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Abstract 

  

Climate is an important factor in sugarcane production, and its study is fundamental for understanding the climatic requirements of the 

crop. We developed regional agro-meteorological models to forecast monthly yields in tonnes of sugarcane per hectare (TCH) and 

quality of the total recoverable sugar (ATR). We used monthly climatological data (air temperature, precipitation, water deficiency and 

surplus, potential and actual evapotranspiration, soil-water storage, and global solar irradiation) of the previous year to forecast TCH and 

ATR for the next year using multiple linear regression. The parameters of monthly climatological data were chosen for their small mean 

absolute percentage errors (MAPEs) and p < 0.05 and ability to model longer periods of prediction. Data for Jaboticabal, a major area of 

sugarcane production in the state of São Paulo, Brazil, from 2002-2009 were used for calibration, and data from 2010-2013 were used for 

validation. All calibrated models were significant (p < 0.05) and accurate, with a MAPE of 4.06% for the forecast of TCH in the ambient 

“C” for July. The model calibrated for November had variable water deficits in all environments, showing the importance of this variable 

to the crops. The monthly models tested performed well. For example, the forecast by TCHMAY in the AB environment (MAPE = 1.89% 

and adjusted coefficient of determination = 0.90) overestimated the average yield of 90.6 t ha-1 by only 1.7 t ha-1. The predictive period 

for forecasting TCHMAY was eight months when the last climatological parameter used in the model was DEFSEP.  

 

Keywords: Estimate yield; Water balance; Climate. 

Abbreviations: TCH_tonnes of sugarcane per hectare; ATR_total recoverable sugar; DEF_water deficiency; PET_potential 

evapotranspiration; WS_water storage in the soil; CWB_climatological water balance; T_air temperature; Qg_global irradiation; 

P_rainfall; EXC_water surplus; PE_production environments: AB, C, DE high, medium and low PE . 

 

Introduction  

 

The sugarcane agribusiness is a competitive activity that uses 

high technology. The success of the business depends on sales 

management associated with forecasting yields. Early 

information is thus necessary for planning activities, budgeting 

for the period, and forecasting the amount of raw material 

available. Crop models can forecast yield and quality. Estimates 

and forecasts made by models, however, should be clearly 

distinguished. Estimates use historical data and evaluate current 

conditions (Carriero et al., 2009), and forecasts attempt to predict 

the future, with current data simulating future conditions 

(Clements et al., 2012). This information linked to the complexity 

of the sugarcane crop is important due to the number of products 

that influence prices, so companies need agility and accurate 

information for following the market and deciding when and how 

much of a harvest can be marketed (Leite et al., 2008). Sugarcane 

is a semi-perennial plant of great importance to Brazil. The crop 

cycle is approximately five years (Milk et al., 2008). The 

diversity of local climates and soils and the selection of varieties 

best adapted to the environment are crucial aspects for obtaining 

the best economic return in the production cycle (UNICA, 2012). 

The estimation of yield and of the technological index that 

expresses the amount of total recoverable sugar (ATR) also plays 

an essential role in planning budget inputs, harvesting, loading, 

transport of raw materials, processing, storage, and marketing of 

products (Scarpari and Beauclair, 2009). Accurate climatic 

forecasting provides important information, especially for 

making decisions and for the use of soil and/or water on farms 

(Cabrera et al., 2006). Sugarcane yields are commonly forecasted 

one month before harvest based on experience. These forecasts 

are made without the use of statistical parameters (Schmidt et al., 

2001). Some forecasters use agro-meteorological models to 

estimate regional yields and sugar levels. Crop modelling should 

address the most important aspects of the interaction between and 

management of climate, plants, and soil, but climate is the main 

factor determining agricultural yield (Hoogenboom, 2000; 

