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Abstract 
 
 

 

Brassica is a cool season crop and is susceptible to high temperatures. Developing heat stress tolerant varieties will help the crop to 
sustain under high temperature and can be used to extend the geographical range of cultivation. We have phenotyped 84 spring type 

Brassica napus accessions in field under natural heat conditions. Data on various agronomic traits were collected at the end of 

flowering to maturity stages. An association mapping study was performed to identify QTL associated with heat stress tolerant 

agronomic traits. A total of 37,269 single nucleotide polymorphism markers were used for this study. Multiple markers distributed on 
most of the chromosomes were identified. A total of 6, 11, 7, 11 and 7 QTL were identified those explained 52.2%, 71.8%, 53.2%, 

73.5% and 61.0% of the total phenotypic variations for plant height, main raceme height, pods on main raceme, pod length, and 

sterile/aborted pod, respectively. Multiple candidate genes known to be involved in abiotic stress and abortion of different organs 

were identified in the vicinity of the QTL. For instance, B. napus BnaA03g09160D gene involved in programmed cell death and 
pollen sterility, BnaA05g33770D and BnaA05g33780D genes associated with pollen sterility and pod abortion were identified in the 

QTL regions.  
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Introduction 

 

Rapeseed/canola (Brassica napus L.) is an amphidiploid 
(2n=4x=38, AACC) that originated from the hybridization of 

two diploid species, Brassica rapa (2n=2x=20, AA) and B. 

oleracea (2n=2x=18, CC) (U, 1935; Raymer, 2002). The 

genome size of this crop is about 1,130 Mb. The C genome is 
larger than the A genome which is consistent to the genome 

sizes of B. oleracea and B. rapa, respectively (Chalhoub et 

al., 2014). Rapeseed ranks second in the world as an oil-

producing crop next to soybean (Foreign Agricultural 
Service, USDA, October 2016). Within the USA, about 84% 

of canola is produced in North Dakota with a market value of 

about $384 million/year (5-year average from 2011-2015; 

USDA-NASS, January 2016).  
Although rapeseed is a valuable oilseed crop, the 

production of this crop is hampered due to different biotic 

and abiotic stresses such as disease, pests, heat, drought, cold 

stress etc. High temperature creates a lethal environment for 
the growth and development of plants, and produces different 

types of metabolites, toxins and alters the hormonal activity, 

which creates abnormal phenotypes. Plants are able to cope 

with the stress conditions by reducing the growth and 
development, yield, and by changing morphological, 

physiological, biochemical, and molecular properties (Bita 

and Gerats, 2013). Temperature increase of 3-4˚C from its 

normal range during reproductive stages, even for a short 
duration, could cause 15-35% yield loss (Ortiz et al., 2008). 

Generally, the suitable temperature for spring canola 

production is about 15-20˚C, but the temperature over 27˚C 

causes pollen sterility and pod abortion (Morrison, 1993; 
Angadi et al., 2000; Nuttal et al., 1992). Rapeseed production  

 

 

under increased temperature from 28˚C to 35˚C could reduce 
the seed yield by about 54% to 87% (Gan et al., 2004). It has 

been estimated that 1˚C temperature increase from the 

suitable range of crop growth and development in July can 

cause 10% yield reduction of canola in Saskatchewan, 
Canada (Nuttal et al., 1992). Heat stress during pre-anthesis 

stage reduces pollen fertility, whereas post anthesis heat 

decreases the female fertility of B. juncea (Rao et al., 1992). 

The generative stage of crop development is highly sensitive 
to heat stress (Bita and Gerats, 2013). This sensitivity 

increases the flower abortion, pollen sterility, tapetum 

degeneration (Oshino et al. 2007; Endo et al., 2009), and 

reduces the pod development, seed set, assimilatory capacity 
and productivity (Barnabás et al., 2008), shoot and root 

growth (Vollenweider and Günthardt-Goerg, 2005), seed 

yield (Ahuja et al., 2010; Mittler and Blumwald, 2010). The 

reason of these changes are due to reduced photosynthesis 
(Zhang et al., 2006), radiation use efficiency (Hasanuzzaman 

et al., 2013), increased plant respiration (Reynolds et al., 

2007), Reactive Oxygen Species (ROS) production (Dat et 

al., 1998; Gong et al., 1998; Volkov et al., 2006), lipid 
peroxidation, protein degradation (Savchenko et al., 2002), 

hyperfluidization and disruption of plant cell membranes 

(Horváth et al., 1998; Sangwan et al., 2002), metabolic 

imbalance (Vierling, 1991; Dat et al., 1998; Gong et al., 
1998; Volkov et al., 2006), disrupted biosynthesis and 

compartmentalization of metabolites (Maestri et al., 2002), 

genomic rearrangements (Ivashuta et al., 2002; Steward et al., 

2002), demethylation of transposons (Bennetzen, 2000) and 
so on. 
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Heat stress tolerance in plants is a multigenic character. The 

specific role of the genes in heat stress tolerance is not yet 

identified in crops (Frank et al., 2009). Due to the complexity 

of physiological traits and their interaction with the 
environment the short-term solution for heat stress tolerance 

is quiet unknown to the scientific community (Shao et al., 

2007).    

