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Abstract 
 
Sugarcane production plays a fundamental role in the Brazilian economy, both for sugar production and renewable energy 
generation. The development of new cultivars to meet the current needs of the sugarcane industry sector requires efficient 
phenotyping methods, which should incorporate simplification, speed, accuracy, and consistency. In order to contribute to the 
development of new phenotyping strategies, this work aimed to develop multivariate regression models using Partial Least Squares 
(PLS) to classify sugarcane clones based on sugarcane biomass quality parameters, namely fiber (FIB) and apparent sucrose (SC) 
content. A NIR instrument was used to acquire the reflectance spectra of 196 sugarcane bagasse - collected in two different harvest 
seasons - and fresh stalk samples. The values predicted by these models allowed the construction of a vector using a confusion 
matrix that informs whether the clone should be selected or not. PLS models selected to predict each trait under study presented 
high accuracy and precision, besides small values of false-positive rate and good concordance indication by the Kappa statistic test. 
The results obtained indicate that the use of fresh stalk samples rather than bagasse samples for the prediction of SC and FIB is 
recommended as it delivered higher predictive power and is of a more straightforward usage. The utilization of NIR combined with 
multivariate techniques may help breeding programs in the classification of sugarcane clones based on biomass quality parameters. 
 
Keywords: Calibration models; NIR; PLS; fiber content; apparent sucrose content. 
Abbreviations: BBH_ wet bagasse collected at the beginning of the harvest, BMH_ wet bagasse collected at the middle of the 
harvest, Co_observed concordance, Ce_expected concordance, D1_first derivative, FIB_fiber content, FP_false positive, FT_Fourrier 
transform, KS_Kennard and Stone algorithm, LV_latent variables, MC_mean centering, MSC_Multiplicative Scatter Correction, 
NIR_near-infrared, PCR_principal component regression, PLS_partial least squares, PMGCA-UFV_Sugarcane Genetic Breeding 
Program of the Universidade Federal de Viçosa, RMSE_root mean squared error, RMSECV_root mean squared error of cross-
validation, RMSEP_root mean squared error of prediction, R

2
_multiple coefficient of determination, SC_ apparent sucrose content, 

SMH_stalk collected in the middle of the crop, TN_true negative. 
 
Introduction 
 
There has been a steady increase in investments for the 
development of alternative energy sources to replace fossil 
fuels (Zhao et al., 2009). Ethanol obtained from sugarcane 
juice - first-generation ethanol - is often the major biofuel 
employed for this purpose in Brazil (Lopes et al., 2016). 
However, studies are being carried out to harness the 
lignocellulosic components of the plant aiming to produce 
ethanol from sugarcane bagasse, the second-generation 
ethanol (Zheng et al., 2009). Additionally, the cogeneration 
of electricity can also be conducted by burning the bagasse 
(Silveira et al., 2015). 
Sugarcane mills and distilleries invest in genetic breeding 
because it allows the obtainment of new and more suitable 
sugarcane varieties, either sugar production or for 
renewable energy generation (Silveira et al., 2016). In this 
sense, sugarcane breeders may be interested in determining 
sugarcane biomass quality parameters, i.e. fiber or sugar 

content values at the beginning of a breeding program, to 
compare clones and to classify them in above or below the 
overall experimental mean. Moreover, they may be 
interested in selecting a specific top percentage of the 
sugarcane clones composing an evaluated population. The 
clones showing values above the defined threshold are 
conducted for the next assessment phase of the program, 
while the rest is discarded. However, the methods 
commonly used by sugarcane genetic breeding programs for 
phenotypic evaluation are usually costly and time-
consuming. Thus, it is fundamental to develop new 
phenotyping strategies. The emergence of new technologies 
has allowed the application of Near Infrared Spectroscopy 
(NIR), combined with multivariate statistical methods, to 
determine the biochemical composition of a wide range of 
plant species biomass feedstock, including sugarcane (Liu et 
al., 2010; Santchurn et al., 2012; Assis et al., 2017). NIR has 
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an excellent potential application (Montes. et al., 2013; 
Roque. et al., 2017) due to its ease of use, speed, accuracy 
and the absence of waste generation (Pasquini, 2003; 
Valderrama et al., 2007). The analytical determination of 
sample’s chemical composition using NIR spectroscopy is 
also a non-destructive methodology as it does not require 
the use of reagents nor sample preparation (Blanco et al., 
2002). 
The NIR modeling is carried out using multivariate 
calibration, usually conducted with the application of Partial 
Least Squares (PLS) regression or Principal Component 
Regression (PCR; Beeb et al., 1987), followed by some 
mathematical pre-treatments of the data (Engel et al.,2013). 
The PLS regression method is the most recommended in the 
literature for the analysis of NIR-derived datasets (Brereton, 
2000). 
The present work aimed to build NIR based multivariate 
regression models using PLS, as a modern phenotyping 
strategy to reduce costs and enhance selection efficiency for 
the prediction and classification of sugarcane clones based 
on fiber and apparent sucrose content. Specific objectives 
were to compare the use of sugarcane shred bagasse and 
fresh stalk samples. 
 