Aparecido et al. 2015). The development of computer models and 

their implementation in agro-climatic information systems are 

important for planning and for increasing agricultural yields 

(Marin et al., 2011). Models for estimating crop yield based on 

agro-meteorological principles simulate the stages of 

development and maturation of crops, the availability of soil 

moisture, and the effects of water stress on crop yield 

(Heinemann et al., 2002). The models can be 

dynamic/mechanistic or statistical. Dynamic/mechanistic models 

describe daily changes in crop variables and include main 

morphological and physiological processes. The physiological 

understanding of the processes of growth and plant development 

have sought to improve these models and thus the estimates of 

the models (Gouveia et al., 2009). The effect of water stress on 

different stages of development is an important aspect of these 

models (Doorenbos and Kassam, 1979). Various mechanistic 

models have been developed for simulating sugarcane growth, 

such as Auscane (Jones et al., 1989), DSSAT/Canegro (Inman-

BambeR, 1991), QCane (Liu and Kingston, 1995), APSIM 

(Keating et al., 1999), and Mosicas (Martine, 2003). These 

models require parameter calibration to adjust to the 

characteristics of the soil, climate, and crop genotype. Statistical 

models seek a quantitative relationship between yield/quality and 

various climatic factors, soils, and associated management 

(Oliveira et al., 2013). Numerical forecasting techniques based on  
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Table 1. Monthly agrometeorological models to forecast total recoverable sugar (ATR). Legend: The independent variables are, T = air 

temperature (°C), EXC and DEF = surplus and deficit water (mm), WS = water storage (mm), P = rainfall (mm), PET = potential 

evapotranspiration (mm), Qg = global radiation (w m-2) of the previous year. The subtitles indicate the months. 
 

ATR Models 

    Calibration   Test 

 

p-Value MAPE R2
 Adj  MAPE R2

 Adj 

May 

 

           

 ATR = 0,0566 . STOMAY+ 0,0744 . PETSEP -0,0345 . PETDEC + 0,0403 . POCT + 120,0658 

 

0.033 0.228 0.951  1.606 0.667 

June 

    

 

  ATR = -0,0632 . EXCJAN + 0,1762 . WSMAY + 0,0995 . PETMAY + 4,0855 . TMAY + 45,5615 

 

0.028 0.244 0.957  1.176 0.879 

July 

    

 

  ATR = -0,1373 . DEFSEP+0,0888 . DEFOCT + 0,2106+ PETAPR + 0,9202 . QgAUG + 110,43 

 

0.003 0.124 0.996  0.473 0.976 

August 

    

 

  ATR = -0,2455 . DEFJUN + 0,4211 .PETJAN - 0,7641 . QgSEP + 4,4104 . TMAY + 27,7477 

 

0.017 0.410 0.970  0.660 0.950 

September 

    

 

  ATR = 0,0593 . DEFOCT + 0,1871 . PMAY+ 0,1220 . PNOV + 5,0200 . QgJUN + 49,1647 

 

0.026 0.520 0.960  0.930 0.971 

October 

    

 

  ATR  = -1,2075 . DEFFEB + 0,2509 . STOAUG - 0,4817 . PETAUG  + 3,5906 . QgOCT +  92,4914 

 

0.005 0.199 0.992  1.032 0.871 

November 

    

 

  ATR = 0,0268 . EXCJAN - 0,2898 . WSMAY - 0,0240 . PFEB + 1,5479 . TMAC + 106,5084   0.031 0.419 0.953  0.435 0.964 

MAPE = mean absolute percentage error. 

 

 
Fig 1. Characterization climate monthly to the location of Jaboticabal – SP (2001 to 2013), A) the average monthly air temperature 

(minimum, average and maximum) (°C) and the global radiation (W m-2), average monthly rainfall, C)  water storage in the soil (mm) 

and components of the climatic water balance (surplus and water deficit, mm). The vertical bar means the standard deviation monthly 

values. 