Association mapping (AM) is based on the linkage 
disequilibrium and utilizes ancestral recombinations and 

natural genetic diversity within a population to quantify the 

quantitative traits (Geiringer, 1944; Lewontin and Kojima, 

1960), where linkage disequilibrium is a non-random 
association of alleles at two loci. It is an alternative method to 

discover genetic factors using biparental crosses, and has a 

higher mapping resolution within a large number of unrelated 

individuals. This helps to identify common genetic variants, 
which control a common phenotype (Risch, 2000). It is 

relatively new and promising genetic method for complex 

trait dissection of plants (Zhu et al., 2008), and for QTL 

identification (Yu et al., 2006). It uses a sample of accessions 
from the germplasm collections, which have accumulated 

many rounds of recombination events. This method has been 

used in many crop and animal species to identify marker-trait 

associations. As heat stress is a complex trait, AM would be a 
good approach to locate the genomic regions associated with 

heat stress affected phenotypes. In the light of these facts, this 

research scheme has been taken to identify the genomic 

regions associated with the heat stress traits in a collection of 
spring type B. napus accessions under field conditions. 

 

Results  

 

Phenotyping of plant materials 

 

The phenotypic variation of the five traits were variable in 

field conditions during the flowering to maturity stages. Of 
the genotypes, raceme height varied between 15.5 cm and 

61.1 cm, and pod/raceme had a range of 13.0 to 52.6. The 

Shapiro-Wilk test of normality indicated that the population 

for raceme height (p < 0.198) and pod/raceme (p < 0.150) are 
normally distributed (Table 1, Fig. 1). The plant height 

ranged from 68 cm to 134 cm, pod length ranged between 

4.24 cm amd 8.21 cm, and sterile/aborted pod varied between 

1.68% and 30.1%. The Shapiro-Wilk test of normality of 
plant height (p < 0.008), pod length (p < 0.006), and 

sterile/aborted pod (p < 0.0004) indicated non-normality of 

the distribution (Table 1, Fig. 1). 

 

Population structure, PCA and relatedness 

 

A total of 37,269 SNP markers were used after removing for 

minor allele frequency of 5%. About 20.6% heterozygous 

loci were present in these samples. Principal component 

analysis has grouped the population into three continuous 

clusters using the first two principal components (Fig. 2).   

 

Association mapping (AM) 

 

Six regression models were used to test the phenotypic 
variation associated with the SNPs. Out of the six models 

tested in the analysis, the model with PC17 + kinship was 

found as the best models for plant height, and pod abortion. 

The model PC17 was the best model for the main raceme 
height and number of pods on main raceme, whereas PC3 was 

the best model for pod length.  

During the marker trait association, three markers were found 

significant for plant height at 0.01 percentile tail of empirical 

distribution (p ≤ 2.99E-05, Table 2, Fig. 3). Among these 

three markers, two were located on chromosomes C03 (0.5 

Mbp) and one on C08 (32.368 Mbp). Additionally, 35 

markers were found significant at 0.01 percentile tail of the 
empirical distribution (p ≤ 5.18E-04; Supplementary table 

S3). These markers were found on multiple chromosomes. A 

stepwise regression with these markers identified six 

significant QTL regions (Table 3, Fig. 4) which together 
explained 52.2% of the total phenotypic variation. The 

identified candidate genes associated with this trait include 

kinase family protein that plays an important role in plant 

growth and development, iron regulated 2 protein associated 
with iron (Fe) availability for plants, which is an essential 

mineral element for plant growth and development. Ethylene-

responsive nuclear protein (ERT2), that regulates plant 

growth and development through cell division, and 
gibberellin 2-oxidase involved in plant growth and 

development, were also identified in the QTL regions 

(Supplementary table S4). 

Five markers were significantly associated with raceme 
height at 0.01 percentile (p ≤ 8.39E-05; Table 2; Fig. 3). 

These significant markers were located on chromosome A02 

(1.13 Mbp), A10 (1.216 Mbp) and C01 (15.6 and 26.1Mbp). 

