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Abstract 

 

The study of genotype-by-environment interaction (GEI) is of key importance in plant sciences because an understanding of this 

allows a great improvement in complex phenotypic traits. Genotypes and environments constitute a two-way factorial design. The 

phenotypic data for these studies, usually arranged in two-way data tables with genotypes and environments (location-year 

combinations). In plant breeding programs some genotypes are often discarded and others included from year to year, which results 

in the presence of missing values in these data sets. Several options are available for dealing with missing values in two-way data 

tables. One of the most widely used alternatives is the imputation of the missing cells using an expectation-maximization (EM) 

algorithm together with the additive main effects and multiplicative interaction (AMMI) model. In this paper we present a simulation 

study to investigate the influence of the pattern of missing values on the efficiency of the expectation-maximization AMMI (EM-

AMMI) algorithm. Four scenarios are considered: one with cells missing completely at random; and three patterns with cells not 

missing at random (block-diagonal pattern, diagonal pattern and block-diagonal pattern with checks). The results are compared in 

terms of precision to estimate the missing cells and genotype selection.  

 

Keywords: Additive, main effects, multiplicative interaction model, expectation maximization, genotype-by-environment 

interaction, missing data, plant breeding programs, winter wheat. 

Abbreviations: AMMI, additive main effects and multiplicative interaction; ANOVA, analysis of variance; EM, expectation-

maximization; GEI_genotype-by-environment interaction; GGE_genotype main effect plus genotype-by-environment interaction; 

GLY_genotype x location x year; MCAR_missing completely at random; MET_multi-environment trials; NMAR_not missing at 

random; PCA_principal component analysis; RMSPD_root mean squares predictive difference; SHMM_shifted multiplicative 

model; SVD_singular value decomposition. 

 

Introduction 

 

Most agricultural research is done to improve quality and 

maximize the complex trait yield. Multi-environment trials 

(MET) provide the base for evaluating genetic improvements 

for yield and are essential to give recommendations of 

genotypes that could have wide or narrow adaptation (Gauch, 

1992). The data from these trials are usually collected in two-

way tables genotypes –by– environments (the environments 

may be the combinations of locations and years). The 

understanding the genotype-by-environment interaction 

(GEI) is one of the purposes for plant breeders and 

agronomists. Data from METs often have the presence of 

GEI, especially crossover interaction, where two different 

genotypes change in rank order of performance when 

evaluated in different environments. This phenomenon 

complicates the selection of superior genotypes because of 

difficulties in predicting the complex phenotypic trait yield 

for new locations and/or new years (Gauch, 1992; Yan and 

Kang, 2002). These crossover effects are also the reason to 

conduct trials in many locations and, sometimes, over several 

years. Since genotypes react differently to different 

environmental conditions, there is a need to select the best 

testing sites to identify superior and stable genotypes. 

Besides the standard regression based techniques (Finlay and 

Wilkinson, 1963; Pereira et al. 2012) and the mixed linear 

methodology (Piepho, 1997; Galwey, 2006), the most widely 

used methods to analyze data from METs are the additive 

main effects and multiplicative interaction (AMMI) model 

(Gauch, 1988, 1992, Paderewski et al. 2011) and the 

genotype main effect plus genotype-by-environment 

interaction (GGE) model (Yan and Kang, 2002). These 

methods (AMMI and GGE) -based on singular value 

decomposition (SVD) of matrices -break the interaction 

down into several components, allowing a separation 

between signal and noise. An important issue to be 

considered when analyzing data from METs is how to deal 

with missing values. In addition to the case of missing 

observations caused by natural factors (e.g. diseases, pests, 

animals, etc.), which are usually missing in a particular place 

and rarely missing in all replications, i.e. missing cells in the 

final table of means, the experiments often have some 

genotypes which are discarded and/or included in the trials 

(i.e. the missing cells have a clear pattern). Many statistical 

methods require complete data sets, e.g. SVD-based 

techniques such as principal component analysis (PCA), 
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shifted multiplicative model (SHMM), GGE and AMMI. To 

