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Abstract 

In this study, the application of artificial neural networks (ANNs) and mathematical models for hot-air drying of Jujube fruit is 

presented. Air velocity, temperature and drying time were used to predict moisture ratio (MR) and drying rate (DR) variations. 

Assessment of seven mathematical models revealed that the Midilli model exhibited the best performance in fitting the experimental 

data (R2=0.9996, RMSE= 0.005112 and χ2=2.61E-05). Using some of the experimental data, an ANN, trained by standard back-

propagation algorithm, was developed. The ANN model was able to predict variations of MR and DR quite well with determination 

coefficients (R2) of 0.9997, 0.9993 and 0.9996 for training, validation and testing, respectively. The prediction mean square error was 

obtained as 0.001, 0.0011 and 0.0013 for training, validation and testing, respectively. Results show good agreement between the 

experimental data on the one hand and mathematical models as well as the ANN model on the other. However, neural network 

modeling yielded a better prediction of moisture ratio and drying rate of jujube fruit compared to all of the mathematical models 

studied. 
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Abbreviations: 

MR Moisture ratio (dimensionless) 

Mt Moisture content at any time (kg water/kg dry solid) 

Me Equilibrium moisture content (kg water/kg dry solid) 

M0 Initial moisture content (kg water/kg dry solid) 

R2 Correlation coefficient 

RMSE Root mean square error 

χ
2 

Chi square 

MRexp,i ith experimental moisture ratio 

MRpred,i ith predicted moisture ratio 

N Number of observations 

n Number of drying constants 

DR Drying Rate (g/min) 

MSE Mean square error 

 

 

Introduction 

 

Jujube (Zizyphus jujube Mill) is a fruit of Rhamnaceae 

family. It is both consumed fresh and dried for its high 

medicinal value. For two millennia Jujube fruit, seeds, leaf, 

skin and root have been used for remediation of fever 

(Omid Beigi, 1997). Drying is an old technique for the 

preservation of agricultural and medicinal plants 

(Koyuncuet et al., 2007). Solar energy has been a usual 

energy source for the traditional dryers. However, it is 

riddled with numerous problems including: undesirable 

variations in food quality, insufficient drying control, long 

drying times and weak hygienic aspects. Industrial dryers 

offer numerous advantages such as on time harvesting, loss 

reduction in the field, programmable harvesting in 

undesirable weather conditions, longer shelf time, 

decreased costs and better processing time management. 

However drying is an energy-intensive process which 

should be monitored and controlled closely (Sahin and 

Dincer, 2002). Mathematical modeling of hot air drying is 

commonly based on thin layer drying assumptions 

(Ozdemir and Devres, 1999). Drying of fruits depends on 

their mass and heat transfer specifications. Therefore, 

moisture and temperature diffusion parameters are essential 

for the design process, quality control, selection of storage 

facility and transportation of fruits. Diffusivity is a major 

parameter in agriculture products which is needed for 

modeling mass transfer processes such as surface 

absorption and moisture desorption during the storage 

period (Rafiee et al., 2008). Although a considerable 

amount of data has been reported in the literature regarding 

the thin-layer drying modeling of various agricultural 

products (fruits, crops and vegetables) such as millet 

(Ojediran and Raji, 2010) bananas (Prachayawarakorn et 

al., 2007), figs (Stamatios et al., 2006), pistachio nuts 

(Kashaninejad et al., 2007), pomegranate arils (Motevali et  
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Fig 1. Schematic description of the laboratory equipment used for drying. 

 

 

al., 2010; 2011a), mushroom slices (Motevali et al., 2011b)  

tropical fruits (Ceylan et al., 2007), apples (Sacilik and 

Konuralp Elicin, 2006), sesame hulls (Al-Mahasneh et al., 

2007), sesame seeds, seedless grapes (Amiri Chayjan et al., 

2011) and bell peppers, little information is available on 

medicinal fruits such as Jujube. Artificial neural networks 

(ANNs) have been successfully used to solve a wide variety 

of problems in science and engineering, particularly for 

some areas where the conventional modeling methods fail. 

