Australian Journal of Crop Science

AJCS 4(4):264-272 (2010)

AJCS

Post-germination seedling vigor under submergence and submergence-induced *SUB1A* gene expression in indica and japonica rice (*Oryza sativa* L.)

¹H. T. T. Vu, ¹O. E. Manangkil, ¹N. Mori, ²S. Yoshida and ^{*1}C. Nakamura

¹Laboratory of Plant Genetics, Department of Biological and Environmental Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan ²Hyogo Institute of Agriculture, Forestry and Fishery, Kasai, Hyogo 679-0198, Japan

*Corresponding author: nakamura@kobe-u.ac.jp

Abstract

We evaluated post-germination seedling vigor in *indica* and *japonica* rice under submergence based on shoot elongation and recovery after submergence. The *japonica* cultivars showed more vigorous shoot elongation than *indica* cultivars under submergence in the dark, whereas an opposite response was observed under the light-dark submergence. Both Nipponbare and FR13A that are respectively known as submergence intolerant and tolerant cultivars showed vigorous shoot growth under submergence and high recovery after the stress, irrespective of the light/dark conditions. The results show that vigorous shoot growth enables rice seedlings to escape and survive submergence stress. RT-PCR analysis showed that expression of *SUB1A*, which is known as a key gene controlling submergence tolerance, was induced in elongating seedlings of FR13A and other *indica* cultivars including floating rice under submergence with light illumination. Our results suggest that light-induced *SUB1A* gene expression does not hinder the shoot elongation response under submergence in rice at the post-germination seedling stage.

Keywords: rice (Oryza sativa L.); post-germination seedling vigor; shoot elongation; SUB1A gene expression; submergence stress

Introduction

Wet-direct seeding has become popular in most of the rice growing countries, as it is more economical than the seedling transplanting method. In this cropping system, fast and vigorous seedling growth under submergence is a desirable trait not only to facilitate good emergence and optimum seedling establishment but also to increase competitive ability against weeds (Cisse and Ejeta, 2003; Zhou et al., 2007). Seedling vigor, in general, is a trait that expresses itself as an ability of seedlings to rapidly elongate after germination and emerge for escaping and surviving submergence stress. Cui et al. (2002) reported that good germination and fast early seedling growth were two major seedling-vigor-related traits in rice. Submergence stress in fact significantly promotes shoot elongation in young rice seedlings (Redona and Mackill, 1996; Ismail et al., 2009). A study using fast shoot elongation growth as a basic parameter for screening rice cultivars under low dissolved oxygen levels suggested that fast shoot elongation is an adaptive response of water-seeded rice for acquiring oxygen (Won and Yoshida, 2000). We further examined the significance of shoot elongation as a mechanism conferring seedling vigor under submergence during the post-germination stage in *indica* and *japonica* rice. Seedling growth and survival under submergence is influenced by various environmental factors including light levels (Ram et al., 2002). We therefore studied postgermination seedling vigor under both dark and light-dark submergence conditions in both indica and japonica cultivars. We adopted the test tube bioassay method in that seedling vigor is evaluated based on the ability of shoot elongation for escaping and surviving submergence stress (Manangkil et al., 2008). In this bioassay method it was suggested that seedling vigor of *japonica* cultivars was greater than that of *indica* cultivars. We therefore further examined this under light-dark submergence. The *Sub1* locus is known to play a key role in submergence tolerance in rice according to the 'quiescent strategy' that can help rice plants to maintain high levels of stored carbohydrates coupled with minimum shoot elongation and retention of chlorophyll (Fukao and Bailey-Serres, 2004, 2008; Fukao et al., 2006; Xu et al., 2006). Hence we studied expression of *SUB1A* gene in elongating rice seedlings under submergence.

Materials and methods

Plant materials and bioassay conditions for evaluating seedling vigor

Randomly selected 17 *indica* cultivars including two floating rice and 11 *japonica* cultivars were used for evaluating seedling vigor under submergence. Nipponbare was included as a high seedling vigor *japonica* check (Manangkil et al., 2008) and FR13A and IR42 as submergence tolerant and intolerant *indica* checks, respectively (Ella et al., 2003; Jackson and Ram, 2003). Kasalath was also included as a low seedling vigor *indica* check (Manangkil et al., 2008). Seedling vigor under submergence was evaluated based on shoot (coleoptile or first leaf) lengths of germinating seedlings after 5 days of submergen-

Fig 1. Shoot lengths of *indica* and *japonica* cultivars grown under submerged conditions in both dark and light-dark regimes. Cultivars with number 1 to 17 and 18 to 28 are *indica* and *japonica*, respectively. 1: Kasalath, 2: O luen chung, 3: PTB10, 4: 115, 5: PTB7, 6: Pachchai perumal, 7: 1034, 8: 415, 9: 437, 10: Pokkali, 11: KS282, 12: FR13A, 13: IR42, 14: Cula, 15: Habiganj-Aman II, 16: Chiem chanh, 17: Taichung Native 1, 18: Nipponbare, 19: Hitogokochi, 20: Kyounohana 1, 21: Yamadanishiki, 22: Jyousyu, 23: Ouu 2, 24: Hokushin 1, 25: Seniti, 26: Sakenohana 1, 27: Kokuryomiyako, 28: Koshihikari. Open bars: under the light-dark submergence, closed bars: under the dark submergence. Mean shoot lengths of *indica* and *japonica* are indicated by triangles (closed in the dark condition) and squares (open in the light-dark condition), respectively. Mean \pm standard error from three independent experiments. **/* significantly different from Nipponbare at the 1% and 5% levels, respectively. *ns* - not significantly different from Nipponbare.

ce. Briefly, de-hulled seeds were subjected to overnight imbibition under running water to allow synchronous germination. Imbibed seeds were surface-sterilized with 1 % (w/v) solution of sodium hypochlorite (NaClO) for 10 min and rinsed in distilled water as described by (Boamfa et al., 2003). Sterilized seeds were allowed to germination in wet glass petri dishes (70-mm-diameter) in a dark incubator adjusted at 28 °C for 3 days. The seeds were washed everyday with distilled water before germination. Ten germinating seeds per cultivar at the pigeon breast stage were transferred to a glass test tube filled with 10 cm deep distilled water. Uncovered test tubes were placed in an incubator at 28 °C either in the darkness or in the 16 hd⁻¹ photoperiod without changing water for 5 days. Shoot lengths were measured from the base to the tip of the shoots at the end of the 5-days stress period. Recovery rate (%) after submergence was measured by transferring the submerged seedlings to pots with soil placed under normal conditions (28°C with 16hd⁻¹ photoperiod) for additional 5 days. Submergence stress was given to the two groups of seedlings for 5 days, i.e. one group incubated under the dark submergence condition and the other group under the light-dark submergence condition. Plant height was also recorded after additional 5 days of growth under the normal conditions in pots with soil. Plant height was measured from the base to the top of the highest leaf at 3-4 leaf stage. For evaluating the diversity in seedling vigor among japonica cultivars, a total of 150 japonica cultivars including Nipponbare were subjected to the same test tube bioassay (Supplementary Table). The test tube bioassay was performed in the darkness.

Statistical analysis

All experiments were laid out following a complete randomized block design with three replications. Analysis of variance (ANOVA) was performed using Microsoft Exel Program. Least significant differences (LSD) were calculated using a software program Analyze-it + General 1.68 version. Computed F value was used to test the significance of the treatment effect and coeffcients of determination (\mathbb{R}^2) were calculated among the three parameters, i.e. shoot length, recovery rate and plant height according to Gomez and Gomez (1984).