Thirty-one additional markers were found significant at 0.1 
percentile tail of the distribution (p ≤ 7.84E-04, 

Supplementary table S3). Eleven QTL regions were 

identified through stepwise regression. These 11 QTL 

together explained 71.8 % of phenotypic variation and were 
located on chromosomes A02, A03, A10, C01, C05, C07, 

and C08 (Table 3, Fig. 4). Many candidate genes such as 

plant calmodulin-binding protein that is associated with Ca2+ 

binding, plant growth and development, indole acetic acid-
induced protein 10 that enhances plant growth under drought 

stress condition, protein kinase family protein that is involved 

in stem elongation and vascular development, ACC oxidase1 

that favors plant growth and lowering stress susceptibility 
were identified (Supplementary table S4). 

For number of pods on main raceme, five markers were 

identified significant at 0.01 percentile (p ≤ 2.98E-04, Table 

2, Fig. 3). One of these markers was located on chromosome 
A09 (26.3 Mbp). Besides these markers, 20 more markers 

were found significant at 0.1 percentile tail of the empirical 

distribution (p ≤ 9.86E-04, Supplementary table S3). Further, 

seven major QTL were identified through stepwise 
regression, which together explained 53.2% of phenotypic 

variation (Table 3, Fig. 4). Among them, four QTL were 

located on chromosomes A09, C01, C03 and C09. Multiple 

candidate genes such as adenine nucleotide alpha hydrolases-
like superfamily protein known to be involved in male 

sterility, protein kinase superfamily protein involved in 

pollen abortion, pyruvate kinase family protein associated 

with early embryo abortion, proline-rich family protein 

associated with flower and pod development are present in 

the QTL regions (Supplementary table S4). 

Four markers associated with pod length at 0.01 percentile 

tail (p ≤ 3.72E-05, Table 2, Fig. 3) were located on 
chromosome C02 (33.4 Mbp), C03 (58.6 Mbp) and C09 

(43.4 Mbp). Another 34 markers were found significant at 0.1 

percentile tail of the empirical distribution (p ≤ 9.87E-05, 
Supplementary table S3). A total of 73.5% phenotyping 

variation was explained by 11 major QTL (Table 3, Fig. 4).  

These QTL were located on A03, A05, A09, A10, C01, C03, 

C07, and C09 chromosomes. Multiple genes such as 
cellulose synthesis like A14 known to be involved in the 

young seedpod development, plant self-incompatibility 

protein S1 family that severely reduce pollen coats and cause 

male sterility, glutamine synthetase 1:4 which is involved in  
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Table 1. Variation in different agronomic traits of B. napus under natural heat stress in field condition. 

Traits Average Standard 

deviation 

Maximum Minimum p-value of 

Shapiro-Wilk 

normality test 

Coefficient of 

Variation 

Plant height (cm) 96.9 12.6 134 68.0 0.008 13.0031 

Raceme height (cm) 39.9 8.64 61.1 15.5 0.198 21.6541 

Pod/raceme  30.2 8.15 52.6 13.0 0.150 26.9868 

Pod length (cm) 6.62 0.8 8.21 4.27 0.006 12.0846 

Sterile/aborted pod (%) 9.74 5.54 30.1 1.68 0.0004 56.8789 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 
Fig 1. Phenotypic distribution of five different traits under field condition, (A) plant height (cm), (B) raceme height (cm), (C) number 

of pods on main raceme, (D) pod length (cm), and (E) flower and pod abortion. 

 

Table 2. Significant markers at 0.01 percentile associated with five different agronomic traits under natural heat stress condition. 

Traits/Markers 
Chrom-

osome 
Position P 

R2 

(%) 

Allele 1 Allele 2 
Heterozygous 

Allele 

All-

eles 

# 

Obs 
Mean 

All-

eles 

# 

Obs 
Mean 

All-

eles 

# 

Obs 
Mean 

Plant height              

chrC08_32368215 C08 32368215 2.40E-05 0.24 A 1 134 G 77 96.8 R 7 92.44 

chrC03_545192 C03 545192 2.61E-05 0.24 G 52 94.1 T 18 103.58 T 18 103.58 

chrCnn_rand_78509836 Cnn-rand 78509836 2.99E-05 0.23 C 7 98.4 T 72 95.1 Y 6 116.51 