analyze incomplete data tables, where some combinations of 

genotypes and environments were not observed, researchers 

have three main options: (i) drop the genotypes with missing 

cells; or (ii) drop environments with missing cells; or (iii) 

impute the missing cells by the appropriate procedure, before 

the analysis. In this paper we will be interested in the latter 

option. When a data set from an MET has missing values, 

researchers often assumed that the missing values are located 

randomly (Arciniegas-Alarcón et al., 2010; Bergamo et al., 

2008; Pereira et al. 2012; Rodrigues et al. 2012; Yan 2013). 

In these cases, imputation techniques are often used to 

estimate the data before analysis or try to infer the results 

without imputation. However, many times there is a clear 

pattern on the shape of the missing values. In fact,  cases 

when the values are not missing at random (NMAR; Little 

and Rubin, 2002) and have a specific pattern are more 

common than  cases where the values are missing completely 

at random (MCAR). To the best of our knowledge, the 

influence of a pattern NMAR on the estimation of the 

missing values in METs has not yet been studied. Gauch and 

Zobel (1990) proposed an expectation-maximization (EM)-

AMMI algorithm to estimate the missing cells in two-way 

data tables. The EM-AMMI algorithm was also described by 

Gauch (1992), and was implemented in the open source 

software MATHODEL 3.0 (Gauch 2007). The EM-AMMI 

algorithm imputes the missing cells according to both the 

main effects and the interaction effects, based on a 

parsimonious AMMI model. It works as follows: (i) the 

initial values for the missing cells are calculated as the grand 

mean plus the main effects of rows (genotypes) and columns 

(environments); (ii) the parameters of the parsimonious 

AMMI model are computed; (iii) the adjusted means of the 

AMMI model are re-calculated using the new AMMI 

parameters; (iv) the values of the missing cells are replaced 

by the new estimates, accordingly to the parsimonious 

AMMI model; (v) the steps (ii) to (iv) are repeated until 

convergence. The aim of this paper is to study the influence 

of the pattern of missing values on the efficiency of the EM-

AMMI algorithm. This efficiency will be compared for 

missing cells in four scenarios: NMAR and MCAR (block-

diagonal pattern, diagonal pattern, and block-diagonal pattern 

with checks). This study will be conducted in terms of 

precision to estimate the missing cells and in terms of 

genotype selection.  

 

Results 

 

Leave-one-out cross-validation procedure  
 

A complete two-way data table with Genotype–by–

combination of Locations and Years is considered. The 
ANOVA table for a three-factor mixed model G×L×Y is 
presented in Table S2 and the AMMI analysis is presented in 

Table S1. The EM-AMMI analysis was conducted according 

to the leave-one-out cross-validation procedure and the 

RMSPD computed for every number of principal components 

(from 0 to 3). This resulted in RMSPD of 5.935, 5.473, 6.116 

and 5.660, respectively for the four possible numbers of 

principal components, at the convergence criterion which 

consisted in checking if the maximum change in the 

predicted cell was less than 0.001. Therefore, the EM-AMMI 

with one principal component—EM-AMMI1—is the best 

option. 

The convergence 

 

The four patterns of missing cells (one MCAR and three 

NMAR, Fig. 1) were randomly generated with a different 

proportion of missing cells and those data sets were imputed 

by EM-AMMI with different number of principal 

components (10000 times for each combination of pattern, 

proportion of missing values and number of principal 

components). The EM-AMMI estimation of missing cells for 

different combinations was only considered when this 

iterative procedure converges, being the RMSPD only 

computed in these cases. The particular case of EM-AMMI0, 

unlike the higher members of this model family, does not 

involve any iterative calculations, so this 100% convergence 

is automatic. The limit for the number of iterations was 1000 

and the convergence criterion was that the maximum change 

in predicted cells was less than 0.05. The cases that 

converged were: 100% for  EM-AMMI0; more than 98.5% 

for EM-AMMI1, considering all combinations of the 

proportion of missing cells and shape of missing cells; more 

than 82% for EM-AMMI2; and more than 77.4% for EM-

AMMI3. In this manner, a three-way classification table was 

obtained: the pattern of missing cells-by-proportion of 

missing cells-by-number of principal components, and 

analyzed according to a three-factor analysis of variance 

(ANOVA) model (Table 1).  