Profiling of SUB1A gene expression by RT-PCR

The same set of 17 indica and 11 japonica cultivars were used in the study of expression profiles of SUB1A gene. Sterilized seeds were allowed for germination in the dark at 28 °C for 3 days. Germinating seedlings were then transferred in test tubes with 10 cm deep distilled water (dark-submerged stress) and also under aerated normal conditions. After 5 days, seedling tissues were collected and frozen with liquid nitrogen. They were then subjected to RNA extraction using guianidine thiocyanate. The amount of transcripts was determined by reverse transcriptase polymerase chain reaction (RT-PCR) analysis using a first strand cDNA synthesis kit (TOYOBO, Osaka, Japan). The total template RNA samples for the cDNA synthesis were treated with DNaseI to remove contaminated DNA. RT-PCR was performed with specific primers for rice SUB1A gene, which were designed and synthesized by Invitro Lifetech Oriental (Nacalai). For each sample 4µl c-DNA template was added to 16µl reaction mixture conta-

Table 1. Correlation coefficients (R^2) among the three parameters used for evaluating seedling vigor under submergence. R^2 was calculated using the data shown in Fig 1 (shoot length in the test tube bioassay), Fig 2a (recovery rate) and Fig 2b (plant height). Dark and Light represent the data obtained in the dark and dark-light submerged conditions, respectively.

		Shoot length		Recovery rate			Plant height	
		Dark	Light	Dark	Light		Dark	Light
Shoot longth	Dark	1	0.04	0.72	0.76		-0.21	0.10
Shoot length	Light	0.04	1	-0.29	-0.27		0.63	0.75
Decement	Dark	0.72	-0.29	1	0.98		-0.49	-0.36
Recovery rate	Light	0.76	-0.27	0.98	1		-0.50	-0.34
D1 (1 1)	Dark	-0.21	0.63	-0.49	-0.50		1	0.78
Plant neight	Light	0.10	0.75	-0.36	-0.34		0.78	1

ining 1µl each of forward and reverse primer, 2µl 10 x buffer, 0.8µl MgCl₂, 1µl dNTPs, 10µl Q water and 0.2µl rTaq Polymerase to make a 20µl PCR mixture. RT-PCR was carried out by amplification with 30 cycles at 50°C (1 min) for annealing using a thermal cycler, Gene Amp PCR System 9700 (Applied Biosystem). Primer sequences were 5'-AGGTGAAAATGATGCAGG-3' (forward) and 5'-CT-TCCCCTGCATATGATATG-3' (reverse). Rice ubiquitin gene was used as an internal control.

Results

Evaluation of seedling vigor in indica and japonica cultivars based on their shoot elongation ability under submergence

We measured the shoot length as a parameter for evaluating seedling vigor in 17 indica cultivars including two floating rice and 11 japonica cultivars. Shoot length was measured after 5 days of submergence. In the dark, our observation suggested that the first leaf remained inside coleoptiles and shoot length represented coleoptile length. A mean shoot length of *japonica* cultivars $(4.20 \pm 0.22 \text{ cm})$ was significantly longer than *indica* cultivars $(2.93 \pm 0.19 \text{ cm})$ under the dark submergence condition (Fig. 1). Under the light-dark submergence condition, green leaf emerged out of coleoptiles, with the degree of emergence being varied depending on cultivars. Under this condition, we measured length of longer seedlings, either coleoptile or first leaf of the submerged seedlings. A mean shoot length of japonica cultivars $(3.27 \pm 0.15 \text{ cm})$ thus measured was shorter than that of *indica* cultivars $(3.71 \pm 0.19 \text{ cm})$. Nipponbare (#18 in Fig. 1) showed a much longer shoot length than FR13A (#12) under the dark submergence. Shoot length of FR13A was comparable to the mean of indica rice under the dark submergence, whereas shorter under the light-dark submergence. On the other hand, under the light-dark submergence condition, an opposite relation was observed. Particularly, shoot length of a japonica cultivar Hitogokochi (#19) was the longest under the dark and the second shortest after IR42 (#13) under the light-dark. Our results suggested that the observed differences in the shoot length of the japonica and indica cultivars under submergence could be ascribed to subspecies specific differences. We measured lengths of the first leaves remained inside the coleoptiles using check cultivars, Nipponbare and Kasalath. A mean length of the first leaf of Nipponbare $(2.82 \pm 0.15 \text{ cm})$ was greater than that of Kasalath (1.45 \pm 0.16 cm) under the dark submergence. The result indicated that both the coleoptile length and the first leaf length inside the coleoptiles gave a good estimate of the ability of shoot elongation under the dark submergence. By contrast, the mean first leaf length of Nipponbare (1.8 cm \pm 0.11) was shorter than that of Kasalath (2.3 cm \pm 0.12) in the light-dark submergence.

Recovery from the submergence stress

Fast shoot elongation apparently requires energy and therefore causes a risk of carbohydrate depletion under prolonged submergence due to the reduced photosynthesis. To examine if the seedlings elongated under submergence stress can recover with greening after release from the stress, we transferred the stressed seedlings to the normal conditions in pots with soil. Seedling recovery rate (%) was measured after 5 days of recovery period (Fig. 2a). The recovery rate was higher in rice seedlings subjected to the light-dark submergence than in those subjected to the dark submergence in both indica and japonica. A majority of japonica seedlings showed greater recovery rate than indica seedlings irrespective of the degree of stress. The submergence tolerant indica cultivar FR13A, however, showed the highest recovery rate of 100 % under both dark and light-dark submergence followed by Nipponbare at $83.3 \% \pm 1.5$ under the dark and $93.3\% \pm 2.8$ under the light-dark submergence. A positive correlation was observed between the shoot length measured under the dark submergence and the recovery rate of dark-submerged seedlings, while no significant correlation was observed between the shoot length measured under the light-dark submergence and the recovery rate of light-dark submerged seedlings (Table 1). Plant height of the seedlings recovered from both the dark and light-dark submergence was also measured after transferring them to the normal conditions for additional 5 days (Fig. 2b). The seedlings subjected to the submergence stress under the light-dark condition showed greater plant height after the 5-days recovery than the dark-submerged seedlings in both indica and japonica cultivars. A positive correlation was observed between the shoot length measured under the light-dark submergence and the plant height of light-dark submerged seedlings (Table 1). Plant height after the recovery period of *indica* cultivars was greater than that of *japonica* cultivars for both dark and light-dark submerged seedlings. No correlations were observed between the recovery rate and the plant height after the recovery period for both of the dark and

Fig 2. Recovery rate and plant height after the 5-days-recovery period of rice seedlings subjected to the 5-days dark and light-dark submergence stress. (a) Recovery rate (%) of 17 *indica* and 11 *japonica* cultivars. (b) Plant height measured after the 5-days recovery period. Shaded and open bars indicate seedlings submerged in the dark and the light-dark condition, respectively. Mean \pm standard error from three independent experiments. **/* significantly different from Nipponbare at the 1% and 5% levels, respectively. *ns* - not significantly different from Nipponbare.

light-dark submerged *indica* and *japonica* seedlings (Table 1).

A large diversity in the seedling vigor under submergence in japonica cultivars

We further studied the diversity in the seedling vigor of a set of 150 *japonica* cultivars plus Kasalath as an *indica* check by adopting the test tube method. A large phenotypic variability was observed in the shoot length in the *japonica* cultivars under the dark submergence condition (Fig. 3 and supplementary Table). These *japonica* cultivars included both local and modern cultivars of eating rice and rice for brewing Japanese sake (rice wine). The modern cultivars showed a significantly (at the 1% level by Student's t test) greater mean shoot length than the domestic cultivars under the dark submergence condition in both eating (4.42 ± 0.10

cm vs 3.95 \pm 0.06 cm) and sake-brewing rice (4.84 \pm 0.13 cm vs 4.25 \pm 0.07 cm).