A well-trained ANN can be used as a predictive model for a 

specific application, which is a data-processing system 

inspired by biological neural systems. The predictive ability 

of ANN models results from the training on experimental 

data and then validation using independent data. ANN has 

the ability to re-learn to improve its performance if new 

data are available (Hertz et al., 1991). ANN models can 

accommodate multiple input variables to predict multiple 

output variables. The prediction by a well-trained ANN is 

normally much faster and less complex compared to most 

of the conventional simulation methodologies or 

mathematical models. However, the selection of an 

appropriate neural network topology is important in terms 

of model accuracy and model simplicity. Prediction of heat 

and mass transfer in the drying process of mango and 

cassava has been achieved using neural networks 

(Hernandez-Perez et al., 2004). Erenturka et al. (2004) 

reported on the comparison of neural networks and 

regression analysis for the estimation of drying behavior of 

Echinacea anguishfolia. Neural networks as an 

approximation approach has also been used for the 

prediction of microwave-assisted drying process (Pedren et 

al., 2005), prediction of drying kinetics (Tomczak and 

Kaminski, 2001), solar drying performance (Tripathy and  

 

 

 

Kumar, 2009), Lasagnas angustifolia for commodities such 

as (Abbaszadeh et al., 2011), tomato drying 

(Movagharnejad and Nikzad, 2007) pomegranate arils 

(Motevali et al., 2010). The main objectives of this study 

were to investigate the drying behavior and to compare 

artificial neural network and mathematical models for the 

prediction of thin-layer drying of Jujube fruit in a hot air 

drier at various levels of air velocity and temperature. 

 

Results and Discussion 

 

Experimental results 

 
Fig 3 shows how moisture ratio of jujube fruit decreased 

with increasing drying time under various drying 

conditions. It is clearly seen that jujube fruit most of its 

moisture within the first few minutes of drying while a long 

time is required to remove the remaining moisture. It is 

noteworthy that high air temperature and velocity led to 

higher moisture ratio at a reasonably shorter time. In drying 

of jujube by heated air, the time needed for conductive 

heating of the whole fruit to the evaporation temperature is 

long. This may be due to the low thermal conductivity of 

the fruit. In addition, the drying begins from the external 

fruit surface leading to hardening and lower permeability of 

the surface. The hardened layer then prevents moisture 

diffusion and prolongs moisture removal from the material. 

With increasing temperature, drying time decreases as a 

result of increase in thermal gradient inside the substance 

which consequently increases the drying rate. Also, by 

increasing the air velocity from 0.5 to 1.5 m/s, the drying 

time decreases significantly. This is because with increasing 

air velocity, the environment’s vapor pressure decreases 

and therefore the product moisture would encounter less 

resistance on its way out and exits at a higher velocity (Fig-  

Table 1. Thin-layer drying models tested for moisture ratio values of jujube. 

Model Equation Reference 

Midilli et al. MR = exp (-ktn) + bt    Menges and Ertekin, (2005) 

Newton MR = exp (-kt)  O’Callaghan et al. (1971) 

Page MR = exp (-kt n)  Page, (1949) 

Henderson and Pabis MR =a exp (-kt) Henderson and Pabis, (1969) 

Logarithmic MR =a exp (-kt)+c Motevali et al., (2010) 

Tow term  MR= a exp (-k0t) + b exp (-k1t)  Henderson, (1974) 

Approximation of diffusion MR= a exp (-kt) + (1-a) exp (-kbt) Yaldiz et al., (2001);  
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Table 2. Statistical results obtained from various thin layer drying models correlation coefficients for v =0.5 m/s, at three temperatures 

Temperature (°C) 50 60 70 

 R2 RMSE χ
2 R2 RMSE χ

2 R2 RMSE χ
2 

Midilli et al. 0.9994 0.01317 0.000174 0.9995 0.008187 6.7E-05 0.9989 0.01025 0.000105 

Newton 0.9991 0.01082 0.000117 0.9977 0.01525 0.000232 0.9952 0.02244 0.000503 

Page 0.9986 0.01325 0.000176 0.9928 0.0284 0.000807 0.9952 0.02244 0.000503 

Henderson and Pabis 0.9953 0.02302 0.000533 0.9951 0.02319 0.000538 0.9991 0.009493 9.01E-05 

Logarithmic 0.9894 0.02747 0.000755 0.9944 0.02456 0.000604 0.9986 0.0114 0.00013 

Tow term  0.9912 0.02548 0.000649 0.9942 0.0249 0.00062 0.9944 0.02421 0.000586 

Approximation of 

diffusion 0.9958 0.01802 0.000325 0.9968 0.01816 0.00033 0.9961 0.01998 0.000399 

 

 

 
 

Fig 2. Configuration of multilayer neural network for predicting moisture ratio (MR) and drying rate (DR) of Jujube fruit. 