Results and Discussion 
 
NIR spectra analysis 
 
The raw NIR spectra obtained from bagasse samples 
collected at the beginning of the harvest season, bagasse 
samples collected in the middle of the harvest season and 
fresh stalk samples collected in the middle of the harvest 
season are shown, respectively, in Figure 1-A, 1-B and 1-C. 
By collecting NIR spectra of sugarcane samples in different 
seasons, we were particularly interested in evaluating 
whether the accuracy of the developed models would be 
affected by the physiological changes on the biomass 
chemical composition during sugarcane physiological 
maturation.  
Initially, each dataset was sorted into two subsets using the 
Kennard and Stone algorithm (Kennard. et al., 1969), 
namely, the calibration set with 166 samples and the test or 
external validation set with 20 samples. The KS algorithm 
allows the uniform selection of samples. We assessed the 
existence of outlier samples present in the data sets through 
the Leverage versus Studentized residual plot and identified 
ten samples that were excluded from the analysis (Martens 
et al., 1992). We performed a leave-one-out (Valderrama et 
al., 2007) cross-validation in the training set for the selection 
of the best number of latent variables (LV). This selection 
was performed based on the analysis of the graph of the 
Root Mean Squared Error of Cross-Validation (RMSECV) 
versus LV, which allows the identification of the LV number 
corresponded to the lowest RMSECV value. 
 
Fiber and apparent sucrose content - chemical analysis 
results 
 
The chemical analysis indicated that fiber content (FIB) 
values ranged from 8.38% to 19.51% at the beginning of the 
harvest (early harvest) and increased in the middle of the 
harvest ranging between 9.58% and 22.53%. Apparent 
sucrose content (SC) values ranged from 1.78% to 12.20% at 
the beginning of the harvest (early harvest) and from 3.11% 

to 16.89% in the middle of the harvest. These results appear 
to be related to the sugarcane maturation process for an 
eighteen-month crop. Sugarcane physiological maturation is 
the process in which the plant increases the sucrose 
accumulation in its storage tissues as a response to the 
changes in the environment (Toppa et al., 2010). The 
sugarcane biomass chemical composition over the harvest 
season is a function of several factors, including soil 
moisture, air temperature, crop management and the 
genotype (Inman-Bamber et al., 2010; Pereira et al., 2017). 
However, lower air temperature and water shortages are 
the most significant contributors to the sugarcane 
maturation process (Cardozo et al., 2013). At the beginning 
of the harvest season, adverse weather conditions cause the 
decrease of the vegetative growth rate and lead to changes 
in the Carbon partitioning dynamics with lower cell wall 
synthesis and increase of sucrose accumulation in the stalks 
(Wang et al., 2013; Botha et al., 2000). Tai et al., (1996) and 
Wagih et al., (2004) evaluated changes in the accumulation 
of sucrose and fiber content during sugarcane maturation 
and observed a steady linear pattern for fiber and a 
quadratic pattern for sucrose. Likewise, Zhao et al., (2009) 
found similar results in sorghum, with the biomass 
components cellulose, hemicellulose and lignin increasing 
with crop cycle length. 
The increase of SC from early to middle harvest can be 
addressed to a more advanced maturation stage of the 
sugarcane clones, after undergoing a water shortage caused 
by the dry month’s period (Cardozo et al., 2013; Inman-
Bamber et al., 2010). The occurrence of low values of SC is 
linked to the investigated energy-cane population under 
study, in which many clones naturally present low SC 
concentrations. Therefore, since they are aimed for burning 
or the production of second-generation ethanol, the clones 
have no aptitude for high sucrose accumulation (Ramos et 
al., 2017; Legendre et al., 1994). 
 