Expression of SUB1A gene under submergence

The *Sub1* locus encoding ethylene-response-factor-like transcription factors plays an important role in submergence tolerance (Fukao et al., 2006; Xu et al., 2006). We studied transcript level of *SUB1A* gene in the set of 17 *indica* and 11 *japonica* cultivars grown under the same test tube bioassay conditions to examine if this gene was expressed in elongating seedlings under submergence. RT-PCR analysis using specific primers revealed clear induction of *SUB1A* gene expression in FR13A and five other *indica* cultivars including one floating rice and one non-floating rice that were subjected to submergence in the light-dark condition (Fig. 4a and 4b). The list of cultivars and origins

150 different japonica cultivars plus Kasalath

Fig 3. Shoot lengths of 150 *japonica* cultivars and one *indica* cultivar, Kasalath, subjected to the test tube bioassay in the dark. Closed and open triangles indicate means of Nipponbare (#1) and Kasalath (#151), respectively. Shaded and open bars indicate seedlings with shorter and longer shoot lengths than Kasalath, respectively. Mean \pm standard error from three independent experiments. See supplementary Table.

expressing the *SUB1A* under submergence in the light-dark conditions are: 115 (origin from Taiwan); PTB7 (from India); Pachchai perumal (Srilanka); floating rice Cula and non-floating rice Chiem chanh (from Vietnam). *SUB1A* gene expression however was completely suppressed under the dark submergence. The level of expression in the floating rice appeared to be greater than that in FR13A (Fig. 4b). No gene expression was detected in all *japonica* cultivars examined.

Discussion

Rice plants can change metabolic pathways to adapt to the submerged environments (Setter et al., 1997). Fast shoot elongation under submergence is beneficial during the post-germination stage when young seedlings experience hypoxia or anoxia (Won and Yoshida, 2000). This trait is particularly important during direct sowing of rice seeds in paddy field (Yamauchi et al., 2000; Magneschi and Perata, 2009). For evaluating the post-germination seedling vigor under submergence, we adopted the test tube bioassay method that was devised to measure the ability of fast shoot elongation under submergence (Manangkil et al., 2008). A large variability exists in the shoot elongation ability under submergence among both indica and japonica cultivars (Figs. 1 and 3 and supplementary Table). Japonica cultivars showed greater shoot elongation ability than indica cultivars under dark submergence. Nipponbare known to be submergence intolerant due to the lack of functional Sub1 locus showed fast shoot elongation particularly under dark submergence (Fig. 1). FR13A, a widely known submergence tolerant model cultivar (Ella et al., 2003; Jackson and Ram, 2003) showed a comparable level of shoot elongation to the mean of indica cultivars both in the dark and light-dark submergence conditions. Both FR13A and Nipponbare showed good recovery rates after release from

the submergence stress (Fig. 2a). A positive correlation was found between the shoot length and the recovery rate of dark submerged seedlings and between the shoot length and the plant height of light-dark submerged seedlings in indica and *japonica* types (Table 1). The level of shoot elongation growth under dark submergence thus was correlated with the recovery rate after the stress, and that under light-dark submergence was correlated with the plant growth after the stress. The greater plant growth after release of the stress in the light-dark submerged seedlings might be due to photosynthesis during the light-dark submergence. These results support that fast shoot elongation is a key component acting both in indica and japonica rice grown under submergence and contributes to escape and survive submergence stress at the post-germination early seedling stage. Submergence tolerance in rice has been referred to the trait that confers on rice plants at the vegetative stage an ability to survive stresses caused by abrupt and temporal flooding, i.e. flash flood (Jackson and Ram, 2003). Rice plant die if they are fully submerged for a period longer than 2 weeks because respiration and photosynthesis are restricted when the oxygen and carbon dioxide supplies become limited (Boamfa et al., 2003). Therefore, the "quiescence strategy" that can help rice plants to maintain high levels of stored carbohydrates coupled with minimum shoot elongation and retention of chlorophyll has been considered a key mechanism for tolerance against submergence stress (Ito et al., 1999; Ram et al., 2002; Jackson and Ram, 2003; Das et al., 2005, Fukao et al., 2006). Reduced elongation during flash flood is also advantageous for rice seedlings because elongated seedlings trend to lodge as soon as the water level recedes (Suge, 1985; Setter and Laureles, 1996). The ethylene-response-factor-like genes located at the Sub1 locus were shown to play a key role in the operation of this strategy (Fukao and Bailey-Serres, 2004, 2008; Fukao et al., 2006; Xu et al., 2006). We therefore examined the SUB1A

Fig 4. RT-PCR profiles of *SUB1A* transcripts in rice seedlings incubated under the dark and the light-dark submergence conditions. Amount of *SUB1A* transcripts was measured in (a) 13 *indica* and 11 *japonica* cultivars including Nipponbare (high seedling vigor cultivar), FR13A (submergence tolerant cultivar), Kasalath (low seedling vigor cultivar) and IR42 (submergence intolerant cultivar) and in (b) floating and non-floating rice. Ubiquitin was used as an internal control. N, TL and TD respectively represent non-submerged and light-dark and dark submerged seedlings. M indicates DNA size markers.

gene expression in a set of 17 indica and 11 japonica cultivars, all of which showed different levels of shoot elongation under submergence. RT-PCR analysis revealed strong induction of the SUB1A gene under submergence in the elongating seedlings of six indica cultivars including FR13A, one floating rice Cula and one non-floating rice cultivar Chiem chanh, while no transcripts were detected in the other indica and all japonica cultivars examined (Fig. 4). The observation that the expression of SUB1A gene occurs in the elongating seedlings under submergence suggests that SUB1A gene expression does not hinder the shoot elongation growth under submergence at the early seedling stage. Because no correlation was apparent between the level of SUB1A gene expression and the level of seedling vigor under submergence, it can also be suggested that SUB1A is not directly related to seedling vigor under submergence. Nipponbare, FR13A and other indica and japonica cultivars might possess yet unknown gene(s) that promote vigorous growth under submergence at the post-germination early seedling stage. Quantitative trait locus analysis is required to detect such genes. It was

noted that expression of SUB1A gene was induced only under the light illumination. It is intriguing to examine the mechanism of light induction of the SUB1A gene expression under submergence. Submergence-induced elongation is an escape mechanism that helps submerged rice plants regain contact with the aerial environment (Arber, 1920). Rice plants adopting the so-called "elongation strategy" can grow rapidly to reach above the water surface and resume aerobic metabolism and photosynthesis (Kende et al., 1998; Voesenek et al., 2006). Deep-water or floating rice cultivars take this strategy to avoid submergence stress (Sauter, 2000). Perata and Voesenek (2007) discussed that differences in the level of submergence tolerance between and within species can only be partly explained by the Sub1 locus. They further stated that the "quiescence strategy" does not necessarily lead to tolerance to low oxygen levels when plants are at the early seedling stage. According to Ismail et al. (2009), tolerance to flooding during germination is clearly not associated with tolerance of complete submergence during the vegetative stage. Our results support the contention that different mechanisms might be operative at different growth stages in response to submergence stress in rice.

Acknowledgements

We thank Japanese Ministry of Education, Science, Culture and Sports for providing HTT Vu and OE Manangkil with the pre-doctoral scholarships.