Raceme height              

chrC01_15689071 C01 15689071 1.74E-05 0.22 G 59 39.7 T 20 36.86 T 20 36.86 

chrC01_15689086 C01 15689086 5.77E-05 0.2 C 55 40 T 25 37.5 Y 5 50.11 

chrA02_1133295 A02 1133295 8.39E-05 0.2 A 25 37.5 T 55 40 W 5 50.11 

chrC01_26101660 C01 26101660 1.18E-04 0.19 A 25 37.5 T 55 40 W 5 50.11 

Pods on main raceme              

chrA10_rand_2092893 A10_rand 2092893 9.42E-05 0.21 A 43 27.9 G 28 30 R 14 37 

chrA10_rand_2092900 A10_rand 2092900 9.42E-05 0.21 C 62 30.7 T 12 33.1 Y 11 23.06 

chrA09_26370461 A09 26370461 1.27E-04 0.21 A 71 29 T 2 27 W 12 37.17 

chrAnn_rand_10002128 Ann-rand 10002128 2.98E-04 0.19 C 2 27 G 71 29 S 12 37.17 

chrAnn_rand_10002131 Ann-rand 10002131 2.98E-04 0.19 A 11 32.5 G 64 30.8 R 10 22.63 

Pod length              

chrC02_33478452 C02 33478452 7.34E-06 0.26 A 26 6.4 G 47 6.9 R 12 5.87 

chrC09_43471822 C09 43471822 1.24E-05 0.25 A 25 6.5 G 44 6.9 R 16 5.97 

chrAnn_rand_11544915 Ann-rand 11544915 3.50E-05 0.23 A 38 6.6 G 39 6.8 R 8 5.62 

chrC03_58651519 C03 58651519 3.72E-05 0.23 A 11 7 G 68 6.7 R 6 5.37 

Sterile/aborted pod              

chrA03_4072206 A03 4072206 5.20E-06 0.27 A 9 14.9 T 40 10.1 W 36 8.06 

chrC02_13281695 C02 13281695 9.16E-06 0.26 A 16 7.7 G 20 13.5 R 49 8.9 

chrC02_13209276 C02 13209276 2.22E-05 0.23 A 70 8.9 C 4 9 M 11 15.67 

chrC02_13209244 C02 13209244 2.22E-05 0.23 C 4 9 T 70 8.9 Y 11 15.67 

chrA10_1216770 A10 1216770 1.19E-04 0.16 C 67 39.9 G 3 29.8 S 15 41.9 
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Fig 2. PC graph of the first two principal components using 37,269 polymorphic SNPs. The X-axis is representing PC1 and Y-axis is 
PC2. This graph explains the similarities among the germplasm accessions and the overall population structure. 

 

Table 3. Significant Markers and QTL associated with total phenotypic variation of five different traits. 

Trait # of significant 

markers 

# of QTL Chromosomes Position (Mbp) %Phenotypic variation 

Plant height 38 6 A01 

C03 

C06 

C07 

C07 

C08 

2.76 

0.54 

5.17 

38.5 

6.80 

32.3 

52.2 

Main raceme height 36 11 A02 

A03 

A10 

C01 

C01 

C05 

C05 

C07 

C08 

Cnn_ rand 

Cnn_ rand 

1.13 

19.9 

1.21 

15.6 

26.1 

39.3 

1.57 

35.3 

16.8 

67.4 

22.2 

71.8 

Pods on main raceme 25 7 A09 

C01 

C01 

C03 

C09 

A10_ rand 

Ann_ rand 

26.3 

3.05 

9.23 

8.00 

3.59 

2.09 

10.0 

53.2 

Pod length 38 11 A03 

A05 

A09 

A10 

C01 

C01 

C03 

C03 

C07 

C09 

C02_ rand 

4.12 

20.3 

32.4 

16.4 

14.8 

16.9 

1.38 

12.3 

40.1 

43.4 

3.64 

73.5 

Sterile/aborted pod 35 7 A05 

A07 

C02 

C04 

C04 

C05 

C04_rand 

22.8 

1.11 

13.2 

5.45 

5.46 

22.9 

0.98 

61.0 
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Fig 3. Manhattan plots showing p values across 19 chromosomes of B. napus for SNP markers associated with five different traits. 

 

 

B-deficiency and pod development were present in the QTL 
region (Supplementary table S4).  

Variation in sterile/aborted pod was associated with four 

significant markers at 0.01 percentile (p ≤ 5.20E-06, Table 2, 

Fig. 3). These markers were located on chromosome A03 
(4.07 Mbp) and C02 (13.20 Mbp). Further 31 markers were 

identified with significance at 0.1 percentile tail of the 

empirical distribution (p ≤ 2.57E-05, Supplementary table 

S3). A stepwise regression was performed, and 7 QTL 
regions were identified that explained 61.0% of phenotypic 

variation of sterile/aborted pod (Table 3, Fig. 4). Many 

candidate genes known to be involved in organ abortion were 

also identified. These genes included heat shock proteins, 

genes associated with male sterility, embryo abortion, pollen 

abortion, and reduced flowering fertility (Supplementary 

table S4). 

