some fruit factors in  

 

 

 

the model, such as the radius of curvature and the negation of 

interaction effects between fruit factors and between fruit 

factors and the severity of impact (Van Zeebroeck et al., 

2007). Also the most previous studies that performed about 

the bruising susceptibility of apple are conducted using the 

pendulum device (with single impact). These results and 

developed models for transportation condition cannot be 

correct, because in these models the effect of tissue fatigue 

(caused by cyclic loading or repetitive impact) and apple 

mass has not been considered, while these factors in the 

amount of bruising volume in transportation condition are 

very effective. Also these models were obtained based on 

traditional methods. While the prediction by a well-trained 

Artificial neural network (ANN) model is normally much 

faster and less complex compared to most of the conventional 

simulation methodology models (Motevali et al., 2012). 

ANNs can model based on no assumptions concerning the 

nature of the phenomenological mechanisms, and understand 

the mathematical background of problem (Fathi et al., 2011). 

Therefore, the objective of this research is: (1) Identification 

of significant factors on bruising damage of apple in transport 

condition and selection of input variables for developing 

prediction model (2) Evaluation of the effectiveness of ANN 

for predicting apple bruise volume (3) Developing a detailed 

prediction model for bruising of apple in transport condition. 
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Results  

 

Identification of significant parameters and selection of the 

model input variables  

 

Effect of frequency and acceleration 

 

Analysis of variance indicated that the effect of frequency 

and acceleration on the bruising of apple at 1% probability 

level were significant. A relationship with negative slope and 

a relationship with positive slope between vibration 

frequency (in the constant acceleration of 0.5g) and vibration 

acceleration (in the constant frequency of 10 Hz) with bruise 

volume observed, respectively. 

 

Effect of apple mass  

 

The significant difference at 1% probability level was 

observed between bruise volume of apples with different 

masses (155gr, 125gr and 95gr). Generally, the small apples 

are less damaged than the large apples.   

 

Effect of curvature radius  

 

The significant difference at 5% probability level was 

obtained between bruise volume of two curvature radius. The 

results indicated that the apples with small radius of 

curvature (36 mm) had more bruise volume than those with a 

larger radius of curvature (52 mm).  

 

Effect of acoustic stiffness 

 

The amount of bruise volume of apples has increased with 

the increase of acoustical stiffness and significant difference 

at 5% probability level between bruise volume of two levels 

of acoustic stiffness (40 Hz²kg²/³ and 55 Hz²kg²/³) was 

observed.  

 

Selection of the model input variables 

 

Given this that, the effect of vibration frequency, vibration 

acceleration and apple mass on bruise volume were 

significant at 1% probability level and the effect of curvature 

radius and acoustical stiffness were significant at 5% 

probability level, therefore, these variables were selected as 

the Network inputs for developing prediction model (Fig 3). 

 

Prediction model (Artificial Neural Network) 

 

The training phase was carried on for 40000 epochs and until 

the cross-validation data’s root mean-squared error (RMSE) 

was calculated by Eq. 6, did not improve for 40000 epochs. 

Predetermined values for the output error determined as 

0.00001. For finding the best architecture different networks 

were built, with different neurons in hidden layer varying 

from 1 to 25. The lowest amount of root mean square error 

(RMSE) for the prediction of bruise volume during the 

training and testing phase was calculated. The values of 

RMSE for training phase are shown in Table 2. According to 

the results of this table, the ANN architecture with 7 neurons 

in hidden layer, sigmoid transfer function in hidden layer and 

linear transfer function in output layer seems to be 

appropriate for modeling bruise volume. Therefore, this 

architecture was chosen as the best ANN model. For this 

architecture (7 neurons in the hidden layer) the correlation 

between actual values and predicted values in training and 

testing phases with correlation coefficient (R2) of 0.9998 and  

Table 1. Different levels of frequency and acceleration, 

applied on the simulation. 

Levels frequency(Hz) acceleration(g) 

1 7.5 0.3 

2 10 0.5 

3 12.5 0.7 

 

 
 

Fig 1.  Vibration simulator. 

 

0.9996, indicated in Fig 4 and 5, respectively. Also a plot of 

predicted values against measured values is depicted in Fig 6. 