 

3). These results resemble those reported by (Kostaropoulos 

and Saravacos, 2006; Tahmasebi et al., 2011; Zomorodian 

and Moradi, 2010; Motevali et al., 2010; Mousavi and 

Javan, 2009; Rafiee et al., 2009 a, b). 

 

Model application  
 

The results of fitting experimental data to the seven 

empirical models are given in Tables 2, 3 and 4. The best 

results R2 of 0.9996, χ2 of 2.61E-05 and RMSE of 0.005112 

were obtained with the Midilli et al. model at 60 °C and 1 

m/s. Validation of the selected model was established by 

comparing the experimental data, for the drying curve (at 

60 °C and 1 m/s), with the values predicted by the Midilli et 

al. model and the results are plotted in Fig 4. The data 

points are banded around a 45° straight line, demonstrating 

the suitability of the model in describing the thin-layer 

drying behavior of the jujube fruit. 

 

Artificial neural networks  
 
Results of artificial neural network (ANN) modeling 

showed that the back propagation training algorithm was 

well suited for prediction of moisture ratio based on air 

velocities (0.5, 1 and 1.5 m/s) temperatures (50, 60 and 70 

°C) and drying times. After evaluation of different trials, 

the optimal model was a four-layered back- propagation 

ANN, with 15 and 25 neurons in the first and the second 

hidden layers, respectively. Plot of values predicted by the 

ANN approach versus experimental data for the drying rate  

 

and moisture ratio are given in Fig 5 which indicates 

excellent agreement between the predicted and measured 

values. Accuracy of various proposed prediction models is 

tested through the comparison of predicted and 

experimental MR and DR values with the test pattern 

during the drying process. Fig 6 shows the results of 

analysis for moisture ratio and drying rate. It can be seen 

that the prediction model simulates the experiments 

satisfactorily for both moisture ratio and drying rate. Thus, 

neural network model can be used to determine moisture 

ratio and drying rate of Jujube fruit under dynamic drying 

conditions. Process control and its simulation in the field of 

drying technology has always been a challenging task for 

engineers due to the time-varying properties and non-

linearity of the drying phenomena. The ANN approach is an 

attractive alternative to classical methods, providing a 

higher estimation power and making it possible to work in a 

wider range. The ANN model was able to predict moisture 

ratio quite well with R2 values of 0.9997, 0.9993 and 

0.9996 for training, validation and testing, respectively. 

Prediction mean square errors were obtained as 0.001, 

0.0011 and 0.0013 for training, validation and testing, 

respectively. Summary of the evaluation of various ANN 

networks for yielding the best determination coefficient 

(R2) and mean square error is given in Table 5. Also, the 

criteria for network performance evaluation are cited in 

Table 6. It can be seen that the determination coefficient is 

quite high for both drying rate and moisture ratio implying 

the desirability of ANN for prediction of drying kinetics of 

jujube fruit. The statistical results showed that R2,  MSE  of  
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Table 3. Statistical results obtained from various thin layer drying models correlation coefficients for v =1 m/s, at three 

temperatures. 

 

 

 
 

Fig 3. Dimensionless moisture ratio as a function of drying time for hot-air drying of Jujube fruit, (a) T=50 ºC, (b) T=60 ºC and (c) 

T=70 ºC. 

 

the selected ANNs are highly applicable to predict for 

prediction of the drying kinetics. These values show a good 

trend during drying of Jujube because convection drying 

was able to maintain stable temperature and humidity at a 

constant rate over a period of time. This could be related to 

the increase in the resistance for heat and mass transfer in 

samples during drying. Similar results have been reported 

for other agricultural products (Motevali et al., 2010; 

Erenturka et al., 2004; Movagharnejad and Nikzad, 2007; 

Liu et al., 2007; Tripathy and Kumar, 2009). These results 

have shown that the indicators for goodness of fit of the 

proposed neural network model are better than the values 

obtained by the mathematical model (Compassion of Figs 4 

and 5; Tables 3 and 5). Therefore, the proposed neural 

network model was selected to predict the thin-layer drying 

behavior of Jujube fruit. 