 

Discussion 

 

Rapeseed/canola is a cool season crop and is sensitive to heat 
stress (Morrison, 1993). Increasing temperatures and heat 

stress are a growing concern for canola production. Therefore 

improvement of the crop against heat stress traits may help 

the adaptation and expansion of the geographical range of 
cultivation of this crop. To achieve this, a genome-wide 

association study was conducted to identify significant 

markers closely associated with heat stress effected traits, 

that can be helpful for marker assisted selection. The 
germplasm accessions flowered within 40-60 days of 

planting were considered as spring type. These accessions 

were exposed to natural heat stress in the field during the 

reproductive stage. Many studies on heat stress under 
controlled conditions are available, however very limited 

studies on heat stress affected traits of canola under  field 

conditions are available. The germplasm used in this study 

are originated/obtained from 13 countries (3 continents), and 
have relatively higher genetic diversity. These genotypes 

represent the most available spring type diversity in our 

germplasm collection. This diversity will generate a better 

mapping resolution and help to identify QTL regions that can 

be used for marker assisted selection (MAS). These 

genotypes respond differently to heat stress and lead to a 

higher phenotypic variability.        

We studied plant height, main raceme height, number of 
pods on main raceme, pod length, and sterile/aborted pod of 

canola under field conditions. The phenotypic data is from a 

single year field study. This is similar to  Hwang et al. 
(2014), who conducted a genome-wide association study of 

seed protein and oil content in soybean with one-year field 

trial. Zegeye et al. (2014) conducted association mapping on 

seedling and adult plant resistance to stripe rust in synthetic 
hexaploid wheat using single year data. Bellucci et al. (2015) 

conducted a single year field trial for association mapping in 

Scandinavian winter wheat for seed yield, plant height, and  
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Fig 4. The QTL positions of plant height, main raceme height, pods on main raceme, pod length, and sterile/aborted pods located on 

different chromosomes of B. napus. 
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traits important for second-generation bioethanol production. 

Even though studies based on multiple years might be 

beneficial for QTL identification that could effectively be 

used for MAS. However, the drawback would be availability 
of heat stress during reproductive stage in multiple years.  

Since the intended application is minimizing the generation 

advancement effort, by using marker assisted selection, data 

from one year should suffice.  
The plant height and main raceme height varied 

significantly among the genotypes. Heat stress negatively 

affects the plant height and inflorescence height through 

reducing photosynthesis, which is one of the most heat 
sensitive physiological processes in plants (Yamamoto et al., 

2008). Heat stress causes significant pod sterility and pod 

abortion (Morrison, 1993). Variable flower and pod abortion 

were also observed in our study. Variability of pod abortion 
due to heat stress is also reported in other crops such as 

tomato (Levy et al., 1978; Abdul-Baki, 1991), Capsicum 

annum L. (Rylski, 1986; Erickson and Markhart, 2002), bean 

(Konsens et al., 1991), cowpea (Craufurd et al., 1998), pea 
(Wery and Tardieu, 1997), and cotton (Reddy et al., 1992). 

Heat stress affects the tapetum layer of pollen and reduces the 

nutrition supply, especially during microspore development. 

This shortage of nutrient supply affects the male 
gametogenesis, and hamper the formation of microspore cells 

and ultimately causes pod abortion (Ma et al., 2005).  

Multiple genes, and biochemical and metabolic pathways 

govern the heat stress tolerance in plants. For example, 
antioxidant activity, membrane lipid unsaturation, gene 

expression and protein translation, stability of protein, and 

accumulation of compatible solutes play a significant role in 

heat stress tolerance (Kaya et al., 2001). Heat stress has a 
significant role in growth, development and reproduction of 

Brassica (Morrison, 1993; Angadi et al., 2000; Nuttal et al., 

1992).  

In this study, a genome-wide association study (GWAS) 
was conducted to identify significant markers associated with 

the five agronomic traits that are known to be affected by 

heat-stress. GWAS helps to identify candidate genes for each 

trait of interest in a population. It is also a powerful tool to 
identify QTL associated with various traits of crop species 

(Huang et al., 2012). The phenotypic variation of many 

complex traits is influenced by multiple QTL and association 

mapping helps to identify molecular markers that are closely 
linked to the QTL or genes controlling the traits (Li et al., 

2011). We used single nucleotide polymorphism (SNP) 

markers for our association mapping study. SNPs are 

frequently used markers, which contribute the majority of 
genotyping in different crop species including B. napus 

(Trick et al., 2009).   