 

agro-meteorology are normally statistical relationships between 

the dependent variables that need to be estimated (yield) and the 

independent agro-meteorological variables (weather) (Heinemann 

et al., 2002; Araújo et al., 2014). Published statistical models 

such as that by Moreto and Rolim (2015) have used statistical 

methods of regression for monthly water deficits (WDs) to 

predict the yield of "Valencia" oranges in São Paulo. Carvalho et 

al. (2004) also used regression models to predict the yield of 

coffee in the state of Minas Gerais. The model simulations 

depended on the homogeneity of climatic conditions, agricultural 

practices, and soil characteristics (Scarpari and Beauclair, 2009). 

Alternative approaches also use neural networks and expert 

systems, both components of artificial intelligence (Carvalho et 

al., 1998). Few models for forecasting yield have been based on 

probabilities using various statistical models. Mkhabela et al. 

(2004) forecasted maize yields in South Africa two months 

before the harvest. Savin et al. (2007) used neural networks to 

predict wheat yield in Russia during flowering with 74% 

accuracy. Gauranga and Ashwani (2014) forecasted rice yield in 

India 30 days before the harvest. The use of the scientific method 

in the development of agrometeorological models and in 

decision-making, replacing intuition and/or practical experience, 

provides a powerful tool for the possible realisation of 

advantageous scenarios, operations, competitive differentials, and 

improvements in agricultural planning (Gouveia et al., 2009). 

Our aim was thus to develop regional agro-meteorological 

models for forecasting sugarcane yield, in tonnes of sugarcane 

per hectare (TCH), and quality of ATR on a monthly scale. 

 

 

Results and Discussion  

 

Meteorological and water analyses 

 

The average air temperature (T) at Jaboticabal ranged from 21 to 

26 °C, with a maximum of 33 °C in summer and a minimum of 

13 °C in winter. The global irradiation (Qg) ranged from 14 to 21 

W m-2. The average rainfall (P) was 180 mm from October to 

March and 40 mm from April to September. Less water was 

stored in the soil in winter, but storage was lowest in September, 

with a water capacity (WC) of 18 mm. Analysing the components 

of the climatological water balance (CWB), we observed a water  
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Table 2. Monthly agrometeorological models to forecast tons of sugarcane per hectare (TCH). Legend: The independent variables are, T 

= air temperature (°C), EXC and DEF = surplus and deficit water (mm), WS = water storage (mm), P = rainfall (mm), PET = potential 

evapotranspiration (mm), Qg = global radiation (w m-2) of the previous year. The subtitles indicate the months. 

      Calibration   Test 
Yield 

Environm

ent 

TCH Models P 

Value MAPE R2
 Adj 

 

MAPE 

R2
 

Adj 

  May       

 

    

AB TCH = -0,8047 . DEFJAN - 0,0370 . DEFAUG + 0,7723 . DEFDEC + 0,2196 . WSJUL  + 87,7535 0.049 1.340 0.926 

 

1.893 0.909 

C TCH = 0,5854 . PETFEB + 0,1565 .P ETMAC + 0,2419 . PAUG - 2,9197 . QgJUN  + 42,3904 0.002 0.331 0.997 

 

5.739 0.973 

DE TCH = -0,2608 . DEFSEP - 2,1021 . QgMAY - 3,3693 . QgOCT + 3,6777 . TJAN + 118,2424 0.004 0.420 0.993 

 

3.052 0.828 

 

June 

      AB TCH = 0,0306 . EXCJAN + 0,1846 . PETAUG + 0,1187 . PAPR + 6,3202 . QgJUL  - 19,0031 0.090 1.118 0.862 

 

2.124 0.867 

C TCH =  0,1520 . WSAPR  + 1,1584 . PETJAN + 0,9407 . PETJUL + 2,5358 . TJUL  -121,0817 0.053 1.624 0.918 

 

5.114 0.869 

DE TCH = 0,7212 . DEFMAY + 0,6325 . WSJUL+ 0,5104 . PETMAC - 1,7991 . QgOCT + 41,5761 0.002 0.342 0.997 

 