Fiber and apparent sucrose content prediction 
 
Regarding the FIB trait, according to the lowest RMSECV 
obtained, we selected nine latent variables (LV) for the 
bagasse samples dataset collected at the early harvest 
season, while for the bagasse and stalk samples dataset 
collected in the middle of the harvest season the lowest 
RMSECV was associated to four and eight LV, respectively.  
Table 2 shows the PLS models built applying different pre-
treatments. We tested the combination of different 
pretreatments and the models' performance regarding the 
RMSCV and the coefficient of multiple determination of 
cross-validation. Bagasse samples collected at the beginning 
(BBH) and in the middle (BMH) of the harvest season did not 
provide well-fitted models (Table 2). On the other hand, a 
PLS model built using fresh stalk samples collected in the 
middle of the harvest season (SMH) without any pre-
treatment yielded the best results to predict fiber content, 
with RMSECV and R

2 
values of 1.67 and 0.47, respectively 

(Table 2). After selecting the best model, we evaluated its 
performance using the samples that were not included when 
fitting the training model, i.e. the samples which pertained 
to the validation set (Pasquini, 2003; James et al.). In this 
case, the coefficient of multiple determination of prediction 
obtained was 0.32, and the Root Mean Squared Error of 
Prediction was 2.7, which is considered a small value since it 
is nearly four times lower than the least fiber content value  
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Table 1. Confusion matrix between the correct classification based on the observed values and the classification obtained from the 
values predicted by the models on the test set. 

Classification SR = 50% (top 10 clones) or 25% (top 5 clones) 
NS (Predicted) S (Predicted) 

NS (real) True Negative (TN) False Positive (FP) 
S (real) False Negative (FN) True Positive (TP) 

Accuracy (TN+TP)/n 
FP/(TN + FP) 
TP/(FP + TP) 
(Co – Ce)/(1 – Ce) 

False-positive rate 
Precision 
Kappa 
SR: Selection Rate according to the real value (top 25% or top 50%); S: Selected clones; NS: Non-selected clones; Co: Observed concordance; Ce: Expected 
concordance, and n: the total number of clones. 

 

 
Fig 1. Raw NIR spectra from: (A) bagasse samples collected at the beginning of the harvest season; (B) bagasse samples collected in 
the middle of the harvest season; and (C) fresh stalk samples collected in the middle of the harvest season. 

 
 

Table 2. Root Mean Squared Error of Cross-Validation (RMSECV) and coefficient of determination (R2) obtained from Partial Least 
Squares (PLS) analysis using different sugarcane samples and harvest seasons for fiber content. 

 Pre-treatment BBH BMH SMH 

  RMSECV R2 RMSECV R2 RMSECV R2 

 None 1.77 0.29 1.95 0.34 1.67 0.47 
 MC 1.77 0.29 1.97 0.33 2.15 0.28 
 D1 + MC 2.22 0.06 2.28 0.21 1.78 0.43 
 MSC + MC 1.85 0.26 2.13 0.27 2.11 0.27 
 MSC + D1 + MC 2.22 0.06 2.27 0.21 2.06 0.34 

BBH: wet bagasse collected at the beginning of the harvest; BMH: wet bagasse collected at the middle of the harvest; SMH: stalk collected in the middle of the harvest; MC: mean centering; D1: first 
derivative and MSC: Multiplicative Scatter Correction. 

 
Fig 2. Observed versus predicted: (A) fiber content values obtained from the PLS model built using fresh stalk samples; and (B) 
apparent sucrose content values obtained from the PLS model built using fresh stalk samples following the application of 
Multiplicative Scatter Correction, First Derivative and Mean Centering. Empty circles refer to the calibration set; and solid black 
circles to the test/validation set. 
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Table 3. Root Mean Squared Error Statistics by Cross-Validation (RMSECV) and coefficient of determination (R2) obtained from the 
Partial Least Squares (PLS) model in different samples and harvest seasons for apparent sucrose content. 

 Pre-treatment BBH BMH SMH 

  RMSECV R
2 

RMSECV R
2 

RMSECV R
2 

 None 1.72 0.54 2.01 0.47 3.28 0.20 
 MC 1.77 0.52 2.05 0.44 2.94 0.27 
 D1 + MC 1.79 0.52 2.05 0.19 1.83 0.58 
 MSC + MC 1.68 0.57 1.89 0.52 1.73 0.61 
 MSC + D1 + MC 1.81 0.52 3.05 0.05 1.56 0.68 

BBH: wet bagasse collected at the beginning of the harvest; BMH: wet bagasse collected at the middle of the harvest; SMH: stalk 
collected in the middle of the harvest; MC: mean centering; D1: first derivative and MSC: Multiplicative Scatter Correction. 
 
 
Table 4. Confusion matrix between the correct classification based on the real values of fiber content (FIB) and the classification 
obtained by the predicted values from the PLS analysis. Models constructed from fresh stalk samples without any pre-treatment. 

Classification SR = 50% (top 10 clones) SR = 25% (top 5 clones) 

 NS (predicted) S (predicted) NS (predicted) S (predicted) 

NS (real) 8 2 13 2 
S (real) 2 8 2 3 

Accuracy 0.80 0.80 
False positive rate 0.20 0.13 
Precision 0.80 0.60 
Kappa 0.60 (p-value: 0.037) 0.47 (p-value: 0.007) 

                     SR: Selection rate based on the real value; S: Selected clones, and NS: Non-selected clones. 
 