 

Comparison of the model precision 
 

As  can be concluded from Table 1, all main effects, two-way 

interactions and three-way interactions are significant (p < 

0.001). Overall, all these factors interact and influence the 

RMSPD resulting from the EM-AMMI imputation 

procedure. The mean RMSPD for every combination: pattern 

of missing cells–by–proportion of missing cells–by–number 

of principal components, was calculated with great precision 

because of the number of repetitions (greater than 7739) and 

the small mean square of error (Table 1). Fig. 2 shows the 

behavior of the RMSPD with the increasing proportion of 

missing cells for the four patterns and the four possible 

numbers of principal components. For the EM-AMMI0 it 

seems that no clear interaction between the proportion of 

missing cells and the pattern of missing cells (Fig. 2a) is 

present, because the values for the RMSPD are almost 

overlapped for the different patterns of missing cells.  

However, from the ANOVA table (Table S3 of the 

supplementary material), we can conclude that there is a 

significant interaction between these two factors (p = 0.026). 

The same interaction is present for the other possible 

numbers of principal components (with p < 0.001). For the 

best model—the EM-AMMI, the MCAR pattern generated 

the smallest RMSPD values. The differences to the other 

patterns were more significant when increasing the 

proportion of missing values (Fig. 2b). When analyzing the 

two models which overfit noise (EM-AMMI2, Fig. 2c; and 

EM-AMMI3, Fig. 2d) by considering more principal 

components than the optimal number, a completely different 

pattern is visible in the plots: when the proportion of missing 

cells is smaller than 20%, the diagonal pattern (NMAR2) 

showed a lower RMSPD; when the proportion of missing 

cells is greater than 20%, the MCAR showed a lower 

RMSPD (Fig. 2). The patterns block-diagonal (NMAR1) and 

block-diagonal with checks (NMAR3) showed similar  
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Table 1. ANOVA table presenting the influence of three factors (pattern of missing cells –by– proportion of missing cells –by– 

number of principal components) on the RMSPD value. 

Source SS (type III) df MS F-value p-value 

MPtypea 155024 3 51674.8 4531.5 < 0.001 

PCb 9556431 3 3185477.0 279340.9 < 0.001 

Mpropc 260072 10 26007.2 2280.6 < 0.001 

MPtypea×PCb 123341 9 13704.6 1201.8 < 0.001 

MPtypea×Mpropc 88129 30 2937.6 257.6 < 0.001 

PCb×Mpropc 119986 30 3999.5 350.7 < 0.001 

MPtypea×PCb×Mpropc 90867 90 1009.6 88.5 < 0.001 

Error 18744763 1643766 11.4   

a)
Type of missing cells pattern; b)Number of principal components used in EM-AMMI; c)Proportion of missing cells in the data set. MPtype, pattern of missing cells; PC, 

Principal component; Mprop, proportion of missing cells. 

 

behavior and the presence of checks does not seem to make 

much difference when carrying out  imputation of missing 

values using the EM-AMMI algorithm. When analyzing the 

plots for the EM-AMMI2 and EM-AMMI3 models, unlikely 

behavior is visible for the patterns of missing values MCAR, 

NMAR1 and NMAR3 (Fig. 2c,d) for proportions of missing 

cells between 5% and 20%, where a clear peak for the 

RMSPD is observed. This is likely to be caused by an 

increase in the number of principal components, which 

represents an overestimating of the noise in the data. When 

increasing the proportion of missing cells, the influence of 

the overfit of noise caused by “too many” principal 

components decreases and, consequently, between 5 and 20% 

of missing cells the RMSPD decreases and starts to increase 

again, as expected, above 20% of missing cells. This overfit 

of noise does not affect the RMSPD for the diagonal pattern 

of missing cells (NMAR2).  