3.555 0.821 

 

July 

      AB TCH = 0,2687 . WSJUN +  0,2690 . PETJAN + 0,0767 . PMAC  - 2,1432 . QgJUN + 73,0103 0.084 1.284 0.872 

 

3.295 0.840 

C TCH = 1,2609. DEFMAY + 0,3897 . EXCFEB+ 1,9317 . WSJUN  - 11,3161 . QgAUG + 150,0125 0.033 4.064 0.949 

 

5.659 0.974 

DE TCH = -0,0928 . DEFOCT + 0,5611 .P ETMAY + -0,0529 . PFEB. -1,3961 . QgOCT + 103,7103 0.000 0.146 1.000 

 

2.015 0.982 

 

August 

      AB TCH= 0,3013 . PETAUG + 0,1838 . PAPR + 0,0865 . POCT + 3,0902 . QgFEB - 5,8093 0.001 0.186 0.999 

 

4.222 0.955 

C TCH = 0,1598 . DEFJAN + 0,7641 . WSMAY -0,4127. PETAPR + 0,712 . QgAPR + 67,7622 0.082 1.736 0.875 

 

4.621 0.969 

DE TCH = 0,9012 . WSMAY -0,6597. PETJUN -3,3852 . QgMAC + 4,8836 . TFEB + 7,5267 0.002 0.412 0.996 

 

7.523 0.863 

 

September 

      AB TCH = -0,1386 . EXCJAN - 2,1599 . WSDEC + 0,3089 . PJUN + 5,7292 . TOCT + 118,3829 0.051 0.849 0.922 

 

5.583 0.675 

C TCH = -2,5432 . WSJAN + 1,1436. WSMAY + 12,1593 . QgAPR  - 4,1671 . TMAC  + 122,3014 0.051 1.586 0.923 

 

6.850 0.991 

DE TCH = 0,3245 . DEFAPR -0,3145 .PETJUN - 7,7541 . QgAUG +  1,9522 . TSEP + 170,9180 0.001 0.455 0.999 

 

3.829 0.891 

 

October 

      AB TCH = 0,0488 . EXCOCT + 0,3837 . WSMAY + 0,4429 . PETAUG + -0,2173 . PJUL + 59,6127 0.096 1.565 0.852 

 

3.286 0.962 

C TCH = 0,0609 . DEFMAY - 0,0514 . EXCJAN - 0,0847 . EXCFEB + 0,2401 . PETMAY+ 84,9556 0.009 0.433 0.986 

 

3.204 0.707 

DE TCH = -0,0860 . EXCFEB + 1,7785 . WSJAN - 0,2086 . WSSEP + 0,6877 . PETOCT - 97,4830 0.005 0.679 0.993 

 

5.836 0.650 

 

November 

      AB TCH= -0,6352 . DEFNOV + 0,3010 . PMAY + 6,3428 . QgJAN - 6,4148 . QgAUG + 68,0824 0.008 0.570 0.987 

 

2.177 0.945 

C TCH = -0,7840 . DEFJUN - 0,5282 . EXCOCT + 6,5426 . QgSEP - 4,0980. TMAC + 91,0047 0.009 0.203 1.000 

 

5.117 0.628 

DE TCH = -1,9463 . DEFJAN + 0,8956 . DEFSEP + 1,0285 . WSAUG - 10,1168 . TJAN + 239,5707 0.016 2.372 0.975   5.634 0.953 

MAPE = mean absolute percentage error. 

 
 

Fig 2. Monthly average of tons of sugarcane per hectare (TCH) (A) and total recoverable sugar (ATR) (B) in the sugarcane crop in 

the period of May to November. The vertical bars means the standard deviation observed values. 

 

surplus (EXC) from November to April, reaching 200 mm in 

January. WDs occurred from May to October but were severest 

in August, reaching 75 mm (Figure 1).   

