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Abstract

Haploid plants are very important in various realms of research disciplines such as plant biotechnology, molecular genetics and
traditional plant breeding. They provide useful information regarding recombination and genetic control of chromosomal pairing.
Haploidy expedites the breeding process thereby increasing the crop yield. Researchers have been working on the haploidy approach
for more than half a century. Some crops have shown interesting results in producing haploid cultivars include bread wheat and other
crops such as maize, oat and onion. This technique also has useful applications in genetic transformation for generating polyploidy
wheat. Wheat cultivars developed from doubled haploid from both anther-culture and maize induction systems have been released for
cultivation in all the major continents. Several techniques have been adapted for the production of haploid plants such as anther
culture, isolated microspore culture some of which have been discussed in this review. With the ability to increase the yield of
haploids in bread wheat and durum wheat, the haploidy technique may play an ever increasing role in basic cytogenetic, genetic, and
genomic research as well as in applied plant breeding in several crop species in the not so distant future. This review aims to capture
few of the great achievements being made in the field of haploid production technology in some selected crop/higher plant species
and its implications to modern agriculture and in crop development programs.

Keywords: androgenesis, anther culture, double haploids, gynogeneis, haploids, isolated microspore culture
Abbreviation: 2,4-D: 2,4-dichlorophenoxy acetic acid; CPP: Cell Penetrating Peptide; DH: Double Haploid; IMC: Isolated
Microspore Culture; MAS: Marker Assisted Selection; MAS: Marker Assisted Selection; MCS: Multi-cellular Structures; RIL:
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Introduction

Haploid plants have many uses in basic plant research
disciplines such as cytogenetics, molecular genetics, crop
evolution, plant biotechnology and traditional plant breeding
(Chawla, 2002; Cuthbert et al., 2008; Touraev et al., 2009).
Haploids provide an effective research tool for studies on
induced mutagenesis and on genetic transformations (Folling
and Olesen, 2002). A haploid is a common terminology used
for all sporophytes, whether diploid or polyploid with the
gametic chromosome number. In other words, a haploid plant
derived from a diploid species is more appropriately termed a
monoploid since it has only one set of chromosomes (i.e. one
genome only) (Fehr, 1993; Quisenberry and Reitz, 1967).
The monoploids being sporophytes, their somatic
chromosome number is simply represented as 2n (as in the
case of diploids and polyploids). However, 2n refers to
somatic chromosome number; while, x represents the basic
chromosome number (i.e. the chromosome number in one
genome of a specific monoploid species) (Folling and
Olesen, 2002). Hence, a haploid (monohaploid/monoploid)
derived from diploid Einkorn wheat (Triticum monococcum
L.) is indicated to have 2n = x = 7 chromosomes (Taurev et
al., 2009). However, a haploid derived from a polyploid
species such as bread wheat (T. aestivum L., 2n = 6x = 42;
AABBDD) or durum wheat (T. turgidum L., 2n = 4x = 28;
AABB) is technically called polyhaploid. The polyhaploid of

bread wheat has 2n = 3x = 21 chromosomes with the genomic
constitution ABD; whereas, the polyhaploid of durum wheat
has 2n = 2x = 14 chromosomes with the genomic constitution
AB (Quisenberry and Reitz, 1967; Fehr, 1993; Folling and
Olesen, 2002) (Fig. 1). Polyhaploids derived from polyploid
species are further classified according to the nature of
polyploidy of the parental species from which they are
descended. A polyhaploid from an allopolyploid (like bread
wheat) is termed allopolyhaploid (2n = 3x = 21); whereas one
derived from an autopolyploid, such as the potato (Solanum
tuberosum L., 2n = 4x = 48), is called autopolyhaploid (Fehr,
1993). However, the term haploid is commonly used as a
generic term in case of both diploid as well as polyploidy
plant species (Allard, 1960). It is interesting to note that the
terms haploid and polyhaploid are often used interchangeably
for haploids generated from the polyploidy ancestral species
(Allard, 1960; Fehr, 1993; Chawla, 2002). Since
allopolyploid wheat is referred to as amphidiploids or
amphiploids; their haploids can be termed amphihaploids.
Thus, a haploid or allopolyhaploid derived from the durum
wheat (AABB = 28) can also be referred as amphihaploid
(AB = 14) due to their unique constitution of their
chromosomes (Allard, 1960; Fehr, 1993; Quisenberry and
Reitz, 1967; Touraev et al., 2009).
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Doubled Haploids: What are they?