 

Discussion 
 

Standard statistical methods are usually not able to analyze 

datasets with missing data. Since the AMMI model is the 

result of a combination of two of the most widely used 

statistical procedures—ANOVA and PCA—, it is no 

exception. Moreover, when some genotypes are discarded in 

plant breeding programs and others included from year to 

year, the amount of missing data (with a strong pattern) in the 

two-way table can be huge. In this paper we have approached 

one of the most widely used techniques to deal with missing 

data in genotype-by-environment trials, the imputation 

procedure based on the EM-AMMI algorithm (Gauch and 

Zobel, 1990, Gauch, 1992). When using the EM-AMMI 

algorithm, the imputation considers both the additive 

component (i.e. main effects) and the multiplicative 

component (i.e. interaction). Gauch and Zobel (1990), when 

proposing the EM-AMMI, stated that ‘No problems with 

numerical instability or local minims have been noted’ and 

‘Nevertheless, further theoretical and empirical study of 

stability would be desirable’. Another approach, proposed for 

application in GGE biplot analysis, was developed by Yan 

(2013), where only the multiplicative component is of 

interest because a change in other model parameters ‘will not 

affect the relative values and the rank of the genotypes in the 

environment’. Yan (2013) concluded that the validity of the  

predicted values seems to be dependent on the size of the 

two-way table and on the proportion of missing cells. 

The simulation study presented in this paper considered four 

patterns of missing cells: one MCAR—which is quite 

unlikely in plant breeding programs, but more likely when 

the missing cells are due to natural causes such as diseases, 

pests or animals—and three NMAR cases: block-diagonal  

 

Fig 1. The three different NMAR patterns of missing cells 

(white squares) considered in this study. 

Fig 1a) block-diagonal pattern 

Fig 1b) diagonal pattern 

Fig 1c) block-diagonal pattern with checks.  

 

pattern, diagonal pattern and block-diagonal pattern with 

checks. The AMMI with one principal component being the 

more parsimonious model, the results shown that fewer 

multiplicative terms (underfit signal) result in a very similar 

RMSPD within different patterns of missing cells; and more 

multiplicative terms (overfit noise) result in similar shapes of 

MCAR, NMAR block-diagonal patter and NMAR block-

diagonal pattern with checks, along with a percentage of 

missing cells with higher RMSPD between 5% and 20% of 

missing cells. The clear message is that, in general, there is a 

great penalty to be paid for fitting an EM-AMMI model that 

is too complex, i.e. with too many interaction principal 

components (Fig. 2). The particular case described in Fig. 1b 

shows a particularly common situation, a gradually changing  
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Fig 2. Behavior of the RMSPD for the combination pattern of missing cells–by–proportion of missing cells–by–number of principal 

components. 

Fig 2a) EM-AMMI0 

Fig 2b) EM-AMMI1 

Fig 2c) EM-AMMI2 

Fig 2d) EM-AMMI3. 

 

roster of genotypes and environments over time. Although 

this is a tidy diagram, in practice plant breeding databases 

may have the genotypes and environments listed in an 

ecologically random order, i.e. have a pattern obtained from 

Fig. 1b by making several permutations of rows and columns. 

In those cases, the rows and columns can be arranged 

accordingly to reciprocal averaging scores, which 

automatically optimizes the placement of presences along the 

matrix diagonal (Gauch et al. 1977). When the database 

includes several blocks or subsets of the entire data matrix 

with few missing values, then TWINSPAN can be used to 

arrange the data (Hill et al. 1975, Hill 1979). 