 

Characterisation of yield and quality 

 

Monthly TCH and ATR varied with production environment 

(PE). Environment AB had favourable characteristics of water 

storage and nutrition, which contributed to a greater longevity of 

the crop and a high mean yield. The crops did not last as long in 

environments C and DE, so the sugarcane fields needed to be 

renewed earlier than for AB. WDs decreased TCH. ATR 

increased after May and peaked in September (Figure 2). 

 

Forecasting yield and quality 

 

The agro-meteorological models developed to forecast sugarcane 

yield and quality using the APC (all possible combinations) 

method with up to four variables had a total of 1 584 740 possible 

combinations of independent variables (Figure 3) for each month, 

each dependent variable (TCH and ATR), and each environment 

(AB, C and DE). The removal of models with multicollinearity 

(849 317) left 735 423 viable models from which the best 

forecasting models for Jaboticabal were selected. We tested a 

total of 6 338 960 equations for each month. The APC method was 

effective; as accuracy increased (the adjusted coefficient of 

determination (R2adj ≈ 1.00), and the mean absolute percentage 

error (MAPE) approached zero (Figure 4). The best models for 

forecasting ATR indicated that TJUN and TNOV were the most 

important variables in most environments, with positive 

coefficients indicating positive relationships (Figure 5). TAUG, 

TNOV, and TAUG, likely affecting the end of tillering, were the 

most important variables for the models for predicting TCH in 

environments AB, C, and DE, respectively, with direct 

relationships to yield. All calibrated models were significant and 

accurate (p < 0.05, MAPE = 7.52%). ATRJUL and ATRNOV were 

the most accurate models with the lowest p-values and MAPEs 

(Table 1). Tests for the models of ATR forecasting for each 

month were accurate, with minimum and maximum MAPEs of 

0.435   and   1.60%   for   the   November  and   May   forecasts,  
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Fig 3. Example of total number of generated models, models with multicollinearity and viable models for one environment (i.e. ‘A’), one 

dependent variable (i.e. ‘TCH’) and one month. Blue = viable models. Gray = models with multicollinearity.  

 

 
Fig 4. Example of a models classification according to criteria the accuracy (lowest  MAPE “mean absolute percentage error”), precision 

(greater R² adj) and reliability (p-value). 

 

 

 
Fig 5. Sensitivity analysis of the average values of angular coefficients of the ten best forecasting models (a) ATR (b) TCH (environment 

AB), (c) TCH (environment C) and (d) TCH (environment DE). 
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Fig 6. Estimated monthly data of TCH in the AB (A), C (B) and D (C) environments and ATR (D) with the confidence interval (95% of 

probability). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7. Independent (Test) Analysis of the precision of monthly forecasts of the models of yield in environments AB (A), C (B) e DE (C) 

and total recoverable sugar (D). 
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Fig 8. Phenology in the year of development (1st year) and production (2nd year) for Sugarcane crop. 

 

respectively (Table 1). The most influential variables were WS 

and potential evapotranspiration (PET), with high angular 

coefficients. Other variables such as P and DEF were important 

in the model calibrated for September. The ATRNOV model could 

forecast 17 months in advance, with May T as the most important 

variable. The ATRMAY model had the shortest forecasting period 

of five months (Table 1). The forecast of yield is an excellent tool 

for planning new planting (Bocca et al., 2015). The models for 

forecasting TCH in the test period were accurate, with a 

minimum MAPE of 1.89% in the AB environment in May. Qg 

and DEF were the most influential variables in the agro-

meteorological models for forecasting TCH (Table 2), with high 

angular coefficients. DEF is a major constraint that reduces the 

yield of crops (Khamssi et al., 2011). DEF occurred in every 

environment for the model calibrated for November, illustrating 

the importance of this variable to the crop. The TCHMAY forecast 

was best in the AB environment, with a MAPE of 1.89% and 

R2adj = 0.90 in the tests. Considering an average yield of 90.6 t 

ha-1 the model have a bias of 1.7 t ha-1. DEFJAN and DEFAUG were 

the most and least influential variables, respectively (Table 2). 