Regression analysis of the predicted values by neural network 

model resulted in the following equation: 

 

 

 

         (8) 

 

Where VBpre is predicted value and VBact is actual value.      

 

 

Discussion 

 

Identification of significant parameters and selection of the 

model input variables  

 

Effect of frequency and acceleration 

 

A relationship with negative slope and a relationship with 

positive slope between vibration frequency and vibration 

acceleration with bruise volume were observed, respectively. 

These relationships are due to the decrease and increase in 

the vertical displacement amplitude of simulator table with 

the increase of frequency (in the constant acceleration of 

0.5g)  and acceleration (in the constant frequency of 10 Hz), 

respectively, that causes the amount of peak contact force 

applied to apples decrease or increase, respectively, and 

bruise volume change. According to Eq 2, increase the 

frequency of vibration without adapting the displacement 

amplitude leading to increase in acceleration amplitude. In 

our opinion, this is not the right method to test the effect of 

the frequency itself on the mechanical damage, because the 

effect of the frequency is mixed with the effect of peak 

acceleration. This logic is also true in testing the effect of 

acceleration. Timm et al. (1998) reported that changes in 

vibration amplitude can change the force spectral density 

(FSD) in fruits and reduce or increase the amount of damage. 

Van Zeebroeck et al. (2006) and Shahbazi et al. (2010) 

observed that increasing of frequency and acceleration causes 

the damage in fruit decrease and increase, respectively. 

 

Effect of apple mass  

 

The significant difference between bruise volume of apples 

with different masses, indicated that mass is one of the  

9.3 actpre VBVB

)9996.0( 2 R
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    Table 2. Errors variation with different number of neurons in the training phase. 

criterion    Number of neurons in the hidden layer    

  1 2 3 4 5 6 7 8 9  

RMSE  186 123 60 39 18.3 11.8 4.21 3.35 2.63  

            

    Number of neurons in the hidden layer    

  10 11 12 13 14 15 16 17 -  

RMSE  2.52 2.37 1.95 1.5 1.48 1.31 0.97 0.5 -  

            

    Number of neurons in the hidden layer    

  18 19 20 21 22 23 24 25 -  

RMSE  0.16 0.027 7e-13 6e-13 5.3e-13 5e-13 4e-13 3e-13 -  

 

important factors in amount of bruise volume in transport 

condition. Generally, the large apples are more damaged than 

the small apples. Because, according to Newton's second law, 

applied force to high mass is more than low mass (in the 

equal acceleration). Also the large apples in comparison with 

small apples have a larger cell, with thinner wall (Johnson 

and Dover, 1990). Thus, this weaker cell wall will more 

easily develop bruise damage. It was observed that with 

increasing frequency (in the constant acceleration) and 

decreasing acceleration level (in the constant frequency) that, 

the effect of mass on bruises volume was less evident. 

Because, according to Eq 2, in this case the vertical 

displacement amplitude of the vibration table was reduced 

and due to the high power required for vibrant massive 

apples, a large percentage of applied impacts to high mass are 

below the critical level impact, Therefore, the amount of 

bruise volume for high mass should be more decreased than 

low mass and reduced bruise volume differences. The critical 

impact height can be calculated of the following equation 

(Baritelle and Hyde, 2001): 

 

 

 

 

        (9) 

 

 

Where hc is the critical drop height; σf  the failure stress; ɛf  

the failure strain; m the mass of apple and R the curvature 

radius. Van Zeebroeck et al. (2006) have reported that in 

percentage and even in absolute numbers, the small apples 

are less damaged than the large apples, but as a general 

remark, the relative importance of the apple size on bruise 

damage could be dependent to the vibration frequency and 

acceleration amplitude.  

 

Effect of curvature radius  

 

The apples with low radius of curvature led to more bruise 

damage than apples with higher radius of curvature. Also the 

difference between bruise volume for both the radius of 

curvature, at different levels of frequencies and different 

levels of acceleration was not the same. The following 

equation that is derived based on Hertz theory, by Horsfield 

et al. (1972) is consistent with a part of obtained results: 

 

 

 

 

         (10) 

 

Where σi is the peak contact stress (Pa); C the constant; m the 

mass of apple (kg); g the earth gravity (m/s2); h the drop 

height (m); ν1,2 the Poisson’s ratio; E1,2 the elastic modulus  

 

 
 

Fig 2. (a) General view of the radius meter and (b) schematic 

representation of geometry to calculate the radius of the apple 

fruit. 