 

Materials and methods 

 

Plant materials 
 

The data set contains the post-registration trials made in 

Poland by the Research Center of Cultivar Testing 

(COBORU) in the growing seasons 2006/2007, 2007/2008 

and 2008/2009. The trials were carried out at two levels of 

crop management intensity: standard (the standard 

fertilization suited to the soil conditions of a given station); 

and intensive (not used in this paper). The grain density 

ranged from 400 to 550 grains per m2, depending on the 

cultivar and soil at a location. The trials were carried out in 

two factorial split-block designs (management levels were 

arranged in sub-blocks and within each sub-block cultivars 

were randomly allocated) with two replications. The size of 

sub-sub-plots was 11m by 1.5m and the harvesting area was 

10m by 1.5m. The main types of soil in Poland are podzol 

and brown podzolic soils. The average annual precipitation 

for the whole country is 600mm. The data set includes the 

genotype × location × year (GLY) classification of post-

registration trials of winter wheat. The genotypes changed 

from year to year, with the “best” kept for more than one 

year. The well-tested genotypes or genotypes with a lower 

yield are removed from the trials. Some genotypes are added 

in the following year and some are removed. Every year, the  

number of genotypes is similar but the GLY classification 

contains a large proportion of missing cells. Since, with time, 

the number of the same genotypes being tested decreases, the 

observed values of GEI combinations are close to the 

‘diagonal’ (Fig. 1). To achieve the aim of this paper we used 

a complete data set so that we can dispose of the observed 

values in cells marked as missing and then use the EM-
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AMMI algorithm. A complete data set (subset of the post-

registration trials) contains 25 genotypes growing in 20 

locations from 2007 to 2009. The combination of locations × 

years were treated as environments and had a two-way table 

of  25 genotypes and 60 environments. 

 

Simulation of missing data 
 

The influence of a given pattern in missing data was 

evaluated for four cases. The patterns considered, which 

occur more frequently in METs, were the MCAR pattern and 

three NMAR patterns: block-diagonal pattern, diagonal 

pattern and block-diagonal pattern with checks. These four 

patterns were randomly generated based on a complete data 

set with a different proportion of missing cells (with eleven 

levels: 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% 

and 50%) and the missing cells imputed by EM-AMMI with 

a different number of principal components (from 0 to 3). 

Every combination of pattern shape by proportion of missing 

cells and by number of PCs used for imputation in EM-

AMMI was repeated 10000 times. To obtain a two-way table 

with a MCAR pattern of missing values, after choosing the 

proportion of missing values (α), the missing cells were 

obtained by randomly deleting α% of the values. For that, a 

matrix with the same size of the original data, without 

replications, was created with random values and the 

positions of α% smallest values were deleted in the original 

data table. The necessary criterion of unambiguous 

computation of the EM-AMMI algorithm with three principal 

components, in order to have four observations in every row 

and every column (Gauch and Zobel, 1990), was fulfilled. 

Moreover, the pattern of observed values must connect the 

genotypes (and the environments) in each series of 

experiments. As the simulated data sets are not checked to 

confirm whether the genotypes and environments are 

connected we have decided to use the minimal number of 

observed values twice as the minimum suggested by Gauch 

and Zobel (1990). Therefore, data sets generated with an 

MCAR pattern that contain a genotype or an environment 

with less than eight observed values were discarded. When 

assuming that the missing values were NMAR, the patterns 

were created by analogy to a standard post-registration 

complete data set, where the locations are kept unchanged 

over the period of several years (Fig. 1). Those patterns often 

exist in multi-year trials, when some genotypes change from 

year to year. Three different cases are discussed: 

Missing values are placed with a clear “diagonal” pattern 

by blocks corresponding to the years (Fig. 1a). The number 

of genotypes is denoted by G and the number of years is 

denoted by Y. The simulation for the location of the missing 

values was conducted as follows: (i) randomly order the 

genotypes; (ii) define α, the proportion of missing cells; (iii) 

assume that, for every combination of year and location, 

int(αG)—the integer part of αG—genotypes are observed and 

they are the closest to (i.e. centered in) genotype position 

number (αG+1)/2+G(1-α)(y-1)/(Y-1), y=1,…,Y. Then, the 

genotypes between indexes G(1-α)(y-1)/(Y-1)+1 and G(1-

α)(y-1)/(Y-1)+αG, y=1,…,Y, are considered as observed. The 

remaining genotypes are missing. If the limits of the interval 

of indexes are not integers, the two external genotypes are 

marked as missing randomly, so that the proportion of 

missing cells is fulfilled.   