The TCHOCT model in environment C had the longest yield 

forecasting period of 16 months, with PETMAY as the most 

influential variable. The TCHMAY model in environment DE had 

the shortest forecasting period of seven months (Table 2). 

General circulation models used for forecasting weather had 

forecasting periods for wheat yield in Ukraine of 2-3 months 

(Kogan et al., 2013). The results of the forecasts for the TCH 

variables in all environments and ATR during the year are shown 

in Figure 6. For example, TCH in environment AB in May was 

97.2 t ha-1 but ranged from 94.2 to 100.1 t ha-1 (Figure 6A). The 

monthly models we tested performed well. The general analysis 

of the model performances compared to independent data for 

ATR and TCH with each month had highly precise forecasts, 

with a minimum R2adj of 0.86 for TCH in environment DE 

(Figure 7C). Agro-meteorological models have shown great 

advantages, because forecasts using climatic variables reduce the 

risks of agricultural activities and increase the reliability of 

farming projects (Hammer et al., 2000; Araujo et al., 2014). 

 

 Materials and Methods 

 

Climatic and crop characterisation 

 

The study was conducted in Jaboticabal in the northeast of the 

state of São Paulo (Brazil) (21°19′18.15″S, 48°06′27.81″W; 530 

m a.s.l.), an important region of sugarcane production in Brazil. 

The predominant climate of this region is classified in the 

Thornthwaite (1948) system as B1rA’a’, humid with low WDs, 

megathermic, with summer PETs <48% of the annual PET 

(Rolim and Aparecido, 2015). The region has a P of 1300 mm, 

concentrated from November to February. The natural vegetation 

consists of semideciduous tropical forest. The relief is 

predominantly gently rolling, with an average slope of 3.4%. The 

experimental area has been under sugarcane cultivation for over 

50 years, 16 years with mechanical harvesting without burning. 

Daily meteorological data were collected by an automated 

weather station (Model 21X, Campbell Scientific) for 2001-2013 

organised monthly. The station had a data-transmission system 

(Wireless Vantage Pro Plus) and measured Qg with a Model 

6450 sensor, T and relative humidity (RH) with a Model 7859 

external sensor, and P with a Model 7852 Rain Collector rain 

gauge. P data for the experiment were collected from 21 

pluviometric stations distributed in the study area. The data for 

TCH in the region were divided into three PEs corresponding to 

Phase J F M A M J J A S O N D

Tillering
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Maturation
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those suggested by CTC (1995) and used in all areas of sugarcane 

production in Brazil. This classification takes into account the 

production potential due to the integration of three factors: 

climate, soil, and cultivar. The PEs were high, medium, and low 

production, corresponding to the CTC classifications A and B 

(AB), C, and D and E (DE), respectively. The AB, C, and DE 

PEs consisted of 30 000, 21 000, and 13 000 ha, respectively. The 

data for ATR (kg) were analysed without PE categorisation. 

All meteorological data during production were provided by the 

sugarcane companies in the Jaboticabal region.  

The sugarcane crop in the region has four phenological phases: 

budburst, tillering, development, and maturation (Gascho and 

Shih, 1983). The period when T, Qg, and P are low coincides 

with the end of tillering and the start of development with 

vegetative dormancy, so the accumulation of fresh matter is small 

(Figure 8). The crop grows intensely from October to March 

when conditions of T, P, and Qg are favourable and when 75% of 

the fresh matter of the crop accumulates. The sugarcane is 

harvested from October, when weather conditions are good for 

budding and development, so the operation can damage the crop. 