References

- Arber A (1920) Water plants: a study of aquatic angiosperms. Cambridge University Press.
- Boamfa EI, Ram PC, Jackson MB, Reuss J, Harren FJM (2003) Dynamic aspects of alcoholic fermentation of rice seedlings in response to anaerobiosis and to complete submergence: relationship to submergence tolerance. Ann Bot 91: 279–290
- Cisse ND, Ejeta G (2003) Genetic variation and relationships among seedling vigor traits in sorghum. Crop Sci 43: 824–828.
- Cui KH, Peng SB, Xing YZ, Xu CG, Yu SB, Zhang Q (2002) Molecular dissection of seedling-vigor and associated physiological traits in rice. Theor Appl Genet 105: 745–753.
- Das KK, Sarkar RK, Ismail AM (2005) Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Sci 168: 131–136.
- Ella ES, Kawano N, Yamauchi Y, Tanaka K, Ismail AM (2003) Blocking ethylene perception during submergence reduced chlorophyll degradation and improved seedling survival in rice. Funct Plant Biol 30: 813–819.
- Fukao T, Bailey-Serres J (2004) Plant responses to hypoxia-is survival a balancing act? Trend Plant Sci 9: 449–456.
- Fukao T, Bailey-Serres J (2008) Ethylene-A key regulator of submergence responses in rice. Plant Sci 175: 43–51.
- Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and development acclimation responses to submergence in rice. Plant Cell 18: 2021–2034.
- Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. John Wiley and Sons, Inc Publishers Canada: 363–366.
- Ismail AM, Ella ES, Vergara GS, Mackill DJ (2009) Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (*Oryza sativa*). Ann Bot 103: 197–209.
- Ito O, Ella E, Kawano N (1999) Physiological basis of submergence tolerance in rainfed lowland rice ecosystem. Field Crop Res 64: 75–90.
- Jackson MB, Ram PC (2003) Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann Bot 91: 227–241.
- Kende H, van der Knaap E, Cho H-T (1998) Deepwater rice: a model plant to study stem elongation. Plant Physiol 118: 1105–1110.
- Magneschi L, Perata P (2009) Rice germination and seedling growth in the absence of oxygen. Ann Bot 103: 181–196.
- Manangkil, OE, Vu HTT, Yoshida S, Mori N, Nakamura C (2008) A simple, rapid and reliable bioassay for evaluating seedling vigor under submergence in *indica* and *japonica* rice (*Oryza sativa* L.). Euphytic 163: 267–274.

- Perata P, Voesenek ACJ (2007) Submergence tolerance in rice requires *Sub1A*, an ethylene-response-factor-like gene. Trend Plant Sci 12: 43–46.
- Ram PC, Singh BB, Singh AK, Ram P, Singh PN, Singh HP, Boamfa EI, Harren FJM, Santosa E, Jackson MB (2002) Submergence tolerance in rainfed lowland rice: physiological basis and prospects for cultivar improvement through marker-aided breeding. Field Crop Res 76: 131–152.
- Redona ED, Mackill DJ (1996) Genetic variation for seedling-vigor traits in rice. Crop Sci 36: 285–290.
- Sauter M (2000) Rice in deepwater: "How to take heed against a sea of troubles". Naturwissenschaften 87: 289–303.
- Setter TL, Laureles EV (1996) The beneficial effect of reduced elongation growth on submergence tolerance of rice. J Exp Bot 47: 1551–1559.
- Setter TL, Ellis M, Laureles EV, Ella ES, Senadhira D, Mishra SB, Sarkarung S, Datta S (1997) Physiology and genetics of submergence tolerance in rice. Ann Bot 79: 67–77.
- Suge H (1985) Ethylene and gibberellin: regulation of internodal elongation and nodal root development in floating rice. Plant Cell Physiol 26: 607–614.
- Voesenek LACJ, Colmer TD, Pierik R, Millenaar FF, Peeters AJM (2006) Tansley review. How plants cope with complete submergence. New Phytol 170: 213–226.
- Won JG, Yoshida T (2000) Screening cultivars at low dissolved oxygen level for water seeded rice. Plant Prod Sci 3: 112–113.
- Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) *Sub1A* is an ethylene-responsefactor-like gene that confers submergence tolerance to rice. Nature 442: 705–708.
- Yamauchi M, Aragines DV, Casayuran PR, Cruz PCD, Asis CA, Cruz RT (2000) Seedling establishment and grain yield of tropical rice sown in puddle soil. Agron J 92: 275–282.
- Zhou L, Wang J-K, Yi Q, Wang Y-Z, Zhu Y-G, Zhang Z-H (2007) Quantitative trait loci for seedling vigor in rice under field conditions. Field Crop Res 100: 294–301.

Supplementary Table: List of the 150 *japonica* cultivars and their shoot length.

No.	Designation	Name	Shoot length (cm)	SD
1	B083	Nipponbare	6.07	0.29
2	B117	Shinriki	3.92	0.83
3	B105	Sasasigure	5.46	0.41
4	A176	Yamadaho 132	6.19	0.07
5	B076	Matuyama Mitsui	6.53	0.12
6	B138	Yukigeshou	6.01	0.17
7	B049	Hyoukeika 56	6.00	0.68
8	B101	Reihou	5.40	0.45
9	A182	Yume Sansui	5.72	0.22
10	B027	Haya Ouzekil	5.92	0.19