 

 
 

Fig 3. The schematic structure of Multi-Layer Perceptron 

Neural Networks model. 

 

(Pa) and R the radius of curvature (m). From the equation, it 

can be seen that a large radius of curvature results in a lower 

peak contact stress and thus led to less bruise damage. This 

was confirmed by our results where small radius of curvature 

generally led to more bruise damage. Another equation based 

on Hertz theory derived by Siyami et al. (1988), shows an 

opposite effect of curvature radius on bruise volume. In this 

equation, it is assumed that the bruise surface area is similar 

to the contact area and is expressed based on the drop height 

as following: 

 

 

 

 

            (11) 

 

Where, BD is the bruise diameter (mm); m the mass of apple 

(kg); R the radius of curvature (m); h the drop height (mm) 
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and Fmt the Magness–Taylor force (kg). This equation 

indicates that larger radius of curvature leads to a larger 

contact area and hence to a larger bruises volume. Therefore, 

it seems that the apple curvature radius can be a dual effect 

on the bruise damage, depending on severity of impact. At 

the low impact (low vibration amplitude), a small radius of 

curvature can increase the peak contact stress and increasing 

the amount of bruise, but in high impact contact area has 

dominant role. Horsfield et al. (1972) and Baritelle and Hyde 

(2001) concluded that a larger radius of curvature resulted in 

a lower impact-induced stress and thus increased a bruise 

threshold drop height. Van Zeebroeck et al. (2007) and 

Ahmadi et al. (2010) stated that at the low impact force, 

higher radius of curvature decreased bruise damage, but at 

the high impact, higher radius of curvature increased bruise 

damage.   

 

Effect of acoustic stiffness 

 

Apples with high acoustic stiffness led to more bruise 

damage than apples with lower acoustic stiffness. 

Measurement of fruit firmness is a proper manner to estimate 

bruising injury during harvest and postharvest transportation. 

According to Diezma et al. (2006); Wang et al. (2006) and 

Valero et al. (2007) acoustical stiffness mainly depends on 

the initial stiffness and correlates with Magness -Taylor 

firmness. While acoustical stiffness gives information about 

the texture of the whole fruit, Magness -Taylor firmness 

measurement describes only the local texture of the tissue at 

the penetration area. Acoustical Stiffness is mainly a measure 

of the mechanical stiffness of the fruit tissue that is related to 

the cell wall mechanical strength and cell wall turgidity 

(Zarifneshat et al., 2010). Previous studies indicated that the 

acoustical stiffness is positively associated to the modulus of 

elasticity (Duprat et al., 1997; Van Zeebroeck et al., 2006; 

Ahmadi et al., 2010). Therefore, reducing relative turgor 

(acoustic stiffness) can decrease tissue modulus of elasticity 

which in turn makes a specimen more self cushioning, by 

redistributing an applied force over a larger area of the fruit’s 

surface, and reduces bruise volume. Also according to 

Baritelle and Hyde (2001) in apple and potato reduced 

stiffness results in the increase of failure strain (εf), as well as 

increasing tissue strength (σf). Therefore, according to Eq. 9 

tissues that are both stronger and less stiff improve bruise 

threshold. In this study it was observed that increasing 

acoustic stiffness led to more bruise damage. 

 

 

Prediction model (Artificial Neural Network) 

 

In Fig 7 the decrease rate of error (RMSE) with increasing 

the number of neurons in the hidden layer is shown. As can 

be observed the performance of model was improved as the 

number of hidden neurons increased. But in this study the 

ANN architecture with 7 neurons in hidden layer was chosen 

as the best ANN architecture. Because, too many neurons in 

the hidden layer may cause over-fitting problems, which 

results in good network learning and data memorization, but 

lack the ability to generalize (Rohani et al., 2011). The 

amounts of correlation coefficient (R2) with values of 0.9998 

and 0.9996, in training and testing phases, revealed good 

agreement between predicted and actual values, and show 

that training of ANN was proper. Ahmadi et al. (2010) used 

statistical methods to estimate bruise volume. Their model 

that was built by regression method could predict bruise 

volume with a correlation coefficient of 0.97. But in this 

research by the use of artificial neural network technique,  

 
Fig 4. Correlation between actual and predicted values in 

training phase.  