In very simple terms, a doubled haploid (DH) is a genotype
produced when haploid cells undergo the process of
chromosome doubling (Chawla, 2002). The DH populations,
which are similar in genetics to Recombinant Inbred Lines
(RILs) generated by single seed descent approach, have been
applied for mapping Quantitative Trait Loci (QTLs) for
several desirable characters (Muñoz-Amatriaín et al., 2008).
Wheat cultivars developed from DH technology have been
released for cultivation and have now turned out as dominant
cultivars in several countries across the globe (Baenziger and
DePauw, 2009; Touraev et al., 2009). It is in fact possible to
track back on the evolutionary ladder and extract durum
haploids AB and then retrieve tetraploid or disomic durum
plants from them. Similarly, it is also possible to retrace the
steps of evolution for bread wheat (Jauhar, 2007). Crosses of
bread wheat with maize (Zea mays L.) has recently emerged
as an efficient technology platform after the pioneering work
of Laurie and Bennet (1987) as an important source for
generating polyhaploids across all bread wheat
germplasm/genotypes in which the hormonal influence of 2,4
dichlorophenoxy acetic acid (2,4-D) plays an essential critical
role. Fairly recently; pearl millet [Pennisetum glaucum (L.)
R.Br.] and Tripsacum spp. pollen sources also served an
identical role in haploid production in maize (Touraev et al.,
2009). The DH plants produced from monohaploids/
allohaploids represent pure bred lines. Since homozygous
plants are produced in a single generation; the time period
necessary for cultivar development could be efficiently
reduced by 3-4 years. The selection efficiency can also be
substantially improved DH production because the phenotype
of the plant is not masked by dominance effects. The
heritable traits encoded by recessive gene(s) could be
efficiently detected and a small population of DH plants is
necessary while screening for desirable recombinants (Snape
et al., 1986). Microspore embryogenesis in anther/microspore
cultures are the most commonly used methods to generate
DHs (Maluszynski et al., 2003). Isolated Microspore Cultures
(IMC) has several merits over other commonly available
techniques (Touraev et al., 2001; 2009). Microspores can be
isolated in greater amounts, providing large number
potentially embryogenic single haploid cells. The IMC
technique represents an individual cell (n), making single cell
selection a reality and it also makes it possible to investigate
the impacts of different media constituents on microspore
performance directly (Touraev et al., 2001; 2009; Basu et al.,
2010). A table summarizing important DH techniques used in
selected species of higher plants is presented in table 1.
Haploids generated from anther culture and IMC are
regularly studied both for inter- and intra-genomic
chromosomal pairing in their seed heads without any regular
colchicine treatment or application of cross pollination.
Recently researchers in Australia reattempted to generate
sterile haploid plants to overcome major obstacles such as
sufficient pollen production, in petal staining by pollens and
self-pollination during the pollen transport in Sturt's desert
pea [Swainsona formosa (G. Don) Joy Thomps.] (Zulksrnsin
et al., 2002). The researchers from Kuwait successfully
introduced this particular species and developed a protocol
for the mass production of the selected clones using somatic
embryogenesis approaches (Sudhersan and AboEl-Nil, 2002).
In Iran, gynogenesis (development of plants from female
gametophyte) has been adapted as a suitable method for
haploid plant production. Important effects on the successful
production of haploid plants in tobacco (Nicotiana tabacum
L.) are the stage of microspore development, anther culture