12 B131 Touno 1 5.80 0.28 49 A.065 Isenisbiki 13 B135 Yamabiko 5.25 0.62 0.30 Hyouker Sake 18 14 B085 Norin 1 5.52 0.30 5.2 Also Sin Abbi 15 B087 Norin 21 4.87 0.28 5.2 Also Sin Abbi	11	B109	Shinjyu	5.20	0.32	48	A020	Gohykumangoku
13B135Yamabiko5.250.6250A050Hyoukei Sake 1814B085Norin 15.520.3951A048Hyougo Yame Nishiki15B087Norin 114.470.2852A152Shirakaba Nishiki16B089Norin 414.790.5053A154Shirakaba Nishiki17B075Mangoku4.640.4953A154Shirakaba Nishiki18B010Asahi5.710.1855A034Hidabonarc19B066Koshikihkari4.350.6855A077Kikusakae20B019Hujiska 53.770.6557A166Tuyuhakazc21B139Zenseki Wase3.510.5658A160Tamasakae22B100Ouu 2374.180.7759A089Kazuryuu23B043Hokushin 15.280.1160A167Wakamizu24B086Norin 86.080.4757A064Haumizu25B020Fukuhibiki5.870.4761A118Sachidama26B003Aichi Mikawanishiki4.450.2563A011Dewasansan27B044Aikoku5.210.7464A073Kairyou Shikoi28B134Wase Shiriki5.290.5666A112Okuhomarc29B128Tasensyou3.320.2464	12	B131	Touno 1	5.80	0.28	49	A065	Isenishiki
14B085Norin 15.520.3951A048Hyougo Yume Nishiki15B087Norin 214.870.2852A.152Shirakaba Nishiki16B089Norin 414.790.5053A.154Shirakaba Nishiki17B075Mangoku4.640.4954A.043Hitogokochi18B010Asahi5.710.1855A.043Hitogokochi19B066Koshikihkari4.350.6855A.077Kikusakae20B019Hujisaka 53.770.6557A.166Turyuhakazc21B130Zemseki Wase3.510.5658A.160Tarnasukae22B100Ouu 2374.180.7759A.089Kururyuu23B043Hokushin 15.280.7160A.167Wakamizu24B086Norin 86.080.4552A.01Aiyama25B020Fukuhibiki5.870.4763A.011Dewasnan26B003Aichi Mikawanishiki4.450.2564A.023Harafubuki29B128Tasensyou3.990.6566A.112Okuhomare31A028Hattan Nishiki5.150.5666A.110Okayama Yiaku Kake 4833A032Hattan Nishiki5.470.5772A.063Ipportime34A.153Shiratama5.470	13	B135	Yamabiko	5.25	0.62	50	A050	Hyoukei Sake 18
15Norin 214.870.2852A152Shirakaba Nishiki16B089Norin 414.790.5053A.154Shiroae Nishiki17B075Mangoku4.640.4954A.043Hitogokochi18B010Asahi5.710.1855A.043Hitogokochi19B066Koshikihkari4.350.6855A.043Hitadomare20B019Hujisaka 53.770.6558A.160Tamasakac21B139Zenseki Wase3.510.5658A.160Tamasakac22B100Ouu 2374.180.7760A.167Wakamizu23B043Hokushin 15.280.7160A.167Wakamizu24B086Norin 86.080.4561A.118Sachidama25B020Fukuhibiki5.870.4762A.001Alyama26B003A.ichi Mikawanishiki4.450.2563A011Dewasansam27B044Aikoku5.210.7464A073Kairyou Shikou28B134Wase Shinriki5.290.5665A023Hanafubuki31A028Hatan Sishiki5.150.5666A.112Okuomare32A030Hatan Sishiki5.570.2773A.134Gin Fubuki33A022Hatan Sishiki5.570.2774A063 </td <td>14</td> <td>B085</td> <td>Norin 1</td> <td>5.52</td> <td>0.39</td> <td>51</td> <td>A048</td> <td>Hyougo Yume Nishiki</td>	14	B085	Norin 1	5.52	0.39	51	A048	Hyougo Yume Nishiki
16 B089 Norin 41 4.79 0.50 53 A.154 Shirotae Nishiki 17 B075 Mangoku 4.64 0.49 54 A.043 Hitogokochi 18 B010 Asahi 5.71 0.18 55 A.034 Hidopoare 19 B066 Koshikhikari 4.35 0.68 56 A.077 Kikusakae 20 B019 Hujisaka 5 3.77 0.65 58 A.160 Tamasakae 21 B139 Zenseki Wase 3.51 0.56 A.077 Kikusakae 22 B100 Ouu 237 4.18 0.77 60 A.160 Tamasakae 23 B040 Norin 8 6.08 0.45 61 A.118 Sachidama 24 B080 Norin 8 6.08 0.45 62 A001 Aigama 25 B020 Fukuhibiki 5.21 0.74 64 A013 Dewasansan 26 B03	15	B087	Norin 21	4.87	0.28	52	A152	Shirakaba Nishiki
17 B075 Mangoku 4.64 0.49 18 B010 Asahi 5.71 0.18 19 B066 Koshikhikari 4.35 0.68 20 B019 Hujisaka 5 3.77 0.65 21 B139 Zenseki Wase 3.51 0.56 22 B100 Ouu 237 4.18 0.77 23 B043 Hokushin 1 5.28 0.71 24 B086 Norin 8 6.08 0.45 25 B020 Fukuhibiki 5.87 0.47 26 B003 Aichi Mikawanishiki 3 4.45 0.25 27 B044 Aikoku 5.21 0.74 28 B134 Wase Shinriki 5.29 0.56 30 A075 Kannomai 4.97 0.35 31 A028 Hattan 35 3.32 0.24 32 A030 Hattanyishiki 5.57 0.27 33 A032 Hattanyishiki 5.51 0.56 34 A153 Shirat	16	B089	Norin 41	4.79	0.50	53	A154	Shirotae Nishiki
18 B010 Asahi 5.71 0.18 55 A034 Hidahomare 19 B066 Koshikhikari 4.35 0.68 56 A077 Kikusakae 20 B019 Hujisaka 5 3.77 0.65 57 A166 Tuyuhakaze 21 B139 Zenseki Wase 3.51 0.56 58 A160 Tamasakae 22 B100 Ouu 237 4.18 0.77 60 A167 Wakamizu 24 B086 Norin 8 6.08 0.45 61 A118 Sachidama 25 B020 Fukuhibiki 5.87 0.47 62 A001 Aiyama 26 B003 Aichi Mikawanishiki 3 4.45 0.25 63 A011 Dewasansan 27 B004 Aikoku 5.21 0.74 64 A073 Kairyou Shikou 28 B134 Wase Shinriki 5.29 0.56 A023 Hanarubuki 31	17	B075	Mangoku	4.64	0.49	54	A043	Hitogokochi
19 B066 Koshikihkari 4.33 0.68 56 A077 Kikusakae 20 B019 Hujisaka 5 3.77 0.65 57 A166 Tuyuhakaze 21 B139 Zenseki Wase 3.51 0.56 58 A160 Tamasakae 22 B100 Ouu 237 4.18 0.71 60 A167 Watamizu 24 B086 Norin 8 6.08 0.45 59 A089 Kuzuryuu 26 B003 Aichi Mikawanishiki 3 4.45 0.25 63 A011 Dewasansan 27 B004 Aikoku 5.21 0.74 64 A073 Kairyou Shikou 28 B134 Wase Shinriki 5.29 0.56 66 A112 Okuhomare 30 A075 Kannomai 4.97 0.35 67 A046 Houhai 31 A028 Hattan Sishiki 5.15 0.56 67 A110 Okayama Yaku Sake 48	18	B010	Asahi	5.71	0.18	55	A034	Hidahomare
20 B019 Hujisaka 5 3.77 0.65 21 B139 Zenseki Wase 3.51 0.56 22 B100 Ouu 237 4.18 0.77 23 B043 Hokushin 1 5.28 0.71 24 B086 Norin 8 6.08 0.45 25 B020 Fukuhibiki 5.87 0.47 26 B003 Aichi Mikawanishiki 3 4.45 0.25 30 Aichi Mikawanishiki 3 4.45 0.25 9 B128 Tasensyou 3.99 0.65 30 A075 Kannomai 4.97 0.35 31 A028 Hattan 35 3.32 0.24 32 A030 Hattan 35 3.32 0.24 33 A032 Hattangusa 6.31 0.38 34 A153 Shiratama 5.47 0.57 35 A094 Miyako 5.79 0.53 36 A116 R	19	B066	Koshikihikari	4.35	0.68	56	A077	Kikusakae
21 B139 Zenseki Wase 3.51 0.56 22 B100 Ouu 237 4.18 0.71 23 B043 Hokushin 1 5.28 0.71 24 B086 Norin 8 6.08 0.45 25 B020 Fukuhibiki 5.87 0.47 26 B003 Aichi Mikawanishiki 3 4.45 0.25 27 B004 Aikoku 5.21 0.74 28 B134 Wase Shinriki 5.29 0.56 30 A075 Kannomai 4.97 0.35 31 A028 Hattan 35 3.32 0.24 33 A032 Hattan Nishiki 1 5.15 0.56 33 A032 Hattan Nishiki 1 5.15 0.56 34 A153 Shiratama 5.47 0.57 35 A094 Miyako 5.79 0.53 36 A116 Rokkou Nishiki 5.64 0.21 37	20	B019	Hujisaka 5	3.77	0.65	57	A166	Tuyuhakaze