 

 

Materials and methods 

 

Drying conditions and experimental set up 
 

A laboratory scale hot-air dryer developed at Agriculture 

Faculty, Tarbiat Modares University (Iran), was used for 

this study (Fig 1). The dryer consists of an adjustable 

centrifugal blower, electrical heating elements (1.5 kW), 

drying chamber, system controller, an inverter (Parto Sanat, 

Igbt and Co, Iran) and a sample tray. The dryer has an 

automatic temperature controller with an accuracy of ±0.1 

°C (Pooyesh digital instruments, TMC 101, Iran). Using a 

vane probe anemometer, (Lutron AM-4204, Taiwan) air 

velocity was adjusted to the desired level with an accuracy 

of ±0.1m/s. Utilizing an inverter that directly acted on the 

blower motor (1.5 kW).  

 

Temperature (°C) 50 60 70 

 R2 RMSE χ
2 R2 RMSE χ

2 R2 RMSE χ
2 

Midilli et al. 0.9988 0.01138 0.000129 0.9996 0.00605 3.66E-05 0.9993 0.01039 0.000108 

Newton 0.9976 0.0159 0.000254 0.9911 0.00573 3.29E-05 0.9967 0.01457 0.000212 

Page 0.9971 0.0176 0.000311 0.9993 0.00867 7.52E-05 0.9962 0.01664 0.000277 

Henderson and Pabis 0.9995 0.0068 5.03E-05 0.9932 0.00719 5.18E-05 0.9935 0.02089 0.000436 

Logarithmic 0.9981 0.0056 3.2E-05 0.9941 0.00834 6.97E-05 0.9989 0.00950 9.03E-05 

Tow term  0.9988 0.0113 0.000129 0.9912 0.00862 7.44E-05 0.9892 0.00670 4.49E-05 

Approximation of diffusion 0.9988 0.0113 0.000129 0.9984 0.01333 0.000178 0.9903 0.00731 5.36E-05 
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Table 4. Statistical results obtained from various thin layer drying models correlation coefficients for v =1.5 m/s, at three 

temperatures. 
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Fig 4. Comparison of experimental moisture ratio with predicted moisture ratio from the Midilli model. 
 

 

Hot air moves vertically over and through the horizontal 

sample tray. Dried samples were manually weighed using 

an electronic balance with an accuracy of ±0.01 g, (AND 

GF-600, Japan). Weighing of the samples was continued 

until no change was observed between two consecutive 

measurements. Before starting each experiment, the dryer 

was turned on for 30 minutes in order to achieve the 

desirable steady-state conditions. Fresh samples were 

gathered from Farouj city, north Khorasan (north east of 

Iran) and were kept at +5 ºC in a refrigerator. The initial 

moisture content of Jujube was determined by oven drying 

method. Thirty-gram samples were dried in an oven at 

105 ± 1 ºC (Doymaz, 2005). Moisture content of fresh 

Jujube was determined to be 62.5 % d.b based on mean of 5 

repetitions. Experiments were conducted at three levels of 

temperature (50, 60 and 70 ºC) and three levels of hot air 

velocity (0.5, 1 and 1.5 m/s). Relative humidities and 

temperatures of the environment during the experiments 

were 30–37 % and 23 - 28 ºC, respectively.  

 

Mathematical modeling of the drying curves 
 

Experimental drying data were fitted to seven moisture ratio 

models including: Midilli et al., Newton, Page, Henderson 

and Pabis, logarithmic, tow-term and approximation of 

diffusion model (Table1). These models are generally 

derived by simplifying the general series solutions of Fick’s 

second law and considering a direct relationship between 

the average water content and drying time (Doymaz, 2004). 

Moisture ratio of the jujube fruits during the drying 

experiments was calculated using Eq. (1): 

eo
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−

−
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Values of moisture content measured during the 

experiments were fitted to the given models using MATLAB 

R2008a. Three criteria used to determine the best fit 

included the correlation coefficient (R2), root mean square 

error (RMSE) and chi square (
2χ ). Values of R2, RMSE 

and 
2χ were calculated using the following equations:  
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 The best fit that could describe the thin-layer drying 

characteristics of jujube fruit was selected based on the  

 