 

 
Fig 5. Correlation between actual and predicted values in 

testing phase. 

 

Bruises volume could be predicted with a correlation 

coefficient (R2) of 0.9996. This amount of R2 indicated that 

neural network technique is more successful than statistical 

methods, in the application under consideration and could 

provide a practical solution to the problem of predicting 

apple bruise volume in transport condition. Also Zarifneshat 

et al. (2012) used artificial neural network technique and 

statistical methods to estimate bruise volume. Their models 

were built based upon impact force, impact energy, fruit 

curvature radius, temperature and acoustical stiffness as main 

independent variable. In their research bruise volume was 

predicted by ANN model and regression method with a 

correlation coefficient of 0.978 and 0.998, respectively. 

These results demonstrated the ability of the neural network 

and confirm the results obtained in our research. In our study, 

with using artificial neural network technique for modeling 

and the use of apple mass instead of fruit temperature in 

variables, bruise volume could be predicted with a correlation 

coefficient (R2) of 0.9996, that is more accurate compared 

with Ahmadi et al. (2010) and Zarifneshat et al. (2012) 

results. The developed model in this study is an accurate 

model that unlike previous models, created directly upon the  
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Fig 6. Comparison of actual data and the ANN prediction for 

bruise volume.  

 

 

 
 

Fig 7. The decrease rate of root mean square error (RMSE) 

for different neurons. 

 

 

road vibration parameters and can by linking to road and 

vehicle simulation programs, should used in research related 

to apple transporting damage. Also this model due to 

considering the effect of apple mass in bruise volume is 

better than previous models for transport condition. 
 

Materials and methods 

 

Experimental details 

 

Variety of apple used in this study was the Golden Delicious. 

The apples were picked from the three marked and identified 

trees in the orchard in harvest season of 2011 from “Nazlo”, 

Urmia region of Iran. Fruits after harvest immediately were 

transferred to cool storage and were stored at 3C0 and 85% 

relative humidity until being tested. Sample before the test 

were stored for 24 hours in the measuring room at 20 C0. The 

bruise volume was used as the dependent variable and was 

calculated after 48 hours of damage, according to the 

following equation: 

 

 

   

              (1) 

Where, BV is the bruise volume (mm3); d the bruise depth 

(mm) and D the bruise diameter (mm). To provide vibration a 

laboratory vibration simulator was built and used, as the same 

vibrator used by Vursavus and Ozguven (2004) and Shahbazi 

et al. (2010) (Fig 1). This vibration simulator was consisted 

of a table on soft springs, and attached to it an actuating 

system that included adjustable weights on two counter 

rotating shafts (counterweights). The weights are revolving in 

opposite directions and about the center of gravity of the 

table. Their load only provides vertical vibration. 

Counterweights were powered by an electric motor (3.0 KW 

and 3000 rpm). The speed of the electric motor was adjusted 

by means of a speed control unit (inverter), which had a 4.0 

KW power. Because the frequency of the vibration simulator 

table is directly related to the rotation number of the 

counterweights, therefore, by adjusting the speed of the 

electric motor the frequency of vibration simulator table was 

adjusted. Also by changing the value of magnitude and 

angular velocity of the rotating masses, the vertical 

displacement amplitude and acceleration of the vibration 

simulator table was adjusted. The acceleration was directly 

measured using an acceleration measurement device and a 

piezoelectric accelerometer.  

 

Identification of significant parameters for selection of the 

model input variables  

 

Due to the very importance of the vibration parameters and 

fruit properties in the effective forces on fruit and it’s 

vulnerability, the effect of following parameters were 

investigated:  

 Vibration frequency (F) (Hz) 

 Acceleration (a) (g)  

 Apple mass (m)(gr) 

 Apple radius of curvature in location of impact (R)(mm) 

 Apple acoustic stiffness (S)(Hz2 kg2/3) 

The parameters that in transport condition have significant 

effect on apple damage were identified and were considered 

as independent variables in developing prediction model. 