22 B100 Ouu 237 4.18 0.77 23 B043 Hokushin 1 5.28 0.71 24 B086 Norin 8 6.08 0.45 25 B020 Fukuhibiki 5.87 0.47 26 B003 Aichi Mikawanishiki 3 4.45 0.25 27 B004 Aikoku 5.21 0.74 28 B134 Wase Shinriki 5.29 0.56 29 B128 Tasensyou 3.99 0.65 30 A075 Kannomai 4.97 0.35 31 A028 Hattan 35 3.32 0.24 53 A030 Hattan Sishiki 1 5.15 0.56 33 A032 Hattan Sishiki 5.47 0.57 34 A153 Shiratama 5.47 0.57 35 A094 Miyako 5.79 0.53 36 A116 Rokou Nishiki 5.64 0.21 37	21	B139	Zenseki Wase	3.51	0.56	58	A160	Tamasakae
23 B043 Hokushin 1 5.28 0.71 60 A.167 Wakamizu 24 B086 Norin 8 6.08 0.45 61 A.118 Sachidama 25 B020 Fukuhibiki 5.87 0.47 62 A.001 Aiyama 26 B003 A.ichi Mikawanishiki 3 4.45 0.25 63 A.011 Dewasansan 27 B004 A.ikoku 5.21 0.74 64 A.073 Kairyou Shikou 28 B134 Wase Shiriki 5.29 0.56 65 A.023 Hanafubuki 29 B128 Tasensyou 3.99 0.65 66 A.112 Okuhomare 30 A.075 Kannomai 4.97 0.35 67 A.046 Houhai 66 31 A.032 Hattan Nishiki 1 5.15 0.56 69 A110 Okayama Yaku Sake 48 33 A.032 Hattan Nishiki 5.47 0.57 72 A.063	22	B100	Ouu 237	4.18	0.77	59	A089	Kuzuryuu
24 B086 Norin 8 6.08 0.45 25 B020 Fukuhibiki 5.87 0.47 26 B003 Aichi Mikawanishiki 3 4.45 0.25 27 B004 Aikoku 5.21 0.74 28 B134 Wase Shinriki 5.29 0.56 29 B128 Tasensyou 3.99 0.65 30 A075 Kannomai 4.97 0.35 31 A028 Hattan 35 3.32 0.24 32 A030 Hattan Sishiki 1 5.15 0.56 33 A032 Hattan Nishiki 1 5.15 0.56 34 A153 Shiratama 5.47 0.57 35 A094 Miyako 5.79 0.53 36 A116 Rokou Nishiki 5.64 0.21 37 A099 Nadahikari 5.57 0.27 38 A006 Benkei 5.30 0.25 39 <td< td=""><td>23</td><td>B043</td><td>Hokushin 1</td><td>5.28</td><td>0.71</td><td>60</td><td>A167</td><td>Wakamizu</td></td<>	23	B043	Hokushin 1	5.28	0.71	60	A167	Wakamizu
25 B020 Fukuhibiki 5.87 0.47 26 B003 Aichi Mikawanishiki 3 4.45 0.25 27 B004 Aikoku 5.21 0.74 28 B134 Wase Shinriki 5.29 0.56 29 B128 Tasensyou 3.99 0.65 30 A075 Kannomai 4.97 0.35 31 A028 Hattan 35 3.32 0.24 32 A030 Hattan 35 3.32 0.24 33 A032 Hattan Nishiki 1 5.15 0.56 33 A032 Hattangusa 6.31 0.38 34 A153 Shiratama 5.47 0.57 35 A094 Miyako 5.79 0.53 36 A116 Rokou Nishiki 5.64 0.21 37 A099 Nadahikari 5.57 0.27 38 A006 Benkei 5.30 0.25 39 A07	24	B086	Norin 8	6.08	0.45	61	A118	Sachidama
26 B003 Aichi Mikawanishiki 3 4.45 0.25 27 B004 Aikoku 5.21 0.74 28 B134 Wase Shinriki 5.29 0.56 29 B128 Tasensyou 3.99 0.65 30 A075 Kannomai 4.97 0.35 31 A028 Hattan 35 3.32 0.24 32 A030 Hattan 35 3.32 0.24 33 A032 Hattan 35 3.32 0.24 34 A153 Shiratama 5.47 0.57 35 A094 Miyako 5.79 0.53 36 A116 Rokkou Nishiki 5.64 0.21 37 A099 Nadahikari 5.57 0.27 38 A006 Benkei 5.30 0.25 39 A078 Kikusui 2.60 0.42 41 A115 Oyama Nishiki 4.93 0.36 42 A119	25	B020	Fukuhibiki	5.87	0.47	62	A001	Aiyama
27 B004 Aikoku 5.21 0.74 64 A073 Kairyou Shikou 28 B134 Wase Shinriki 5.29 0.56 65 A023 Hanafubuki 29 B128 Tasensyou 3.99 0.65 66 A112 Okuhomare 30 A075 Kannomai 4.97 0.35 67 A046 Houhai 31 A028 Hattan 35 3.32 0.24 68 A082 Kojyou Nishiki 32 A030 Hattan Sishiki 1 5.15 0.56 68 A082 Kojyou Nishiki 32 A030 Hattangusa 6.31 0.38 70 A131 Gin Fubuki 33 A032 Hattangusa 5.47 0.57 71 A058 Hikei Sake 61 35 A094 Miyako 5.79 0.53 72 A063 Ipponzime 36 A116 Rokkou Nishiki 5.57 0.27 73 A132 Sakenohana 1	26	B003	Aichi Mikawanishiki 3	4.45	0.25	63	A011	Dewasansan
28 B134 Wase Shinriki 5.29 0.56 65 A023 Hanafubuki 29 B128 Tasensyou 3.99 0.65 66 A112 Okuhomare 30 A075 Kannomai 4.97 0.35 67 A046 Houhai 31 A028 Hattan 35 3.32 0.24 68 A082 Kojyou Nishiki 32 A030 Hattan Sishiki 1 5.15 0.56 69 A110 Okayama Yaku Sake 48 33 A032 Hattangusa 6.31 0.38 70 A131 Gin Fubuki 34 A153 Shiratama 5.47 0.57 71 A058 Hikei Sake 61 35 A094 Miyako 5.79 0.53 72 A063 Ipponzime 36 A116 Rokkou Nishiki 5.64 0.21 73 A132 Sakenohana 1 37 A099 Nadahikari 5.57 0.27 74 A095 Miyama Nishiki	27	B004	Aikoku	5.21	0.74	64	A073	Kairyou Shikou
29 B128 Tasensyou 3.99 0.65 30 A075 Kannomai 4.97 0.35 31 A028 Hattan 35 3.32 0.24 32 A030 Hattan 35 3.32 0.24 33 A032 Hattan 15 0.56 68 A082 Kojyou Nishiki 34 A153 Shiratama 5.47 0.57 70 A131 Gin Fubuki 35 A094 Miyako 5.79 0.53 72 A063 Ipponzime 36 A116 Rokkou Nishiki 5.64 0.21 73 A132 Sakenohana 1 37 A099 Nadahikari 5.57 0.27 74 A095 Miyama Nishiki 39 A078 Kikusui 2.60 0.42 75 A158 Takane Nishiki 41 A115 Oyama Nishiki 4.93 0.36 78 A163 Hyoukei Sake 65 42 A119 Saga Sake 12 2.20	28	B134	Wase Shinriki	5.29	0.56	65	A023	Hanafubuki
30 A075 Kannomai 4.97 0.35 31 A028 Hattan 35 3.32 0.24 68 A082 Kojyou Nishiki 32 A030 Hattan 35 3.32 0.24 68 A082 Kojyou Nishiki 33 A032 Hattangusa 6.31 0.38 69 A110 Okayama Yaku Sake 48 33 A032 Hattangusa 6.31 0.38 70 A131 Gin Fubuki 34 A153 Shiratama 5.47 0.57 71 A058 Hikei Sake 61 35 A094 Miyako 5.79 0.53 72 A063 Ipponzime 36 A116 Rokkou Nishiki 5.64 0.21 73 A132 Sakenohana 1 37 A099 Nadahikari 5.57 0.27 74 A095 Miyama Nishiki 38 A006 Benkei 5.30 0.25 75 A158 Takane Nishiki 39 A078	29	B128	Tasensyou	3.99	0.65	66	A112	Okuhomare
31 A028 Hattan 35 3.32 0.24 32 A030 Hattan 35 5.15 0.56 33 A032 Hattan Nishiki 1 5.15 0.56 33 A032 Hattangusa 6.31 0.38 34 A153 Shiratama 5.47 0.57 35 A094 Miyako 5.79 0.53 36 A116 Rokkou Nishiki 5.64 0.21 37 A099 Nadahikari 5.57 0.27 38 A006 Benkei 5.30 0.25 39 A078 Kikusui 2.60 0.42 41 A115 Oyama Nishiki 4.93 0.36 42 A119 Saga Sake 12 2.20 0.36 43 A018 Ginnoyume 4.82 0.27 44 A133 Senbonnishiki 3.54 0.56 43 A018 Ginnoyume 4.82 0.27 44 A133 </td <td>30</td> <td>A075</td> <td>Kannomai</td> <td>4.97</td> <td>0.35</td> <td>67</td> <td>A046</td> <td>Houhai</td>	30	A075	Kannomai	4.97	0.35	67	A046	Houhai
32 A030 Hattan Nishiki 1 5.15 0.56 33 A032 Hattan Qusa 6.31 0.38 70 A131 Gin Fubuki 34 A153 Shiratama 5.47 0.57 0.57 71 A058 Hikei Sake 61 35 A094 Miyako 5.79 0.53 71 A058 Hikei Sake 61 36 A116 Rokkou Nishiki 5.64 0.21 73 A132 Sakenohana 1 37 A099 Nadahikari 5.57 0.27 74 A095 Miyama Nishiki 39 A078 Kikusui 2.60 0.42 75 A158 Takane Nishiki 40 A066 Ishikawa Sake 20 5.25 0.06 77 A015 Ginginga 41 A119 Saga Sake 12 2.20 0.36 79 A162 Hyoukei Sake 65 43 A018 Ginnoyume 4.82 0.26 81 B064 Kiryuyoshi 44	31	A028	Hattan 35	3.32	0.24	68	A082	Kojyou Nishiki
