Table 1a: Important studies concerned on validation of references in different plant species

Plant	Reference gene	Stable reference gene	Reference
O. sativa	GAPDH, ACT, β -TUB and 18S rRNA	18S rRNA	Kim et al., 2003
Saccharum sp.	β -ACT, β -TUB, GAPDH and 25SrRNA Target gene: Pst2a (sugar transporter gene)	GAPDH and 25SrRNA	Iskandar et al. 2004
Poplar (<i>Populus</i> trichocarpa × P. deltoides)	ACT11, ACT2, CYP, TUA, TUB, UBQ, UBQ-L, EIF4B-L, EF1β and 18S rRNA	TUA and UBQ	Brunner et al., 2004
Potato	aprt (Adenine phosphoribosyl transferase), ACT and CYP Target gene (Hsp20.2)	Late blight (<i>ef1</i> α and <i>18S rRNA</i>)/Cold stress (<i>ef1</i> α and <i>L2</i>)/Salt stress (<i>ef1</i> α and <i>CYP</i>)/Internal control for <i>Hsp20.2 (18S rRNA</i> and <i>ef1</i> α)	Nicot et al. 2005
		Least stable: Actin and tubulin (Abiotic stress)/Actin and aprt (Biotic stress)	
O. sativa	18S rRNA, 25S rRNA, UBC, UBQ5, UBQ10, ACT11, GAPDH, eEF-1a, eIF-4a, and β-TUB	Most stable: <i>UBQ5</i> and <i>eEF-1a</i> / Least stable: <i>UBQ10</i> , <i>ACT11</i> and β - <i>TUB</i>	Jain et al., 2006
V. vinifera	ACT, AP47, CYP, EF-1a, GAPDH, MDH, PP2A, SAND, TIP41, α - TUB, β - TUB, UBC, UBQ-L40 and UBQ10	GAPDH, EF-1a and SAND	Reid et al., 2006
O. sativa	2500 transcription factors and seven common references (ACT, ACT1, β -TUB, CYP, $eF1\alpha$, TIP41-like, Expressed protein)	ACT1, EF-1 α and EP	Caldana et al. 2007
L. temulentum	ACT11, eEF-1a, eIF-4a, GAPDH, b-TUB, UBC, UBQ5, 25S rRNA and CAP (cap binding protein)	<i>eEF-1a</i> and <i>UBQ5</i>	Dombrowski and Martin, 2009
O. ramosa	Reference gene (18S rRNA, act1, tub1, and ubq1) and target gene (MYB1)	act1 and ubq1	González-Verdejo et al. 2008
G. max	Reference gene- ACT11, ACT2/7, TUA, TUB, UBC2, CYP2, G6PD, EF-1a, EF- $l\beta$ and UBQ10 and Target gene (GmBFT (Glycine max brother of FT and TFL1)	Most stable (<i>EF-1</i> β and <i>CYP2</i>) / Stable across cultivar (<i>UBC2</i>) Least stable (<i>UBQ10</i> and <i>G6PD</i>)	Jian et al. 2008
S. lycopersicon	Reference gene : <i>GAPDH, eF1</i> a, <i>TBP, TUA, RPL8, APT, DNAJ</i> and Target gene: <i>TIP41</i> (SGN-U321250), <i>SAND</i> (SGN-U316474), <i>CAC</i> (SGN-U314153) and Expressed (SGN-U346908)	Most stable: <i>CAC</i> and <i>TIP41</i> / Moderate stable: " <i>Expressed</i> ", <i>TBP</i> and <i>SAND</i> / Least stable: <i>GAPDH</i> , <i>eF1</i> α and <i>TUA</i>	Expósito-Rodríguez et al. 2008
B.distachyon	ACT7, RCA (rubisco activase), eF1a, GAPDH, TUA6, UBC18, Ubi4, Ubi10 and SamDC (S-adenosyl methionine decarboxylase)	Overall (<i>UBC18</i>) / Growth hormone (<i>Ubi4</i> and <i>Ubi10</i>) / Abiotic stresses (<i>SamDC</i>)	Hong et al. 2008
Sunflower	18S rRNA, 26S rRNA, UBQ13, TUB2, , TUB1, PEP and EF-1	TUBI	Fernandez et al. 2008
A. thaliana	Reference gene: <i>ACT2</i> , <i>ACT</i> , <i>ACT8</i> , <i>APT1</i> , <i>eF1α</i> , <i>eIF4A</i> , <i>TUB2</i> , <i>TUB6</i> , <i>TUB9</i> , <i>UBQ4</i> , <i>UBQ5</i> , <i>UBQ10</i> , <i>UBQ11</i> and <i>NDUFA8</i> Target gene [<i>eIF4A</i> , <i>At5g02840</i> (MYB factor) and <i>LEAFY COTYLEDON1-Like</i> (<i>L1L</i>)] Gene tested across different plant species <i>At4g34270</i> and <i>At4g33380</i>	Most stable (<i>APT1</i> , <i>UBQ5</i> , <i>eF1</i> α) Gene stable across different plant species (<i>At4g34270</i> and <i>18S rRNA</i>)	Gutierrez et al. 2008