About 37,000 SNPs were used in this study. The missing 

data of the SNPs was imputed to increase the map resolution 

of the study and to map the causal variant of the analysis. To 

protect from spurious marker-trait associations (Price et al., 

2010), we tested different regression models that include 

structure and/or relatedness. Initially, a large number of 
significant markers were identified associated with heat stress 

traits. Further, bootstrapping identified only a few QTL 

significantly associated to heat stress affected traits (Mamidi 
et al., 2014). This is similar to earlier research, where several 

studies identified QTL associated with heat stress in various 

crops such as rice (Ye et al., 2012), cowpea (Vigna 

unguiculata) (Lucas et al., 2013), and tomato (Grilli et al., 
2007) with a phenotypic variation between 2 and 20%. The 

significant marker was selected around 100 kbp of each side 

of the major QTL due to the lower LD of the studied canola 

accessions (Monika et al., Unpublished). 

Plant height is an important trait of canola affected by heat 

stress. Heat stress affects the photosynthesis (Crafts-Brandner 

and Salvucci, 2002) and produce Reactive Oxygen Species 

(ROS) (Hasanuzzaman et al., 2013) which severely reduces 
plant growth and development. Plants accumulate protein and 

osmolytes under heat stress, which help to continue 

photosynthesis by enhancing the activities of many 

antioxidants like superoxide dismutase (SOD), catalase 
(CAT) and peroxidise (POD), and by scavenging the harmful 

ROS (Warich et al., 2012). In our study, the combined 

phenotypic variation of plant height due to the major QTL 

was about 53%. The heavy metal transport/detoxification 
superfamily protein gene was found in chromosome C03 

which was only 4 kbp apart from the major QTL at 545 kbp. 

This gene is associated with plant growth and development 

and helps to sustain growth under abiotic stress conditions 
(Hall 2002). Many other genes were found associated with 

heat stress such as gibberellin 2-oxidase 8 which regulates 

plant growth (Lo et al., 2008), ethylene-regulated nuclear 

protein (ERT2), which regulates plant growth and 
development through cell elongation and cell division (Sakai 

et al., 1998), ABC-2 type transporter family protein is 

involved in plant growth, development and response to 

abiotic stresses (Kang et al., 2011). Other genes associated 
with plant growth and development such as C2H2-like zinc 

finger protein (Chrispeels et al., 2000), iron regulated 2 

(Yang et al., 2013), and core-2/I-branching beta-1,6-N-

acetylglucosaminyltransferase family protein (Lin et al., 
2015) were  also identified. 

Raceme height is correlated with the plant height that is 

ultimately associated with yield of canola. GWAS revealed 

36 significant SNP markers and eleven QTL on 
chromosomes A02, A03, A10, C01, C05, C07 and C08. 

Many candidate genes were identified that are associated 

with raceme height and are involved in different 

physiological process. Of these candidate genes, Core-2/I-
branching beta-1,6-N-acetylglucosaminyltransferase family 

proteins involved in plant development  (Lin et al., 2015), 

plant calmodulin-binding protein is associated with Ca2+ 

binding and plant growth (Ranty et al., 2006), indoleacetic 
acid-induced protein 10 which enhances plant growth under 

drought stress condition (Yasin et al., 2006), protein kinase 

family protein involved in stem elongation and vascular 

development (Matschi et al., 2013), auxin response factor 1 
regulates plant growth and development (Li et al., 2016), 

mitogen-activated protein kinase acts as signal transporter for 

cell division and plant growth (Sinha et al., 2011), AP2/B3-

like transcriptional factor family protein is involved in plant 
growth (Song et al., 2013), ACC oxidase 1 is involved in 

plant growth and lowering stress susceptibility (Van de Poel 

and Van Der Straeten, 2014). 