33 A032 Hattangusa 6.31 0.38 70 A131 Gin Fubuki 34 A153 Shiratama 5.47 0.57 71 A058 Hikei Sake 61 35 A094 Miyako 5.79 0.53 72 A063 Ipponzime 36 A116 Rokkou Nishiki 5.64 0.21 73 A132 Sakenohana 1 37 A099 Nadahikari 5.57 0.27 74 A095 Miyama Nishiki 38 A006 Benkei 5.30 0.25 75 A158 Takane Nishiki 39 A078 Kikusui 2.60 0.42 76 A042 Hitachi sake 17 40 A066 Ishikawa Sake 20 5.25 0.06 78 A163 Hyoukei Sake 66 42 A119 Saga Sake 12 2.20 0.36 78 A163 Hyoukei Sake 65 43 A018 Ginnoyume 4.82 0.27 81 B064 Kiryuyoshi <td>32</td> <td>A030</td> <td>Hattan Nishiki 1</td> <td>5.15</td> <td>0.56</td> <td>69</td> <td>A110</td> <td>Okayama Yaku Sake 48</td>	32	A030	Hattan Nishiki 1	5.15	0.56	69	A110	Okayama Yaku Sake 48
34 A153 Shiratama 5.47 0.57 35 A094 Miyako 5.79 0.53 36 A116 Rokkou Nishiki 5.64 0.21 37 A099 Nadahikari 5.57 0.27 38 A006 Benkei 5.30 0.25 39 A078 Kikusui 2.60 0.42 40 A066 Ishikawa Sake 20 5.25 0.06 41 A115 Oyama Nishiki 4.93 0.36 42 A119 Saga Sake 12 2.20 0.36 43 A018 Ginnoyume 4.82 0.27 44 A133 Senbonnishiki 3.54 0.56 43 A018 Ginnoyume 4.82 0.27 44 A133 Senbonnishiki 3.54 0.56 45 A031 Hattan Nishiki 2 4.17 0.34 46 A101 Nada Nishiki 4.02 0.44 47	33	A032	Hattangusa	6.31	0.38	70	A131	Gin Fubuki
35 A094 Miyako 5.79 0.53 72 A063 Ipponzime 36 A116 Rokkou Nishiki 5.64 0.21 73 A132 Sakenohana 1 37 A099 Nadahikari 5.57 0.27 74 A095 Miyama Nishiki 38 A006 Benkei 5.30 0.25 75 A158 Takane Nishiki 39 A078 Kikusui 2.60 0.42 76 A042 Hitachi sake 17 40 A066 Ishikawa Sake 20 5.25 0.06 78 A163 Hyoukei Sake 66 41 A115 Oyama Nishiki 4.93 0.36 78 A163 Hyoukei Sake 65 43 A018 Ginnoyume 4.82 0.27 80 B121 Shirayukihime 44 A133 Senbonnishiki 3.54 0.56 81 B064 Kiryuyoshi 45 A031 Hattan Nishiki 2 4.17 0.34 83 A168 Wat	34	A153	Shiratama	5.47	0.57	71	A058	Hikei Sake 61
36 A116 Rokkou Nishiki 5.64 0.21 73 A132 Sakenohana 1 37 A099 Nadahikari 5.57 0.27 74 A095 Miyama Nishiki 38 A006 Benkei 5.30 0.25 75 A158 Takane Nishiki 39 A078 Kikusui 2.60 0.42 76 A042 Hitachi sake 17 40 A066 Ishikawa Sake 20 5.25 0.06 77 A015 Ginginga 41 A115 Oyama Nishiki 4.93 0.36 78 A163 Hyoukei Sake 66 42 A119 Saga Sake 12 2.20 0.36 79 A162 Hyoukei Sake 65 43 A018 Ginnoyume 4.82 0.27 80 B121 Shirayukihime 44 A133 Senbonnishiki 3.54 0.56 81 B064 Kiryuyoshi 45 A031 Hattan Nishiki 2 4.17 0.34 83 A168 <t< td=""><td>35</td><td>A094</td><td>Miyako</td><td>5.79</td><td>0.53</td><td>72</td><td>A063</td><td>Ipponzime</td></t<>	35	A094	Miyako	5.79	0.53	72	A063	Ipponzime
37 A099 Nadahikari 5.57 0.27 38 A006 Benkei 5.30 0.25 39 A078 Kikusui 2.60 0.42 40 A066 Ishikawa Sake 20 5.25 0.06 41 A115 Oyama Nishiki 4.93 0.36 42 A119 Saga Sake 12 2.20 0.36 43 A018 Ginnoyume 4.82 0.27 44 A133 Senbonnishiki 3.54 0.56 45 A031 Hattan Nishiki 2 4.17 0.34 46 A101 Nada Nishiki 4.02 0.47 47 B005 Ajimaru 5.30 0.67	36	A116	Rokkou Nishiki	5.64	0.21	73	A132	Sakenohana 1
38 A006 Benkei 5.30 0.25 75 A158 Takane Nishiki 39 A078 Kikusui 2.60 0.42 76 A042 Hitachi sake 17 40 A066 Ishikawa Sake 20 5.25 0.06 77 A015 Ginginga 41 A115 Oyama Nishiki 4.93 0.36 78 A163 Hyoukei Sake 66 42 A119 Saga Sake 12 2.20 0.36 79 A162 Hyoukei Sake 65 43 A018 Ginnoyume 4.82 0.27 80 B121 Shirayukihime 44 A133 Senbonnishiki 3.54 0.56 81 B064 Kiryuyoshi 45 A031 Hattan Nishiki 2 4.17 0.34 83 A168 Wataribune 2 47 B005 Ajimaru 5.30 0.67 84 A173 Wataribune	37	A099	Nadahikari	5.57	0.27	74	A095	Miyama Nishiki
39 A078 Kikusui 2.60 0.42 40 A066 Ishikawa Sake 20 5.25 0.06 41 A115 Oyama Nishiki 4.93 0.36 42 A119 Saga Sake 12 2.20 0.36 43 A018 Ginnoyume 4.82 0.27 44 A133 Senbonnishiki 3.54 0.56 45 A031 Hattan Nishiki 4.02 0.44 47 B005 Ajimaru 5.30 0.67	38	A006	Benkei	5.30	0.25	75	A158	Takane Nishiki
40 A066 Ishikawa Sake 20 5.25 0.06 77 A015 Ginginga 41 A115 Oyama Nishiki 4.93 0.36 78 A163 Hyoukei Sake 66 42 A119 Saga Sake 12 2.20 0.36 79 A162 Hyoukei Sake 65 43 A018 Ginnoyume 4.82 0.27 80 B121 Shirayukihime 44 A133 Senbonnishiki 3.54 0.56 81 B064 Kiryuyoshi 45 A031 Hattan Nishiki 2 4.17 0.34 82 A168 Wataribune 2 47 B005 Ajimaru 5.30 0.67 84 A173 Wataribune	39	A078	Kikusui	2.60	0.42	76	A042	Hitachi sake 17
41 A115 Oyama Nishiki 4.93 0.36 78 A163 Hyoukei Sake 66 42 A119 Saga Sake 12 2.20 0.36 79 A162 Hyoukei Sake 65 43 A018 Ginnoyume 4.82 0.27 80 B121 Shirayukihime 44 A133 Senbonnishiki 3.54 0.56 81 B064 Kiryuyoshi 45 A031 Hattan Nishiki 2 4.17 0.34 82 A177 Yamadaho 1713 46 A101 Nada Nishiki 4.02 0.44 83 A168 Wataribune 2 47 B005 Ajimaru 5.30 0.67 84 A173 Wataribune	40	A066	Ishikawa Sake 20	5.25	0.06	77	A015	Ginginga
42 A119 Saga Sake 12 2.20 0.36 79 A162 Hyoukei Sake 65 43 A018 Ginnoyume 4.82 0.27 80 B121 Shirayukihime 44 A133 Senbonnishiki 3.54 0.56 81 B064 Kiryuyoshi 45 A031 Hattan Nishiki 2 4.17 0.34 82 A177 Yamadaho 1713 46 A101 Nada Nishiki 4.02 0.44 83 A168 Wataribune 2 47 B005 Ajimaru 5.30 0.67 84 A173 Wataribune	41	A115	Oyama Nishiki	4.93	0.36	78	A163	Hyoukei Sake 66
43 A018 Ginnoyume 4.82 0.27 80 B121 Shirayukihime 44 A133 Senbonnishiki 3.54 0.56 81 B064 Kiryuyoshi 45 A031 Hattan Nishiki 2 4.17 0.34 82 A177 Yamadaho 1713 46 A101 Nada Nishiki 4.02 0.44 83 A168 Wataribune 2 47 B005 Ajimaru 5.30 0.67 84 A173 Wataribune	42	A119	Saga Sake 12	2.20	0.36	79	A162	Hyoukei Sake 65
44 A133 Senbonnishiki 3.54 0.56 81 B064 Kiryuyoshi 45 A031 Hattan Nishiki 2 4.17 0.34 82 A177 Yamadaho 1713 46 A101 Nada Nishiki 4.02 0.44 83 A168 Wataribune 2 47 B005 Ajimaru 5.30 0.67 84 A173 Wataribune	43	A018	Ginnoyume	4.82	0.27	80	B121	Shirayukihime
45 A031 Hattan Nishiki 2 4.17 0.34 82 A177 Yamadaho 1713 46 A101 Nada Nishiki 4.02 0.44 83 A168 Wataribune 2 47 B005 Ajimaru 5.30 0.67 84 A173 Wataribune	44	A133	Senbonnishiki	3.54	0.56	81	B064	Kiryuyoshi
46 A101 Nada Nishiki 4.02 0.44 83 A168 Wataribune 2 47 B005 Ajimaru 5.30 0.67 84 A173 Wataribune	45	A031	Hattan Nishiki 2	4.17	0.34	82	A177	Yamadaho 1713
47 B005 Ajimaru 5.30 0.67 84 A173 Wataribune	46	A101	Nada Nishiki	4.02	0.44	83	A168	Wataribune 2
	47	B005	Ajimaru	5.30	0.67	84	A173	Wataribune