Table 5. Confusion matrix between the correct classification based on the observed values of the apparent sucrose content (SC) 
and the classification obtained from the PLS model constructed using fresh stalk samples after the application of the Multiplicative 
Scatter Correction, First Derivative and Mean Centering. 

Classification SR = 50% (top 10 clones) SR = 25% (top 5 clones) 

 NS (predicted) S (predicted) NS (predicted) S (predicted) 

NS (real) 8 2 14 1 
S (real) 2 8 1 4 

Accuracy 0.80 
0.20 
0.80 
0.60 (p-value: 0.037) 

0.90 
0.06 
0.80 
0.73 (p-value: 0.001) 

False-positive rate 
Precision 
Kappa 

SR: Selection Rate based on the real value; S: Selected clones and NS: Non-selected clones. 
 

(Ferreira, 2105). Figure 2-A shows the graph of the observed 
versus predicted values of FIB using fresh stalks samples.  
Besides FIB, we also attempted to develop regression 
models to predict SC values using sugarcane bagasse and 
fresh stalks samples. After analyzing the LV × RMSECV 
relationship, we selected eight LV for the BBH samples, and 
five and seven LV, respectively, for BMH and SMH samples. 
In both scenarios, the prediction of FIB and SC, the number 
of LV agrees with the maximum number suggested by 
Pasquini (2003). Again, the model built using SMH samples 
yielded the best results for the prediction of SC, with the 
lower value of RMSECV (1.56) and the highest value of R

2
 

(0.68; Table 3). The results observed herein suggest that, 
regarding the SC trait, it is also recommended to use NIR 
spectra collected from fresh stalk samples after applying the 
pre-treatments MSC, 1st Derivative and Mean Centering. For 
the prediction of SC, the removal of the outlier samples 
identified from the Leverage vs. Standardized Student 
Residues plot improved the performance of the selected 
model. The R

2
 increased from 0.68 to 0.71, and the RMSECV 

decreased from 1.56 to 1.48 (Martens et al., 1992). Again, 
after selecting the best-fitted model, we tested its predictive 
ability in the samples of the validation set The values of R

2
 

and RMSEP obtained were 0.64 and 3.07, respectively (Table 
3). Figure 2-B shows the graph of the observed versus 
predicted values of SC using fresh stalks samples. 

Alongside with inherent composition variations present in 
the samples, variable spectral path length and radiation 
scattering due to different particle size may negatively 
influence the analysis of NIR diffuse reflectance spectra (Ely 
et al., 2008; Barnes et al., 1989). Therefore, these physical 
interferes may conceal the chemical information the 
researcher was initially investigating and ultimately affect 
the models' prediction power (Engel et al., 2013). In this 
sense, the shred bagasse samples characterized by rough 
and different particle sizes may have been the cause of the 
underperformance compared to the models built using fresh 
stalk samples. However, Sabatier et al., (2011) stated that 
the mathematical pre-treatments commonly applied in NIR 
spectra were enough to correct spectra variations resulted 
from sugarcane samples with coarse particle size. 
Nevertheless, the utilization of fresh stalk over bagasse 
samples is advantageous as it requires less sample 
preparation. Thus it brings greater ease to the analysis. 
Assis et al., (2017) successfully predicted lignin content of 
sugarcane fresh stalk samples using NIR spectroscopy, 
obtaining a higher accuracy than we found herein. 
Moreover, results obtained by Valderrama et al., (2007) 
using a NIR protocol to predict SC in sugarcane juice samples 
also demonstrate the possibility of developing NIR based 
models with higher accuracies. However, in this study, we 
were not only concerned with the accuracy of predictions; 
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we also propose the classification of sugarcane clones using 
the NIR based developed models. 
 
Fiber and apparent sucrose content classification 
 
In this section, we computed a confusion matrix for the test 
set by assuming the selection of 10 (50%) and 5 (25%) of the 
top-ranked sugarcane clones based on FIB and SC values of 
the total 20 samples of the validation set. 
 Table 4 shows the confusion matrix for the classification of 
clones based on FIB, after considering a threshold for the 
selection of the 10 and 5 top-ranked clones. From Table 4 
we see that the PLS model returned predicted values 
capable of classifying clones in selected or non-selected with 
80% accuracy, regardless of the selection rate considered. 
The Kappa test showed significance on both scenarios (SR = 
50% and 25%), indicating an excellent performance of the 
model for classifying clones in selected or non-selected 
categories. The results from Table 4 also indicate that the 
classification model presented small values of false-positive 
rate, with values of 0.13 and 0.20 for the selection rates 50% 
and 25%, respectively.  
Table 5 shows the confusion matrix for the classification of 
clones based on SC, after considering a threshold for the 
selection of the 10 and 5 top-ranked clones. Despite 
presenting a moderate value of R