 

Vibration frequency and acceleration 

 

According to the results from the vibration measurement by 

Shahbazi et al. (2010), the highest value of distribution 

percentages of vibration frequencies on the truck-beds during 

fruit transportation in Iran roads was 33.20%, on an interval 

of 5-10 Hz, and 30.17% on an interval of 10-15 Hz. The 

average values at intervals of 5-10 Hz and 10-15 Hz were 7.5 

Hz and 13.01 Hz, respectively. Also the highest value of 

distribution percentages of vibration acceleration was 

35.06%, on an interval of 0.25-0.50 g and 23.59% on an 

interval of 0.50-0.70 g. The average values at intervals of 

0.25-0.50 g and 0.50-0.75 g were 0.31 g and 0.71 g, 

respectively. According to this report, three levels of 

frequency (with constant acceleration of 0.5g) and three 

levels of acceleration (with constant frequency of 10Hz) were 

used in evaluation effect of vibration parameters and apple 

properties (Table 1). But to develop the prediction model 

nine different combinations of these three levels were used.  

To maintain constant acceleration and avoid the 

incorporation of the frequency and acceleration effects, with 

increasing or decreasing the vibration frequency, the vertical 

displacement amplitude of vibration table was adjusted. The 

relationship between vibration frequency, vibration 

acceleration and vertical displacement amplitude of vibration 

table is shown in the following equation: 

 

2

6
dDBV



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            (2) 

 

Where, x¨ is the acceleration (g), f is the frequency (Hz) and 

X is the displacement amplitude. Due to supplant and tumble 

of fruits in the test with vibrator, in investigating the effects 

of vibration parameters and fruit properties, to increase the 

accuracy the results of the fruit bar was used. But for training 

ANN and developing prediction model, patterns obtained 

from the fruit boxes were used. 

 

Apple mass 

 

To investigate the effect of mass, the apples with mass of 

100gr, 125gr and 155gr were used. 

 

Radius of curvature 

 

In this research to investigate the effect of curvature radius, 

the apples with curvature radius of 36 mm and 52 mm were 

used. Because a suitable device for measuring the radius of 

curvature (R) was not available, therefore, a non-commercial 

radius meter was used.  This device was constructed on an 

analog height meter base (Fig 2a) and then the radius of 

curvature was calculated using the equation described by 

Mohsenin (1986) (Fig 2b). 

 

          (3) 

 

Since apple cannot be considered completely spherical, the 

harmonic average (2R1 R2 /(R1 + R2 )) was chosen based on 

circumferential (R1) and meridian curvature Radius (R2). 

Based on Hertz theory the use of harmonic mean is more 

acceptable than the computational mean, due to its accuracy 

on estimation of smaller curvature radius, which participate 

more to the maximum contact pressure. 

 

Acoustic stiffness 

 

To investigate the effect of acoustic stiffness, the apples with 

acoustic stiffness of 40 kg2/Hz2/3 and 55 kg2/Hz2/3 were used. 

For measuring the acoustical stiffness (S), acoustical 

impulse-response method was used. The fruits stimulated by 

a piece of wood on the equator and the sound signals at 180° 

from the impact place in a few millimeters off the apple were 

collected. By the microphone (ADMP401, Analog Devices) 

with a constant output response over the range of 100 to 

10,000Hz, that was installed inside an isolated acoustic 

chamber to eliminate environmental noise effects. Detected 

sound signals after amplification were sent to a PC based data 

acquisition system. Signals were digitized at a sampling 

frequency of 44.1 kHz and were saved by using MATLAB 

2011 data acquisition toolbox for subsequent analyses. By 

use of Fast Fourier Transform (FFT) the first resonance 

frequency was determined and the acoustical stiffness was 

calculated by following equation. 

 

       (4) 

 

Where, S is the acoustic stiffness (Hz2 kg2/3), f is the first 

resonance frequency (Hz) and m is the mass of the apple (kg). 

 

Statistical analysis  

 

A total of 620 apples were used for conducting the 

experiments. The data were processed by the statistical 

software package SAS version 9.1.3, where the significance 

level was set at 1% and 5%. 