This method decreases the exposure of the crop to optimal 

growing conditions and tends to produce less sugar. PET was 

estimated on a monthly scale from the meteorological data by the 

Thornthwaite method (1948). The PET and P data were used to 

estimate CWB as proposed by Thornthwaite and Mather (1955), 

with an available WC of 79 mm to determine the CWB 

components as actual evapotranspiration, water storage in the soil 

(WS), EXC, and DEF. WC was determined in the laboratory by 

retention curves, with a field moisture capacity of 22%, wilting-

point moisture of 15%, soil bulk density of 1.25 g cm-3, and root 

depth of 0.90 m. 

 
Model analysis 

 

We performed a correlation analysis with independent variables 

to identify the meteorological elements and CWBs in different 

months with higher correlations. The variables with correlation 

coefficients ≥|0.7| were removed to avoid problems of 

multicollinearity. The removal of the collinear variables allowed 

us to understand the weight (slope coefficient) of each monthly 

climatic variable in the models for forecasting TCH and ATR. 

The most relevant variables were selected for the construction of 

the agro-meteorological models for forecasting sugarcane yield 

and quality. We used the multiple linear regression method 

(equation 1): 

𝑌 = 𝑎 × 𝑋1 + 𝑏 × 𝑋2 + 𝑐 × 𝑋3 + ⋯ + 𝐶𝐿  

            (1) 

where Y is the yield (kg ha-1) or ATR (kg) for a specific month; 

a, b, c, .... are the adjusted coefficients (weights); X1, X2, X3, ... 

are the monthly meteorological variables (Qg, T, RH, P, PET, 

WS, EXC, and DEF) and CWBs of the year preceding the harvest 

from January to December; and CL is the linear coefficient. The 

largest problem in multiple linear regression is the selection of 

the independent variables to be combined to generate good 

models. Any iterative numerical method such as the stepwise 

method has problems stabilising errors due to improper initial 

combinations. One option is to test all possible combinations 

when the number of independent variables is relatively small 

(Walpole et al., 2012). We used the APC method despite the 

large number of independent variables (QgJAN…QgDEC, 

TJAN…TDEC, …) by testing models with up to four independent 

variables of development year (1st year) on a monthly scale. We 

developed a Visual Basic for Application algorithm for these 

calculations. The criteria for selecting the variables were the 

significance of the coefficients (t < 0.05) and regressions (F < 

0.05), minimal MAPEs, and maximal R2adj.  

 

Data analysis 

 

The models were selected by evaluating the accuracy by the 

MAPE (Equation 2) and the precision by R2adj (Equation 3) 

(Cornell and Berger, 1987): 

 

   𝑀𝐴𝑃𝐸 =  
∑ (|

𝑌𝑒𝑠𝑡𝑖−𝑌𝑜𝑏𝑠𝑖
𝑌𝑜𝑏𝑠𝑖

|∗100)𝑁
𝑖=1

𝑛
                                                (2) 

   𝑅²𝑎𝑑𝑗 = [1 −
(1−𝑅²)×(𝑛−1)

𝑛−𝑘−1
]                                                    (3) 

where Yesti is an estimated variable, Yobsi is an observed 

variable, Yest-C is a variable estimated by linear regression 

between Yobsi and Yesti, n is the number of years, n is the 

number of datapoints, and k is the number of independent 

variables in the regression. The periods 2002-2009 and 2010-

2013 were used for calibration and testing, respectively.  

We identified the ten most accurate models for forecasting 

ATR and TCH for each of the productive environments and then 

ranked the most influential variables for the sensitivity analysis 

of the angular coefficients. We used the ten best models for each 

month for the sensitivity analysis to identify the most influential 

meteorological elements in each month and the confidence 

intervals for forecasting. 

 

Conclusions 

 

Variable selection and the multiple linear regressions were 

efficient in the construction of models for predicting sugarcane 

yield and quality in different environments of the Jaboticabal 

region of São Paulo. The development of accurate models for 

each month as functions of climatic variables was possible. The 

minimum period for the prediction of yield and quality was five 

months. 
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