medium, pretreatment of anthers prior to placing them on the
anther culture medium and the duration of time in the
flowering cycle of the mother plants supplying anthers for the
tissue culture process (Sudhersan and AboEl-Nil, 2002;
Touraev et al., 2009). The DH production and the cross-
pollinated DH-progenies could possibly be the most
important source for variability in the population for rye
(Secale cereale L.) breeding or selection. In case of DH
production in cereals, for example barley (Hordeum vulgare
L.) through anther (Fig. 2) and/or isolated microspore
culture/IMC standard protocols are available (Clapman,
1973; Köhler and Wenzel, 1985; Hoekstra et al., 1992); while
in others, such as triticale, new protocols and opportunities
are currently being investigated (Tauarev et al., 2009).
Previous studies on rye DH generation begun in the mid
1970s to the late 1990s and focused predominantly on the
anther culture techniques only (Wenzel and Thomas, 1974;
Thomas et al., 1975; Wenzel et al., 1977; Flehinghaus et al.,
1991; Dainel, 1993; Flehinghaus-Roux et al., 1995). Earlier,
Deimling et al. (1994) described the successful regeneration
of fertile green plants from Isolated Microspore Culture
(IMC) of semi-wild rye (Secale vavilovii Grossh) SC35.
However, it is interesting to note that two different research
groups, working at two different laboratories, Immonen and
Anttila (1996) and Rakoczy-Trojanowska et al. (1997)
simultaneously reported moderate success in the frequency of
regeneration green plants from true rye (Secale cereale L.)
only. Next, Wenzel et al. (1975) isolated microspores either
directly from the spikes or from the pre-cultured anthers; but,
unfortunately, they were unable to regenerate fertile green
plants in either case. Later, Immonen and Anttila (2000)
described rye anther culture in the liquid medium; followed
by Guo and Pulli (2000) who successfully demonstrated
relatively high callus induction rates and green plant
regeneration frequencies from IMC of true rye (Secale
cereale L.). Oat (Avena sativa L.) haploid and DH production
through wide hybridization (Rines and Dahleen 1990; Matzk,
1996; Rines 2003; Sidhu et al., 2006) and anther cultures
(Rines 1983; Kiviharju et al., 2000, 2005) have been
reported. Rines et al. (1997) made initial progress in the
development of anther culture method for oats. Later,
Kiviharju et al. (2005) have improved the anther culture
method by several adjustments to the older methods and
reported up to 30 green plants per 100 anthers cultured for
individual cross. However, in case of barley (Hordeum
vulgare L.), Davies and Morton (1998) demonstrated higher
frequencies of green regenerants per anther using IMC
approach compared to the conventional anther culture
techniques. A possible explanation for this could be the fact
that individual microspore being suspended in liquid culture
medium in IMC has sufficient and continuous supply of
nutrients; whereas, microspores in the anther culture
technique are exclusively dependent on the constant diffusion
of available nutrients through the anther wall (Tauraev et al.,
2009; Basu et al., 2010). Another challenge associated with
IMC has been the problem of production of albino plantlets
which often impacts breeding programs considerably by
reducing the frequency of green plantlet generation (Tauraev
et al., 2009). The albino production is mostly associated with
the species, genotypes and the cultural conditions and
sometimes difficult to eradicate.

Production approaches and technologies used in the
breeding of some selected species of higher plants

For the production of haploids of durum wheat and bread
wheat,  it is  important to first  comprehend their genomic
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Table 1. Summary of techniques used in Haploid productions.
Techniques for haploid
production

Plant species Years of
development

References

Anther culture  Nicotiana spp. 1965-1969 Nistch,1969
Anther and microspore
culture

Hordeum Vulgare 1973-2009 Clapman, 1973;
Hoekstra  et al.,  1992;
Touraev et al., 2009

Somatic embryogenesis Swainsona formosa 2000-2002 Sudhersan and AboEl-Nil, 2002

Anther culture Avena sativa 2000-2005 Kiviharju et al., 2000;  2005

Somatic embryogenesis Swainsona formosa 2000-2002 Sudhersan and AboEl-Nil, 2002

Gynogenesis Allium cepa 2006-2008 Alimousavi, 2006;  Touraev et al.,
2009

Maize based haploid
induction

Triticum turgidum 2000-2008 Touraev et al., 2009

Anther culture in solid
and liquid medium

Secale cereale 2000-2009 Touraev et al., 2009; Basu et al, 2010.

IMC Triticale 2005-2009 Touraev et al., 2009; Basu et al, 2010.

Fig 1. Formation of haploids in wheat.

constitution and genetically-enforced meiotic integrity.
Cultivated wheat provided us with a classical model of
evolution by the process of allopolyploidy. They are in fact
the true breeding natural hybrids. Furthermore, bread wheat
is an allohexaploid with three distinct genomes namely AA,
BB and DD, collectively referred as the ABD genomes. If the
extra chromosome is from the basic gametic set (x) of the
concerned species then the plant is called a disomic haploid
(2n = x + 1) since it exhibits disomy for an individual
chromosome but will be monosomic for the remaining
chromosomes. Genetically similar and evolutionarily related
chromosomes are called homeologues. Because the
homeologous chromosomes (e.g. chromosome 1A, 1B and
1D) are closely related and are capable of mutual pairing with
one another; a specific homeologous pairing-suppresser gene
called Ph1 specifically restricts pairing among the
homologous partners. Such a genetically-enforced pairing
mechanism similar to diploid species confers regularity in
meiotic cycle of the species and brings about reproductive
stability to the polyploid wheat members (Touraev et al.,