2
 (0.65), this model might 

be a useful tool for ranking sugarcane clones. It is highly 
accurate (accuracy of 0.8 and 0.9, depending on the number 
of clones selected) and presents low values for false-positive 
rate (0.2) and it indicates, according to the Kappa test (p < 
0.05), the existence of agreement in the classification of the 
clones based on the training model (Table 5). 
It is essential to highlight the need for interpretation the 
false positive rate results in this study (James et al., 2013). It 
relies on the fact that even if the breeder takes a below-
average clone and conduct it further in a breeding program 
because the fitted model erroneously indicated it, it is still 
possible to discard this clone in the next year when this 
clone will undergo a new evaluation trial. Therefore, at this 
moment, we are not only concerned about the overall error 
rate obtained on the confusion matrix, but also on the 
number of false positives eventually indicated. 
The PLS models adjusted for the NIR data presented a high 
potential for classifying sugarcane clones based on biomass 
quality parameters. Similar results were also found in other 
studies that used similar methodologies (Montes et al., 
Roque et al.,2017). The results observed are encouraging 
and suggest that the models developed in this study can be 
used as a screening tool to aid breeder’s decision in the 
selection of sugarcane clones.  
 
Materials and Methods 
 
Plant material and phenotypic evaluation 
 
The Sugarcane Genetic Breeding Program of the 
Universidade Federal de Viçosa (PMGCA-UFV) consists of 
five phases: first, second, and third testing phases; 
multiplication phase; and experimental phase (Barbosa et 
al., 2012). After performing clonal selection in the best 
families evaluated in the first testing phase, 196 clones were 
submitted to the second testing phase. The selected clones 
are contrasting in fiber content (FIB) (Rocha et al., 2012; 
Souza et al.,2013) and apparent sucrose content (SC) 
(Fernandes, 2011) traits. These clones were originated from 
crosses involving parents with high sucrose content and with 

high fiber content, to obtain energy cane cultivars that 
combine both traits. 
The second testing phase was installed in July 2014 in 
augmented block design, with two cultivars as checks 
(RB867515 and C90-176) with 18 blocks in total. Each of the 
196 plots consisted of two 5-meters-long furrows, spaced 
1.4 m. We installed an experiment at the PMGCA-UFV 
Research Center, located in the municipality of Oratórios, 
MG, the latitude of 20

o
25’; longitude of 42

o
48’; altitude of 

494 m and LVE soil. 
We obtained FIB and SC measures through the technical 
analysis of 500 g samples of wet bagasse obtained from the 
milling of 10 sugarcane stalks per plot in two seasons: early 
harvest at ten months (May 2015) after planting; and middle 
harvest at 13 months (August 2015) after planting. 
 
Collection of the NIR spectra data 
 
We collected NIR data from bagasse samples collected on 
the early and middle harvest, and from fresh stalk samples 
collected on the middle harvest, as explained below. 
Around 200 g of shred bagasse, obtained from the milling of 
10 stalks of each of the 196 sugarcane samples were frozen 
at -20ºC to avoid deterioration until one could perform the 
read the NIR samples in the laboratory. After 30 days of 
storage, each sample was thawed and approximately 3 g of 
wet bagasse was placed into a recipient. After, we 
performed NIR readings using an Agilent 660 Fourier 
transform (FT) spectrometer. We did three readings on each 
sample, at each reading we gently moved the recipient 
containing the bagasse so that a new reading could be 
carried out in another part of the sample. After three days, 
we completed all the 588 readings. We used the same 
Agilent 660 Fourier transform (FT) spectrometer to acquire 
all fresh stalk samples spectra. In this case, we froze at -20°C 
three internodes of the middle third of three stalks (nine 
internodes) per plot. After 30 days, we thawed the 
internodes of the 196 stalk samples. Each internode was cut 
lengthwise and used for a single reading in the NIR 
instrument. 
 
Statistical analysis 
 
We organized the spectral data in an X matrix, in which the 
rows correspond to the sugarcane samples, and columns 
corresponded to the covariates, i.e., the NIR wavenumbers. 
The response vector y contained the values of each 
evaluated trait, namely FIB, and SC. 
Before the analysis, we submitted the data to three different 
types of pre-treatments: first derivative, multiplicative 
scatter correction and mean centering (Engel et al., 2013). 
The first derivative has the purpose of correcting the 
changes in the baseline due to the instrument or sampling 
systematic variations. We employed the Savitzky-Golay 
smoothing method using a 15 sized window and a second-
degree polynomial. The Multiplicative Scatter Correction 
(MSC) aims to correct the effect of light scattering due to the 
lack of particle size and distribution homogeneity in the 
samples or the variations resulting from differences in the 
optical path length of the samples (Rinnan et al., 2009). The 
mean centering aims to give more relevance to the distance 
of the points to the mean value and eliminate from the data 
the intensity value of each variable (Rinnan et al., 2009). 
 The Partial Least Squares (PLS) regression method was 
employed. This method has the advantage of considering 
the information of the response variable vector y for the 
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construction of the model (Wold et al., 2001). Moreover, it 
can cope with highly correlated data, thus improving the 
representation of the information contained in the NIR 
spectrum (Brereton et al., 2018) 
The PLS fitting procedure can be developed based on the 
bidiagonal algorithm (Barlow.et al., 2005), corresponding to 
the decomposition of an X matrix into three other matrices, 
according to the equation below: 
 