0.38

0.61

0.28

0.21

0.27

0.45

0.23

0.71

0.09 0.74

0.58

0.20

0.74 0.38

0.49

0.52

0.36

0.44

0.37

0.43

0.60

0.67

0.46

0.51

0.50

0.26

0.45

0.52

0.58

0.47

0.62

0.97

0.33

3.964.14

4.19

5.40

2.41

3.67

4.89

2.42 4.94

4.86

3.69 3.07

2.27 1.90

3.61

3.11

5.65

4.50 6.02

2.35

3.66

2.97

3.386.17

4.21

4.12

6.22

5.36

4.19

5.03

7.64

3.26

4.72

4.27

4.38 4.69

4.21

85	A017	Ginnosei	5.72	0.21	122	B122	Shirosenbon	4.59	0.53
86	A027	Hattan 10	6.09	0.40	123	B033	Hinomaru	5.03	0.27
87	A071	Kairyou Hattan Nagare	5.74	0.22	124	B126	Takenari	4.61	0.75
88	A159	Takadawase	5.35	0.08	125	B093	Ooita Mii 120	4.28	0.51
89	A092	Miki Nishiki	2.93	0.46	126	B091	Ooba	4.03	0.09
90	A144	Shin Yamadaho 2	4.28	0.16	127	B133	Wase Asahi	5.04	0.12
91	A072	Kairyou Omachi	3.53	0.68	128	B140	Yukigeshou	5.00	0.49
92	A079	Kinai Omachi	5.07	0.34	129	B107	Sen-iti	4.05	0.32
93	A013	Funaki Omachi	5.82	0.25	130	B051	Jyousyu	4.09	0.61
94	A048	Hyougo Omchi	4.39	0.69	131	B052	Jukkoku	3.86	0.25
95	A021	Gouriki	6.51	0.40	132	B132	Wakaba	3.33	0.75
96	A045	Hokuriku 12	5.06	0.20	133	B078	Mikawanishiki	5.09	0.36
97	B005	Ajimaru	6.32	0.20	134	B023	Ginbouzu	1.99	0.39
98	A142	Shin yamadaho 1	2.07	0.25	135	B053	Kamenoo 4	1.80	0.37
99	A120	Saikai 134	3.99	0.55	136	B111	Shinriki 245	3.28	0.67
100	A081	Koi omachi	4.72	0.65	137	B080	Moritawase 2	4.75	0.21
101	A134	Siga Wataribune 2	5.62	0.46	138	B079	Moritawase	4.47	0.59
102	A080	Kinmon Nishiki	6.02	0.55	139	B011	Banzai	3.92	0.85
103	A087	Kuranohana	3.54	0.23	140	B035	Hokuriku 20	6.51	0.07
104	A093	Misatoshiki	4.98	0.75	141	B036	Hokuriku 52	6.33	0.44
105	A114	Omachi	4.99	0.55	142	C027	Hokushi Tami	5.76	0.30
106	A151	Shiragiku	6.63	0.30	143	B088	Norin 22	5.42	0.43
107	A106	Nojyouho	5.24	0.53	144	B022	Fusayoshi	4.57	0.63
108	A069	Iwai	6.03	0.20	145	B031	Hinohikari	2.67	0.73
109	A156	Tajima Gouriki	4.77	0.36	146	B120	Shiranui	2.17	0.58
110	A035	Hidaminori	5.68	0.19	147	B102	Reimei	6.32	0.45
111	A012	Fukunohana	4.49	0.21	148	B065	Kizasa	3.97	0.59
112	A047	Hyougo Kita Nishiki	4.49	0.22	149	B008	Akitsuho	3.32	0.80
113	B061	Kincyaku	5.85	0.08	150	B016	Chuusei Shinsenbon	5.40	0.73
114	B071	Kyoto Asahi	3.82	0.24	151		Kasalath	4.02	0.22
115	B006	Akebono	5.48	0.24					
116	A181	Yamayuu 67	4.81	0.85					
117	B094	Ooseto	5.83	0.29					
118	B055	Kamenoo	5.61	0.46					
119	B062	Kinmaze	5.17	0.20					
120	B050	Hyoukei Ka 62	4.63	0.44					
121	B067	Kougyoku	4.63	0.49					