2009; Basu et al., 2010). Spikes on detached tillers of all
durum cultivars and Synthetic Hexaploids (SH) were placed
under water following hand-emasculation and the plants and
finally pollinated after two days with fresh maize pollen
(Mujeeb-Kazi et al., 1987,2002). The pollinated spikes were
cultured in a nutrient solution containing 40 g/L sucrose, 100
mg/L 2,4-D, 8 mL/L sulfurous acid and kept in a growth
chamber. To facilitate embryo formation and development,
the growth chamber conditions were maintained at
continuous 22.5 oC temperature, 12 hour day length and 60-
70 % relative humidity. After 14-16 days of pollination the
seed sets were removed from individual spike, counted,
sterilized and dissected under a stereo-microscope to excise
the newly-formed embryos. Subsequently, embryo formation
frequencies were calculated for each durum genotype and its’
related SH wheat derivative. There were about 5-7 spikes
tested for individual entry. The embryo rescue, cold
treatment, regeneration and transplantation procedures were
similar to those of Mujeeb-Kazi et al. (1987). Using improve

Triticum astivum L.,
(2n=6x=42)
AABBDD

Polyploids
(2n=3x=2)

ABD

Triticum turgidum
n=28

AABB

Amphihaploid
n=14
AB
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Fig 2. Schematic representation of the green plant regeneration following anther culture technique in cereals (wheat).

ed plant regeneration rates from oat anther culture some DH
lines were obtained yielding comparatively higher than the
commercial cultivars. DH lines of wheat have been used for
selection of high molecular weight glutenin subunits (Rines
2003; Sidhu et al., 2006; Kiviharju et al., 2000, 2005;
Touraev et al., 2009). Cytology protocols of Mujeeb-Kazi et
al. (1994) allowed validation of the haploid status i.e. n = 3x
= 21, (ABD) or, n = 2x = 14, (AB), and also of their meiotic
associations on separate test plants for individual haploid
plants. After three weeks of growth all haploid plants were
colchicine treated as a root-treatment procedure (Mujeeb-
Kazi and Riera-Lizarazu, 1996). Successful chromosome
doubling was reported to be achieved from the seed setting
on the colchicine-treated polyhaploid plants in producing
haploid onion cultivars like ‘Sefid- e- Kurdistan’ and ‘Sefid-
e- Neishabour’ (Touraev et al., 2009). Gynogenesis is
extensively used in Iran for the production and release of
high yielding and disease resistant cultivars/varieties of onion
(Allium cepa L.) (Alimousavi, 2006). Iranian onion cultivars
have good horticultural characters such as better storage/shelf
life, bigger shape and resistance to thrips (Thrips tabaci
Hind.) (Alimousavi, 2006). Polyamines (e.g. putrescine,
spermidine, spermine, cadaverine and agmatine) are plant
growth regulators that are involved in all biochemical and
physiological growth and development process of higher
plants (Kumar et al., 1997). Increasing polyamine
biosynthesis has been reported to precede or accompany
callogenesis under in vitro conditions (Ponchet et al., 1982)
and organogenesis (Aribaud et al., 1994). Martinez et al.
(2000) reported positive effects of polyamines (putrescine
and spermidine) in case of in vitro gynogenesis in onion.
Several variables have been scrutinized for their effect on
haploid plant generation on Nicotina species from anther
culture such as the particular stage of the microspore
development, the anther culture medium and the
pretreatments of anthers before placing them on the culture
media and the specific stage of the flowering cycle during
which the floral buds were procured for tissue culture work.
Several Nicotiana species (namely, N. glutinosa L., N.
knightiana Goods., N. paniculata L., N. rustica Schrank, N.
sylvestris Speg. & Ccmes and N. tabacum L.) were produced