X = URVt
 

 
where X is the data matrix already incorporated with the 
vector y; R is a diagonal matrix; U and V are matrices 
organized so that their first columns are composed of the 
information present in X in decreasing order, called latent 
variables. Thus, much of the information can be 
reconstructed from X with only part of U and V. 
The coefficient of multiple determination (R

2
) and the Root 

Mean Squared Error (RMSE) were employed as the 
evaluation criteria, which can be computed as follows: 

𝑅2 =
[∑ (�̂�𝑗 − �̅̂�)(𝑦𝑖 − �̅�)𝑛

𝑗=1 ]
2

∑ (�̂�𝑗 − �̅̂�)
2

∑ (𝑦𝑖 − �̅�)𝑛
𝑗=1

𝑛
𝑗=1

  𝑅𝑀𝑆𝐸 =  √
∑(𝑦𝑖 − �̂�𝑖)2

𝑛
 

where yi corresponds to the real value of sample i (i = 1 to 
n); �̂�𝑖 corresponds to the predicted values for sample i, and 
n is the total number of samples considered in the 
calculation. The RMSE can be calculated using �̂�𝑖 as the 
values obtained in cross-validation (RMSECV) or using �̂�𝑖 as 
the prediction values (RMSEP). We considered a model 
adequate when the values of RMSECV and RMSEP are 
sufficiently small, that is, smaller than the minimum value 
of the dependent variable, combined with the highest R

2
. 

In addition to the performance of regressions, RMSECV is 
employed to select the optimal number of latent variables 
for the models (Martens et al.,1992). We used the PLS-
Toolbox 4.0 algorithm package for the analysis, in the 
Matlab software, version 6.0 (The Mathworks, Natick, USA) 
to perform all statistical analysis. 
 
Technical Assessment and comparisons 
 
Due to the relevance of knowing the best clones for genetic 
breeding programs, we classified the clones by ordering the 
values of fiber content (FIB), and apparent sucrose content 
(SC) measured. We investigated two scenarios regarding the 
selection rates. In the first scenario we fixed a selection rate 
of 50% and of 25% in the second. A binary data vector was 
created for each trait (FIB and SC), assuming a value equal to 
1 if the clone was selected and a value of 0, otherwise. The 
selection is performed for clones with high FIB and also high 
SC. The same classification was carried out based on the 
results obtained by the fitted model. 
The binary values obtained from the training set in which 
the model was fitted and validation set were the basis for 
the computation of the confusion matrix, also known as 
contingency matrix (James et al., 2013; Table 1). The 
confusion matrix evaluation criteria considered the 
measurements of accuracy, false-positive rate, precision and 
Kappa concordance test (Fleiss.et al., 1981; Castellan, 1988) 
obtained from this matrix.  
 
Conclusion 
 
The prediction of fiber and apparent sucrose content can be 
performed from stalk samples instead of wet bagasse 
samples due to its higher predictive power and ease of 

applicability when considering NIR readings. Also, the 
employment of a protocol to screen sugarcane clones using 
NIR spectroscopy may save a significant amount of resources 
as ordinary phenotyping strategies currently adopted 
represent a high-cost element in the PMGCA.  In the 
population under study, we achieved the best results for the 
data collected in the middle of the harvest season. For fiber 
content, no pre-treatment was necessary to obtain the best 
model, whereas, for apparent sucrose content, it was 
necessary to apply the pre-treatments Multiplicative Scatter 
Correction, First Derivative and Mean Centering. The models 
used to select the top clones regarding fiber and sucrose 
content showed high accuracy, high precision, and low 
values of false-positive rates. Therefore, the results obtained 
in this study suggest that the use of NIR combined with 
multivariate techniques may help breeding programs on 
classifying and selecting sugarcane clones efficiently.  