Temperature (°C) 50 60 70 

 R2 RMSE χ
2 R2 RMSE χ

2 R2 RMSE χ
2 

Midilli et al. 0.9995 0.005112 2.61E-05 0.9953 0.004821 2.32E-05 0.9991 0.008776 0.000077 

Newton 0.9901 0.004012 1.61E-05 0.9990 0.008384 7.03E-05 0.9962 0.005096 2.6E-05 

Page 0.9922 0.02232 0.000498 0.9991 0.008058 6.49E-05 0.9991 0.009576 9.17E-05 

Henderson and Pabis 0.9967 0.01394 0.000194 0.9917 0.004423 1.95E-05 0.9986 0.011591 0.000134 

Logarithmic 0.9988 0.009041 8.17E-05 0.9988 0.009777 9.56E-05 0.9964 0.004664 2.18E-05 

Tow term  0.9994 0.006298 0.000397 0.9971 0.014594 0.000213 0.9992 0.008975 8.05E-05 

Approximation of diffusion 0.9991 0.007553 5.7E-05 0.9983 0.011613 0.000135 0.9985 0.01281 0.000164 
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   Table 5. Summary of the various networks evaluated to yield the best determination coefficient (R2) and mean square error. 

Epoch MSE (test) 
MSE 

(validation) 

MSE 

(training) 
R2 (test) 

R2 

(validation) 

R2 

(training) 

Training 

error 

Neurons 

in hidden 

layer2 

Neurons 

in hidden 

layer1 

Activation 

function 

28 0.0006 0.0024 0.0016 0.9238 0.9001 0.9308 0.00157 0 5 Log/Tan 

37 0.0008 0.0007 0.0011 0.9532 0.9541 0.8738 0.00746 0 10 Log/Tan 

63 0.0003 0.0002 0.0005 0.9981 0.9950 0.9436 0.00484 0 20 Log/Tan 

29 0.0082 0.0045 0.0057 0.9696 0.9924 0.8951 0.00553 0 30 Log/Tan 

13 0.0173 0.0002 0.0021 0.2154 0.9947 0.8994 0.00209 0 50 Log/Tan 

38 0.0002 0.0002 0.0006 0.9900 0.9934 0.8927 0.00600 5 5 Log/Tan/ Tan 

33 0.0006 0.0004 0.0018 0.9984 0.9982 0.9986 0.00145 10 5 Log/Tan/ Tan 

45 0.0006 0.0018 0.0008 0.9931 0.9974 0.9965 0.00434 20 10 Log/Tan/ Tan 

36 0.0012 0.0004 0.0013 0.9934 0.9974 0.9981 0.00085 30 10 Log/Tan/ Tan 

48 0.0013 0.0003 0.0005 0.9986 0.9985 0.9989 0.00087 20 20 Log/Tan/ Tan 

28 0.0013 0.0011 0.0010 0.9996 0.9993 0.9997 0.00037 25 15 Log/Tan/ Tan 

28 0.0004 0.0012 0.0017 0.9987 0.9987 0.9986 0.00223 30 25 Log/Tan/ Tan 

43 0.0029 0.0026 0.0010 0.9995 0.9997 0.9987 0.00171 30 30 Log/Tan/ Tan 

38 0.0030 0.0054 0.0027 0.9967 0.9988 0.9994 0.00182 25 40 Log/Tan/ Tan 

51 0.0022 0.0010 0.0041 0.9991 0.9996 0.999 0.00082 10 20 Log/Tan/ Tan 

62 0.0072 0.0056 0.0070 0.9991 0.9997 0.9996 0.00223 25 35 Log/Tan/ Tan 

 
 

 

Table 6. Summary of ANN networks evaluated to yield the criteria of network performance. 

 Epoch 
R2 

(test) 

R2 

(validation) 

R2 

(training) 

Training 

error 

Neurons 

in hidden 

layer2 

Neurons 

in hidden 

layer1 

Training 

rules 

Activation 

function 

63 0.9981 0.9950 0.9436 0.00094 0 20 Trainlm Log/Tan 

44 0.8984 0.9382 0.8186 0.00234 0 20 Traingdx Log/Tan 

30 0.9331 0.9074 0.8065 0.00252 0 20 Trainscg Log/Tan 

26 0.8234 0.8374 0.7581 0.00967 0 20 Trainrp Log/Tan 

28 0.9996 0.9993 0.9997 0.00037 25 15 Trainlm Log/Tan/ Tan 

41 0.8586 0.8185 0.8389 0.00341 25 15 Traingdx Log/Tan/ Tan 

51 0.9376 0.9099 0.8687 0.00261 25 15 Trainscg Log/Tan/ Tan 

33 0.8187 0.7587 0.7086 0.00284 25 15 Trainrp Log/Tan/ Tan 

 

 

 

 

 

 

 

 



216 

 

 

 
 

Fig 5. Correlation between the experimental data and the 

predicted values of the ANN model for prediction of A) 

drying rate (g/min) B) moisture ratio (%) . 