primarily as haploid plants from their corresponding anther
culture.  Diploid plants were obtained from the anther
cultures of N. bonariensis Lehm., N. longiflora Cav., N.
langsdorfii Wein., N. nudicaulis Wat., N. plumbaginifolia
Viv. and N. stocktonii Brand. Plants of undetermined ploidy
level were obtained from Nicotiana too (Nistch, 1969).
Anthers that were cultured at the optimal
uninucleate/binucleate microspore stages generated higher
frequency of plants. More plants were generated per anther
from these cultures than from anthers cultured at other
microspore stages. Anthers from floral buds collected from
plants in flower for an extended period did not produce as
many plants as those procured from plants in earlier stages of
development. Low temperature anther pretreatment increased
the number of plants produced under specific cultural
conditions, but did not extend the number of species in which
haploid plants were formed. The effect of culture medium
varied with the species, length of flowering time and with
when the anthers were procured and also on the pretreatment
conditions (reviewed in Touraev et al., 2009). Recently S.
formosa plants were successfully introduced to Kuwait from
southern Australia. Haploid plantlets have been produced
from pollen grains through somatic embryogenesis for the
first time in this species (Sudhersan and AboEl-Nil, 2002). In
cereal, double haploid production, for example in the case
barley (Hordeum vulgare L.) using anther and microspore
culture techniques are currently available (Clapman, 1973;
Köhler and Wenzel, 1985; Hoekstra et al., 1992; Touraev et
al., 2009). In rye (Secale cereale L.) anther culture in solid
and liquid medium and in the Isolated Microspore Culture
(IMC) have been successfully compared. Three weeks cold
pretreatment of spikes and two days of mannitol pre-
treatment of anthers maximized callus and green plant
generation under both culture methods (Touraev et al., 2009;
Basu et al., 2010). Intensity order of the culture methods in
callus and green plant production was: IMC, anther culture in
liquid medium and anther culture in solid medium. Genotype
ability of embryogenesis followed the same pattern in both
cultivation methods (reviewed in Touraev et al., 2009). It has
been reported that the cold pretreatment (4 °C) in the dark for
minimum 6 weeks was necessary to consistently achieve
microspore growth transformed into Multi-cellular Structures
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(MCS). Longer pre-treatments of up to 9 weeks were also
investigated and reported to be positively correlated with the
number of MCS generated (Barinova et al., 2004).
Microspore culture media with pH 8.0 produced significantly
more MCS bigger than eight cells in dimension in
comparison to media with pH 5.8. The use of media
conditioned by actively growing barley microspores
significantly increased the numbers of MCS bigger than eight
cells in dimension in sharp contrast to non-conditioned
media. Green plants were successfully regenerated from
cultures using conditioned medium only (Davies, 2003).
However, in case of durum wheat, results indicate that
haploid production is still a long way to go from having the
protocol integrated into a durum wheat breeding program and
to expedite the efficiency compared to bread wheat breeding
(Mujeeb-Kazi et al., 2002). Limited success has been
reported with high fertilization frequencies in a very small
number of durum genotypes (O’Donoughue and Bennett,
1994). It is also encouraging that some high quality cultivars
have responded to maize based haploid induction (Touraev et
al., 2009). Hence, these cultivars could form a basis for
exploitation in molecular mapping, cytogenetics and genetic
transfer of genes of interest in future breeding programs
where DH is considered advantageous by several researchers
(Mujeeb-Kazi, 2005; Touraev et al., 2009; Basu et al., 2010).
Durum wheat has inadequate genetic diversity for some
important production limitations for which presently
Fusarium head scab apparently is the priority. The D genome
based SH wheat have good resistance, and it is plausible to
transfer the Aegilops tauschii Coss. resistance into high
quality durum wheat that are amenable to haploid generation
(Almouslem et al., 1998). The strategy involves the ph1c
Capelli genetic stock to initiate A and D genome
interchanges via homoeologous recombination; thereby
identifying the D introgression derivatives, next top-crossing
with novel durum lines (positive for haploid induction) and
achieving homozygosity of the translocated lines. This
approach is adapted from Mujeeb-Kazi (2001) currently in
use for several bread wheat germplasm/cultivars. The durum
identified as being amenable to haploid induction are good
candidates for use in development of molecular mapping
populations where mostly F1 seed from resistant and
susceptible crosses are efficiently used, having at least the
trait susceptible durum cultivar(s) responsive to haploidy.
Such populations are commonly generated for bread wheat
and wheat researchers are optimistic that a similar approach
may work out successfully for durum instead of the
traditional method of generating recombinant inbred lines
through single seed descent approach (Touraev et al., 2009;
Basu et al., 2010).