Number of pods on main raceme depends on the pod 

development and rate of aborted pods. Pollination and 

fertilization is the prerequisite for the pod development of 

crops. Heat stress affects the pollination of Brassica through 

the desiccation of pollen and reduction in the pollen 
receptivity of the stigma (Rao et al., 1992). Many genes are 

involved in the variation of number of pods per plant. We 

have identified seven significant QTL that explained 53.2% 
of total  phenotypic variation. One significant marker on 

chromosome C03 at 8.00 Mbp is located in Brassica gene 

BnaC03g15870D that contain protein kinase superfamily 

protein, which is involved in pollen abortion of crops 
(Radchuk et al., 2006). Many other candidate genes were 

identified that are associated with the variation of number of 

pods per plants. Among the candidate genes, basic helix-

loop-helix (bHLH) DNA-binding superfamily protein that is 
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involved in the development and dehiscence of seed and pod 

(Hudson and Hudson, 2015), protein kinase superfamily 

protein is involved in pollen abortion (Radchuk et al., 2006), 

pyruvate kinase family protein associated with early 
embryo abortion of flower (Zhang et al., 2014), ARM repeat 

superfamily protein is involved in self-incompatibility and 

reduction of pod number (Sharma and Pandey, 2016),  

chaperone DNAJ-domain superfamily protein is involved in 
male sterility (Yang et al., 2009), DNAJ heat shock N-

terminal domain-containing protein that increases tolerance 

to heat and prevents fruit drop (Zhao et al., 2015), proline-

rich family protein associated with flower and pod 
development (Giorno et al., 2013), adenine nucleotide alpha 

hydrolases-like superfamily protein is involved in male 

sterility (Mok and Mok, 2001), homeodomain-like protein 

regulates anther dehiscence (Wilson et al., 2011), cytochrome 
P450 is involved in the pollen tube development and 

fertilization (Zhao et al., 2015), pyruvate kinase family 

protein found associated with early embryo abortion (Zhang 

et al., 2014).   
Pod length is one of the indicators of seed yield in 

Brassica. Pod length is also affected by heat stress. High 

temperature reduces the photosynthetic capacity (Crafts-

Brandner and Salvucci, 2002) and increase pollen abortion 
(Zhang et al., 2014), which in turn affects the growth and 

development of pod. We have identified 11 QTL associated 

with pod length in relation to heat stress. The QTL together 

explained a phenotypic variation of 73.5%. One marker, 
chrA03_4124353, located on chromosome A3, is only 1 kb 

away from Brassica gene BnaA03g09160D 

(Cysteine/Histidine-rich C1 domain family protein). This 

gene is involved in tapetal development, programmed cell 
death (PCD) and pollen grain sterility (Zhang et al., 2014). 

Many other genes such as 2-oxoglutarate (2OG) and Fe(II)-

dependent oxygenase superfamily protein (Leisner et al., 

2014), cysteine/histidine-rich C1 domain family protein 
(Zhang et al., 2014), heat shock protein 18.2 (Kim and Hong, 

2001), zinc finger (C3HC4-type RING finger) family protein 

(Wu et al., 2014), cellulose synthase like A14 (Park et al., 

2013), homeodomain-like superfamily protein (Wilson et al., 
2011), syntaxin of plants 71 (Sharma and Nayyar, 2014), 

cellulose synthase 5 (Park et al., 2013), plant self-

incompatibility protein S1 family (Samuel et al., 2009), 

cytochrome P450 (Zhao et al., 2015), ubiquitin family protein 
(Mazzucotelli et al., 2006), malectin/receptor-like protein 

kinase family protein (Matschi et al., 2013), 

glutamine synthetase 1;4 (Bargaz et al., 2015), auxin 

response factor 19 (Li et al., 2016), AGAMOUS-like 24 (Yu 
et al., 2002), P450 reductase 1 (Bak et al., 2011) were also 

identified associated with the cytoplasmic male sterility, 

pollen tube and pollen coat development, boron deficiency, 

and seed pod development. 

Sterile/aborted pod is significantly affected by heat stress, 

and causes significant yield loss of Brassica. Thirty-five 

SNPs were identified associated with sterile/aborted pod on 

different chromosomes. Stepwise regression identified seven 
significant QTL located on chromosome A05, A07, C02, 

C04, and C05. The markers chrC04_5456736, and 

ChrC04_rand_988002 were 4kb apart from Brassica gene 
BnaC04g07360D and BnaC04g01250D, respectively. Two 

other markers chrA05_22801086 and chrA05_22801086 

were also found 5 and 6 kb apart from the Brassica gene 

BnaA05g33770D and BnaA05g33780D, respectively, which 
were located on the chromosome A05. The genes associated 

with these QTLs are F-box family proteins associated with 

the reduction of flower fertility and reduced number of pod 

set (Ariizumi et al., 2011), cyclic nucleotide-gated protein 

that is involved in meiotic division and fruit development 

(Yang et al., 2006), myb domain protein 57 associated with 

drought stress tolerance to reduce pod abortion (Baldoni et 

al., 2015), and adenine nucleotide alpha hydrolases-like 
superfamily proteins are involved in male sterility and 

ultimately cause pod abortion (Mok and Mok, 2001). 