 

 

highest value of the correlation coefficient (R2), and the 

lowest values of RMSE and 
2χ .  

To account for the effect of the drying variables on the two-

term model constants, the constants were regressed against 

drying air temperature and velocity, using multiple 

regression analysis. All possible combinations of the 

different drying variables were tested and was included in 

the regression analysis. 

 

Neural network design 
 

To obtain the best prediction by the network, several 

architectures were evaluated and trained using the 

experimental data. The back-propagation algorithm was 

utilized in training of all the ANN models. This algorithm 

uses the supervised training technique where the network 

weights and biases are initialized randomly at the beginning 

of the training phase. The error minimization process is 

achieved using a gradient descent rule. There were three 

inputs and two output parameters in this study. The three 

input variables included time (min), velocity (m/s), and 

temperature (°C). The two outputs for evaluating dryer 

performance were moisture ratio (MR) and drying rate  

 

 
 

 
 

Fig 6. Comparison of experimental data and the ANN 

predictions for A) moisture ratio and B) drying rate. 

 

 

 

(DR). Thus, the input layer consisted of 3 neurons and the 

output layer had 2 neurons. Schematic structure of the static 

ANNs utilized for predicting MR and DR values is shown 

in Fig 2. Several transfer functions including sigmoid, 

logarithmic and linear functions together with supervised 

training algorithms, and feed-forward back-propagation 

approach were evaluated. To ensure that each input variable 

provided an equal contribution to the ANN, the inputs of 

the model were preprocessed and scaled into a common 

numeric range [-1, 1]. The inputs of the model were 

preprocessed and normalized, after which, 60 and 25 % of 

input patterns were devoted to training and validation data 

sets, respectively. The remaining (15 %) of the data were 

utilized for verification. The learning rate of 0.2 and 

momentum of 0.1 were adjusted to all the tested networks. 

Optimum topologies were defined based on the highest R2 

and the lowest MSE values (Motevali et al., 2010).  

The number of hidden layers and neurons within each 

layer can be designed based on the complexity of the 

problem and data set. In this study, the number of hidden 

layers varied from one to two. The activation function for 

the hidden layers was selected to be logarithmic (Log) 

while tangent (Tan) functions suited best for the output 

B 

A 

B 

A 



217 

 

layer. This arrangement of functions in function 

approximation problems or modeling is common and yields 

better results (Motevali et al., 2010). However, many other 

networks with several functions and topologies were 

examined. Three criteria were employed to evaluate the 

networks and select the optimum one. The training and 

testing performance value (MSE) was chosen to be 0.00001 

for all the ANNs. The complexity and size of the network 

was also important, so the smaller ANNs had the priority to 

be selected.  

Finally, a regression analysis between the network response 

and the corresponding targets was performed to investigate 

the network response in more detail. Different training 

algorithms were also tested and finally Levenberg-

Marquardt (LM) was selected. The neural network toolbox 

of MATLAB R2008a software was used for ANN design. 

 

Conclusions 

 

The following conclusions are drawn based on modeling of 

data obtained in convective drying of Jujube fruit: 

1- Among the 7 mathematical models investigated, Midilli 

et al. model provided the best fit for the data, given the best 

goodness of fit indices (R
2
, X

2
, RMSE).  

2- The ANN results were quite satisfactory, yielding R2 

values close to one, while mean square errors (MSE) were 

found to be very low.  

3- The final selected model, 3-15-25-2 (3 neurons in input 

layer, 15 neurons in the hidden layer 1, 25 neurons in the 

hidden layer 2 and 2 neurons in the output layer), 

demonstrated learned the relationship between the input and 

output parameters. 

4- Generally speaking, ANN proved to be a reliable 

alternative for jujube fruit thin-layer drying prediction 

owing to its generality and simplicity. 
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