  For example, in a three-year data set, if α=0.6 and G=25, in 

the first year the first int(αG) genotypes (from 1 to 15) are 

marked as observed, in the second year the middle int(αG) 

genotypes (from 6 to 20) are observed and in the final year, 

the last int(αG) genotypes (from 11 to 25) are marked as 

observed. Other cells are missing. 

Missing values are placed with a clear pattern far from the 

“diagonal” without taking into account the years (Fig. 1b). 

The number of environments (combinations location-year) is 

denoted as E. The simulation for the location of the missing 

values was done as follows: (i) randomly order the genotypes 

and the environments; (ii) define α, the proportion of missing 

cells; (iii) for each of environments calculate the difference 

between indexes of the cells (according to the new order of 

genotypes) and the position on the diagonal (for the jth 

environment the diagonal is placed at genotypes’ index equal 

to 1+(i-1)(G-1)/(E-1)); (iv) the part of cells (genotypes by 

environments combinations) that have the difference closer to 

zero were marked as observed and others as missed. This 

pattern can be seen as what is observed in post-registration 

trials when the number of locations is small and number of 

years big. 

Missing values are placed with a “diagonal” pattern by 

blocks corresponding to the years (as in the first case) but 

with some genotypes observed in all environments (Fig. 1c). 

There are also some rows without missing cells. Those 

patterns occur in trials with check cultivars. According to 

pre-registration trials run in Poland, only three genotypes 

appear in all years (this is usually used number of check 

cultivars). At the beginning of the simulations these three 

genotypes were randomly chosen to be observed in all years, 

and the pattern of missing values for other genotypes was 

obtained as described in the first case.  The simulation was 

done as follows: (i) randomly order the genotypes; (ii) 

randomly choose the three genotypes which will appear in all 

environments; (iii) simulate a missing cells pattern for other 

genotypes, according to the first case described above. 

The precision of the EM-AMMI estimation of the missing 

values was evaluated by comparing the estimated missing 

values with the values in the complete (original) data set. 

This is done by using root mean squares predictive difference 

(RMSPD, Gauch and Zobel, 1988, 1990, Dias and 

Krzanowski, 2003). 

 

The analysis of the entire dataset  
 

In real field experiments, researchers have the data set with 

missing cells and must decide  on the procedure for analyzing 

that data. If the alternative selected is to impute missing 

values, this can be done by cross-validation (using some 

observations to estimate the model parameters and the rest 

for validation of that model, Stone 1974) and the model with 

minimum average RMSPD to the observed values (Gauch 

and Zobel 1988, 1990, Eastment and Krzanowski 1982, Dias 

and Krzanowski 2003) should be chosen. The EM-AMMI 

algorithm was run, taking into consideration all cells except 

the one being predicted and this was repeated for all cells 

(leave-one-out cross-validation procedure). The RMSPD for 

every number of principal components (from 0 to 3) was 

computed to evaluate the optimal number of interaction 

principal components. 

 

Conclusion 
 

When modeling two-way data tables, conducting a model 

diagnosis in order to choose the most parsimonious AMMI 

model (i.e. to choose the “right” number of multiplicative 

terms) is of key importance for AMMI analysis and to make 

the proper agricultural recommendations. In this paper three 

factors with a direct impact on model diagnosis were studied: 

the proportion of missing values, the number of principal 
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components in the AMMI model and the pattern of the 

missing cells. All three factors have shown significant 

interaction with each other with regard to the RMSPD 

between the observed and imputed values by the EM-AMMI 

procedure. The EM-AMMI algorithm could be used for 

NMAR patterns but a minor loss of estimation accuracy is to 

be reckoned with. A big penalty was observed when fitting 

an EM-AMMI model that is too complex, i.e. that has too 

many multiplicative terms. 
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