    

Developing prediction model (Artificial Neural Network) 

 

In this study, fully interconnected multilayer perceptron 

(MLP) feed-forward network, which is the most widely used 

ANN for developing prediction model was used. This 

structure is easy to implement and any input/output map in 

this structure can be extracted. MLP as a multi-layer structure 

consists of an input layer with neurons representing input 

variables, an output layer with neuron representing the 

dependent variable and one or more hidden layers containing 

neuron to help capture the nonlinearity in the system. The 

method for training the MLP is based on the minimization of 

a suitable cost function. An MLP network is shown in Fig 3. 

To ensure a successful modeling MLP two important factors 

should be considered, first the number of hidden layers and 

then the number of neurons in each hidden layer. Since 

almost all issues in neural network modeling could be solved 

with one hidden layer, therefore, in this research one hidden 

layer was used. The data were shuffled and split into two 

subsets: a training set and a test set. The splitting of samples 

plays an important role in the evaluation of an ANN 

performance. The training set is used to estimate model 

parameters and the test set is used to check the generalization 

ability of the model. The training set should be a 

representative of the whole population of input samples. In 

this study the training set and the test set includes 158 

patterns (80% of total patterns) and 40 patterns (20% of total 

patterns), respectively. There is no acceptable generalized 

rule to determine the size of training data for a suitable 

training, however, the training sample should cover all 

spectrums of the data available (Rohani et al., 2011). Prior to 

any ANN training process with the trend free data, the data 

must be normalized over the range of [0, 1]. This is necessary 

for the neurons’ transfer functions. If the data used with an 

ANN are not scaled to an appropriate range, the network will 

not converge on training or it will not produce accurate 

results. The most commonly employed method of 

normalization involves mapping the data linearly over a 

specified range, whereby each value of a variable x is 

transformed as follows: 

 

          (5) 

 

Where x is the original data, xn the normalized input or 

output values, xmax and xmin, are the maximum and minimum 

values of the concerned variable, respectively. rmax and rmin 

correspond to the desired values of the transformed variable 

range. A range of 0.1–0.9 is appropriate for the 

transformation of the variable onto the sensitive range of the 

sigmoid transfer function. To compare the performance of 

different ANN architectures two criteria was used, the root 

mean square error (RMSE) and correlation coefficient (R2). 

Values of R2 and RMSE were calculated using the following 

equations.    

 

 

           (6)  

 

 

 

 

 

           (7) 
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Where yacti is the ith actual value, yprei the ith predicted value, 

y  pre the average of predicted values and N the number of data. 

The best ANN architecture was selected based on the highest 

value of the correlation coefficient (R2) and the lowest values 

of RMSE. Vibration frequency, vibration acceleration, apple 

mass, curvature radius and acoustical stiffness were used as 

inputs, and bruise volume was considered as output (Fig 3). 

The neural network toolbox of MATLAB R2011b software 

was used for ANN design. 

 

Conclusion 

 

In this research artificial neural network (ANN) was used to 

develop a prediction model that can predict the apple bruise 

volume in transport condition. For reaching this purpose the 

first step was the selection of input variables. The effect of 

vibration frequency, vibration acceleration, apple mass, 

curvature radius and acoustic stiffness on bruise damage of 

apples in transport condition investigated and significant 

factors were considered as inputs to the neural network. It is 

found that neural network is more successful in the 

application under consideration and could provide a practical 

solution to the problem of predicting apple bruise volume, in 

a fast, inexpensive, yet accurate and objective way. We hope 

that the analysis conducted in this article can provide 

reference for the choice of ANN in such area. Finally the 

following conclusions are drawn: (1) The effects of vibration 

parameters and apple mass at 1% probability level and the 

effect of curvature radius and acoustical stiffness at 5% 

probability level were significant on bruising of apple in 

transport condition. (2) The ANN results were quite 

satisfactory, yielding R2 values close to one, while root mean 

square errors (RMSE) were found to be very low. (3) The 

final selected model, 5-7-1 (5 neurons in input layer, 7 

neurons in the hidden layer and 1 neurons in the output layer) 

demonstrated that it learned the relationship between the 

input and output parameters. 
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