 
Acknowledgments 
 
This study was partly financed by the Coordenação de 
Aperfeiçoamento de Pessoal de Nível Superior - Brasil 
(CAPES) - Finance Code 001. We also thank the Foundation 
for Research of the State of Minas Gerais (FAPEMIG) for 
the financial support of research projects and the National 
Council for Scientific and Technological Development 
(CNPq) for the research scholarships. Finally, we thank 
RIDESA, the Inter-University Network for the Development 
of the Sugarcane Industry in Brazil, for providing support 
on the field experiments. 

 
References 
 
Assis C, Ramos RS, Silva LA, Kist V, Barbosa MHP, Teófilo RF 

(2017) Prediction of lignin content in different parts of 
sugarcane using near-infrared spectroscopy (NIR), ordered 
predictors selection (OPS), and partial least squares (PLS). 
Applied Spectroscopy. 0(0):1-12. 

Barbosa MHP, Silveira LCI (2012) Breeding and Cultivar 
Recommendations. In: Santos F, Borém A, Caldas C (eds) 
Sugarcane: Bioenergy, Sugar, and Ethanol—Technology 
and Prospects. Suprema, Vicosa, MG, 568 p. 

Barlow JL, Bosner N, Drmac Z (2005) A new stable bidiagonal 
reduction algorithm. 

Linear Algebra and its Applications. 397: 35–84. 
Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal 

variate transformation and de-trending of near-infrared 
diffuse reflectance spectra. Applied spectroscopy. 43(5): 
772-777. 

Beebe KR, Kowalski BR (1987) An introduction to 
multivariate calibration and analysis. 

Analytical Chemistry. 59(17): 1007A–1017A. 
Botha FC, Black KG (2000) Sucrose phosphate synthase and 

sucrose synthase activity during maturation of intermodal 
tissue in sugarcane. Australian Journal of Plant Physiology. 
27: 81-85. 

Blanco M, Villarroya I (2002) NIR spectroscopy: a rapid-
response analytical tool. TrAC Trends in Analytical 
Chemistry. 21(4): 240–250. 

Brereton RG (2000) Introduction to multivariate calibration 
in analytical chemistry electronic. Analyst. 125(11): 2125–
2154. 

Brereton, RG, Jansen J, Lopes J, Marini F, Pomerantsev A, 
Rodionova O, Roger JM, Walczak B, Tauler R (2018) 
Chemometrics in analytical chemistry – part II: modeling, 



895 
 

validation, and applications. Analytical and Bioanalytical 
Chemistry. 410:6691-6704. 

Cardozo NP, Sentelhas PC (2013) Climatic effects on 
sugarcane ripening under the influence of cultivars and 
crop age. Scientia Agricola. 70(6): 449-456. 

De Souza MS, Amanda P (2017) Advances of Basic Science 
for Second Generation Bioethanol from Sugarcane. 1rst 
edn. Springer. 

Ely DR, Thommes M, Carvajal MT (2008) Analysis of the 
effects of particle size and densification on NIR spectra. 
Colloids and Surfaces A: Physicochemical and Engineering 
Aspects. 331:63-67. 

Engel J, Gerretzen J, Szymanska E, Jansen JJ, Downey G, 
Blanchet L, Buydens LMC (2013) Breaking with trends in 
pre-processing? Trends in Analytical Chemistry. 50:96-106. 

Fernandes AC (2011) Cálculos na agroindústria da cana-de-
açúcar. STAB: Piracicaba, SP, Brasil. 3rd edn. 416p. 

Ferreira MMC (2015) Quimiometria – Conceitos, métodos e 
aplicações. Unicamp Campinas, Brazil 1st edn. 493p. 

Fleiss JL, Levin B, Paik MC (1981) The analysis of data from 
matched samples. Statistical Methods for Rates and 
Proportions, 3rd edn. Wiley Online Library. 

Inman-Bamber NG, Bonnett GD, Spillman MF, Hewitt MH, 
Glassop D (2010) Sucrose accumulation in sugarcane is 
influenced by temperature and genotype through the 
carbon source-sink balance. Crop & Pasture Science. 
61:111-121. 

Jackson JE (2005) A user’s guide to principal components. 
2nd ed. John Wiley & Sons, United States of America. 

James G, Witten D, Hastie T, Tibshirani R (2013) An 
introduction to statistical learning: with applications in R. 
Springer Texts in Statistics, New York, 1rst edn. 440p. 

Kennard RW, Stone LA (1969) Computer-aided design of 
experiments. Technometrics.11(1): 137–148. 

Lopes ML, Paulillo SCL, Godoy RAC, Lorenzi MS, Giometti 
FHC, Bernardino CD, Neto HBA, Amorim HV. Ethanol 
production in Brazil: a bridge between Science and 
industry. Brazilian Journal of Microbiology. 47:64-76.  

Liu L, Ye P, Womac AR, Sokhansanj S (2010) Variability of 
biomass chemical composition and rapid analysis using 
FT_NIR techniques. Carbohydrate Polymers. 81: 820-829. 