 

Material and methods     

 

Phenotyping 

 

A total of 84 spring type B. napus accessions were used in 
this study (Supplementary table S1). The accessions were 

obtained from Germplasm Resources Information Network 

(GRIN) (http://www.ars-grin.gov/npgs/searchgrin.html), and 

were grown in the field at Prosper, North Dakota during 
summer 2014. The experiment was laid out in a randomized 

complete block design (RCBD) with 3 replications. Three 

plants per replication were tagged randomly during flowering 

time for data collection. During the pod initiation time (1st 
week to 3rd week of July) the air temperature was about 35ºC 

(https://ndawn.ndsu.nodak.edu), which created a natural heat 

stress for about 20 days (Supplementary table S2). Data on 

plant height (cm), raceme height (cm), number of pods on the 
raceme, pod length (cm), and sterile/aborted pod were 

recorded at the physiological maturity stage of the crop.  

 

Genotyping and association mapping (AM)  

 

Genomic DNA was extracted from a collection of 366 

individuals representing the entire canola diversity available 

at North Dakota State University (Monika et al. Unpublished) 
were sequenced using a Genotype-By-Sequencing protocol 

(Elshire et al. 2011). Briefly, the samples were digested with 

ApkI enzyme. Illumina GAII sequencer was used to sequence 

the sample as 100 bp single end reads from size selection of 
300–700 bp fragments. Sequence alignments were performed 

using BWA-mem (Li et al., 2013) and SNP calling using 

VarScan (Liu et al., 2013). The SNPs obtained at this stage 

were used for further analysis.  FastPHASE (Scheet and 
Stephens, 2006) was used to estimate the missing alleles. The 

marker data for these 84 spring type individuals was further 

cleaned for minor allele frequency of 5%, below which 

markers were removed. Finally, 37,269 SNPs were 
subsequently used for this analysis.  

 

Structure analysis, kinship, and model testing 

 
Population structure was controlled using principal 

components (PC) that were estimated in TASSEL 5.0 

(Bradbury et al., 2007). PCs that account for 25% and 50% of 

cumulative variation were used in association mapping 

analysis. In addition, a pairwise kinship coefficient matrix 

(K-matrix) was estimated as the proportion of shared alleles 

for all pairwise comparisons within the population (Zhao et 

al., 2007). Six regression models, Naïve, PC3 (25% 
variation), PC17 (50% variation), kinship, PC3+kinship, and 

PC17+ Kinship, were used in this study to identify the marker 

trait association as well as to select the best models. All the 
analyses were performed in TASSEL. Among the six models 

for each trait, a best model was selected based on the smallest 

Mean Square Difference (MSD) between the observed and 

expected p-values (Mamidi et al., 2011). Significant markers 
were identified based on the p-value of a marker within 0.01 

and 0.1 percentile tail of 10,000 bootstraps (Mamidi et al., 

2014; Gurung et al., 2014; Kertho et al., 2015). Significant 

markers were selected from the selected best models, and 

http://www.ars-grin.gov/npgs/searchgrin.html
https://ndawn.ndsu.nodak.edu/
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Mahhattan plots were constructed using –log10 of P-values 

against chromosome location using qqman package in R 

(Turner 2014). 

 

Identification of QTL and candidate genes 

 

Stepwise regression was implemented in SAS using SAS 

REG procedure to estimate the combined variation (r2) 
explained by all markers and to select the minimum number 

of markers that can be used for marker assisted selection, and 

that define a QTL (Mamidi et al. 2014; Gurung et al. 2014). 

A significant P-value of 0.05 was necessary for both marker 
and model for stepwise inclusion of the marker in REG 

procedure of SAS 9.3. Further, genes within 100 kb on either 

side of the major QTL were used to identify candidate genes. 

The gene sequences of canola were blasted against the 
Arabidopsis gene models (TAIR10 database; Berardini et al., 

2015) to obtain an annotation for the gene models. Candidate 

genes were identified on the basis of the physiology and 

functions of those genes which were previously reported.  

 

Conclusion 

 

Rapeseed/canola is a heat sensitive crop and can cause 
significant yield losses at high temperatures. Additionally, 

the cultivation in U.S. is limited to North Dakota. For 

improving the crop productivity under heat stress and 

increasing the cultivation area, there is an urgent need to 
develop genotypes that are resistant to heat stress. For this, 

we have included all available spring type germplasm and 

evaluated in field conditions, where heat stress was observed 

during the flowering stage. As anticipated, we identified 
multiple QTL for each of the five agronomic traits. The 

markers can be used for MAS, while candidate genes within 

vicinity of QTL can be used for additional functional studies. 
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