Utilities of haploid cultivars

The haploidy technology has now been adapted in different
plant breeding programs across all the major continents as the
most commonly used approach for rapid crop development
for transferring genes of interest, chromosomal segments or
even complete chromosomes (Ceoloni and Jauhar, 2006;
Baenziger and DePauw, 2009; Touraev et al., 2009). Induced
haploidy facilitates the stabilization of heterozygous wheat
source with gene(s) of interest. Advanced hybrid lines are
then haploidized by crossing with maize following
chromosome doubling for bringing in homozygosity for the
introduced foreign gene(s) thereby stabilizing the newly
reconstructed highly complex plant genome. This technique
also has been very found to be extremely helpful in genetic
transformation of polyploidy wheat (Touraev et al., 2009).

Direct introduction of genes at the haploid state following
chromosome doubling helps considerably in the stabilization
of the newly generated synthetic transformants. The haploid
technique was successfully employed to produce inbreds in
maize in the 1940s and 1950s (Chase, 1951). Thus, before
1980, DH technique was applied only to a small number of
plant species; however, in the past four decades huge volume
of research has been successfully conducted all over the
globe. Now this technique has been successfully applied to
over more than 250 species (Maluszynski et al., 2003;
Baenziger et al., 2006; Touraev et al., 2009; Basu et al.,
2010). The technique is now commonly applied for rapid
production of pure inbreds and for expediting plant breeding
programs (Baenziger and DePauw, 2009). Interestingly,
doubled haploidy is being exclusively applied by at least one
US commercial seed company to generate new maize inbreds
(Seitz, 2004; Touraev et al., 2009). Wheat cultivars
developed from DHs from both anther-culture and maize
induction systems have been released for cultivation in all
major continents (Guzy-Wróbelska and Szarejko, 2003;
Thomas et al., 2003; Humphreys et al., 2007 a,b; Touraev et
al., 2009). DHs have been widely employed in barley
breeding programs resulting in the release of several
cultivars. (Muñoz- Amatriaín et al., 2008).  Androgenesis
(development of plants from male gametophyte)-based DH-
technique has been increasingly adapted to release barley
varieties better adapted to Peruvian highlands where barley is
grown as a major food crop (Gomez-Pando et al., 2009).
Using improved plant regeneration rates from oat anther
culture, Kiviharju et al. (2005) developed some DH lines that
exhibited similar or higher yields compared to the currently
available commercial varieties. The DH lines of wheat have
been successfully utilized for selection of high molecular
weight subunits of glutenin (Radovanovic and Cloutier,
2003).

Conclusion and future prospects

Haploid plants and haploid-derived homozygous lines are
useful in several domains of basic research in the realms of
classical plant genetics and cytogenetics, modern molecular
genetics including induced mutagenesis, site-directed
mutagenesis, genetic transformation research, genome
mapping and assessing distant genome relationships, gene
dosage effects, analysis of linkages, mechanisms of the
genetic control of chromosomal pairing and in conventional
plant breeding studies. The DH technology platform offers a
rapid mode of truly homozygous line production that help to
expedite crop breeding programs where homogeneity is an
absolutely essential parameter for rapid crop development.
Integration of the haploidy technology with other available
biotechnological tools such as Marker Assisted Selection
(MAS), induced mutagenesis, and transgene technologies
could also effectively expedite the crop improvement
programs running all across the globe. Thus direct
incorporation of cloned genes at the haploid level following
subsequent chromosome doubling may help accelerate stable
integration of target gene(s) into wheat and several other
crops and/or higher plant species. To be useful, however, it is
important to note that an efficient and reliable method of
haploid and DH production will be essential. Recent research
has very clearly demonstrated that maize-induced
chromosome elimination offers a very useful approach for
rapid haploid plant production in bread wheat and durum
wheat. However, further improvements in microspore culture
could substantially bring in more changes in the not so
distant future. It is interesting to note that the totipotent
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nature of the haploid cell is being efficiently and effectively
explored in different facets of modern biological and
agricultural research disciplines. By efficiently utilizing DH
populations, QTLs associated with yield and yield
components have been successfully identified allowing
marker-assisted breeding approaches to be employed in
several major wheat improvement programs (Touraev et al.,
2009). The haploidy technique has played an important role
in practical plant breeding as can be seen in widely grown
DH cultivars in all the major continents where some of them
have earned the recognition of dominant cultivars.
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