Martens H, Naes T (1992) Multivariate calibration. 1st edn. 
Wiley, New York. 

Montes JM, Technow F, Bohlinger B, Becker K (2013) Grain 
quality determination by means of near-infrared 
spectroscopy in jatropha curcas l. Industrial crops and 
products. 43: 301–305. 

Pasquini C (2003) Near-infrared spectroscopy: fundamentals, 
practical aspects, and analytical applications. Journal of 
the Brazilian Chemical Society. 14(2): 198–219. 

Pereira LFM, Ferreira VM, Oliveira NG, Sarmento LVS, Endres 
L, Teodoro I (2017Sugar levels of four sugarcane 
genotypes in different stem portions during the 
maturation phase. Annals of the Brazilian Academy of 
Sciences. 89(2): 1231-1242. 

Ramos RS, Brasileiro BP, Kist V, Assis, Gasparini K, Silva LA, 
Teófilo RF, Peternelli LA, Barbosa MHP (2017) Selection of 
energy cane clones. Crop Breeding and Applied 
Biotechnology. 17:327-333. 

Rinnan Å, Berg FVD, Engelsen SB (2009) Review of the most 
common pre-processing techniques for near-infrared 

spectra. TrAC Trends in Analytical Chemistry. 28(10): 
1201–1222. 

Rocha GJM, Martín C, Silva VFN, Gómez EO, Gonçalves AR 
(2012) Mass balance of pilot-scale pretreatment of 
sugarcane bagasse by steam explosion followed by alkaline 
delignification. Bioresource technology111: 447–452. 

Roque JV, Dias LAS, Teófilo RF (2017) Multivariate calibration 
to determine phorbol esters in seeds of Jatropha curcas L. 
using near-infrared and ultraviolet spectroscopies. Journal 
of the Brazilian Chemical Society. 28(8): 1506–1516. 

Sabatier D, Dardenne P, Thuriès J (2011) Near-infrared 
reflectance calibration optimization to predict 
lignocellulosic compounds in sugarcane samples with 
coarse particle size. Journal of near-infrared spectroscopy. 
19:199-209. 

Santchurn D, Randoyal K, Houssen BMG, Labuschagne M 
(2012) From the sugar industry to cane industry: 
investigations on multivariate data analysis techniques in 
the identification of different high biomass sugarcane 
varieties. Euphytica. 185(3): 543–558. 

Silveira LCI, Brasileiro BP, Kist V, Weber H, Daros E, Peternelli 
LA, Barbosa MHP (2016) Selection in energy cane families. 
Crop Breeding and Applied Biotechnology. 16(4): 298–306. 

Silveira LCI, Brasileiro BP, Kist V, Weber H, Daros E, Peternelli 
LA, Barbosa MHP (2015) Selection strategy in families of 
energy cane based on biomass production and quality 
traits. Euphytica, 204(2): 443–455. 

Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS 
(2013) Composition and structure of sugarcane cell wall 
polysaccharides: implications for second-generation 
bioethanol production. BioEnergy Research, Springer, 6(2): 
564–579. 

Tai PY, Powell J, Perdomo R, Eiland B (1996) Changes in 
sucrose and fiber contents during sugarcane maturation. 
Sugar Cane, 6(1): 19-23. 

Toppa EVB, Jadoski CJ, Hulshof T, Ono EO, Rodrigues, JD 
(2010) Physiology aspects of sugarcane production. 
Applied Research & Agrotechnology. 3(3): 223–230. 

Valderrama P, Braga JW, Poppi, RJ (2007) Validation of 
multivariate calibration models in the determination of 
sugar cane quality parameters by near-infrared 
spectroscopy. Journal of the Brazilian Chemical Society. 
18(2): 259–266.v 

Wagih ME, Ala A, Musa Y (2004) Evaluation of sugarcane 
varieties for maturity earliness and selection for efficient 
sugar accumulation. Sugar Tech. 6(4): 297-304. 

Wang J, Nayak S, Koch K, Ming R (2013) Carbon partitioning 
in sugarcane (Saccharum species). Frontiers in Plant 
Science. 4(201): 1-6 

Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a 
basic tool of chemometrics. Chemometrics and Intelligent 
Laboratory Systems. 58:109-130. 

Zhao YL, Dolat A, Steinberger Y, Wang X, Osman A, Xie GH 
(2009) Biomass yield and changes in the chemical 
composition of sweet sorghum cultivars grown for biofuel. 
Field and Crops Research. 111:55-64. 

Zheng Y, Pan Z, Zhang R, Wang D (2009) Enzymatic 
saccharification of dilute acid pretreated saline crops for 
fermentable sugar production. Applied Energy. 86(11): 
2459–2465.

 