Gene tested across different plant species At4g34270 and At4g33380

		(Arabidopsis), UBQ (Poplar) and 18S rRNA (Aspen)		
	A. thaliana	Ten most stably expressed genes of <i>Arabidopsis thaliana</i> identified by Czechowski et al. (2005) Three traditional HKGs (<i>EF-1a</i> , <i>ACT2</i> and <i>UBQ10</i>)	Most stable : <i>AT5G15710</i> (F-box protein), <i>AT2G28390</i> (SAND family protein), and <i>AT5G08290</i> (mitosis protein YLS8)	Remans et al. 2008
	C. arabica	5 traditional HKGs (<i>actin, adh, 14-3-3, gapdh, poly</i>) Novel genes [<i>Cysteine proteinase</i> (<i>cys</i>), <i>Caffeine synthase</i> (<i>ccs</i>) and the 60S ribosomal protein L7 (<i>rpl7</i>]	<i>gapdh</i> , 14-3-3and <i>rp17</i>	Barsalobres- Cavallari et al. 2009
	B. brizantha	<i>ef1a, eIF-4a, GAPDH, GDP, TUB, UBI, SUCOA</i> (succinyl-CoA ligase) and <i>UBCE</i> (ubiquitin conjugating enzyme)	Stable reference (<i>UBCE</i> and <i>ef1a</i>) Least stable (<i>TUB</i> and <i>SUCOA</i>)	Silveira et al. 2009
	C. arabica	<i>GAPDH, UBQ10, UB19,PP2A, AP47, S24</i> (40S ribosomal subunit) and <i>psaB</i> (D1 subunit of photosystem I and II reaction centre)	UB19,PP2A, AP47, S24 (observed for different data set)	Cruz et al. 2009
	O. sativa	Reference gene (18SrRNA, 25S rRNA, eF1a, eIF-4a, UBC, UBQ5, ACT1, GADPH and TBL) and Target genes (Seed development specific): GBSSI, SSSI, SBE IIb and ISA1	eIF-4a and ACT1	Li et al. 2010
	G. max	Traditional references (ACT2, ACT11, TUB4, TUA5, CYP, UBQ10, EF1b)/New references (SKIP16, MTP, PEPKR1, HDC, TIP41, UKN1, UKN2)/Target reference GmFTL3 (ortholog of Arabidopsis FT (flowering locus T)	Overall (<i>SKIP16</i> , <i>UKN1</i> and <i>UKN2</i>), developmental stages (<i>SKIP16</i> , <i>UKN1</i> and <i>MTP</i>), photoperiods (<i>ACT11</i> , <i>TUA5</i> and <i>TIP41</i>), light quality (<i>TIP41</i> , <i>UKN1</i> and <i>UKN2</i>), cultivars for photoperiods (<i>ACT11</i> , <i>UKN2</i> and <i>TUB4</i>)	Hu et al. 2009
	L. perenne	ACT11, CAP, eEF-1α, eIF-4a, GAPDH, β-TUB, UBC, UBQ5 and 25SrRNA	Overall: $eEF-1\alpha$ and $eIF-4a$ / Root crown tissues: $eIF-4a$ and 25S rRNA (most satble)/ CAP (Least stable) / For leaf samples: $eEF-1\alpha$ and $UBQ5$ (most satble)/ β -TUB (Least stable)	Martin et al. 2008
	A. thaliana Picea abies	For Arabidopsis: <i>ACT</i> , adenine phosphoribosyltransferase 1, RNA polymerase II large subunit and ubiquitin For <i>Picea abies</i> : <i>UBQ</i> , 18S rRNA and <i>TUB</i>	The study was conducted to evaluated the efficiency of purified cDNA	Phillips et al. 2009
	S. miltiorrhiza	Reference gene (18SrRNA, $eF1\alpha$, ACT, α - TUB, UBQ) and Target gene (SmDXR)	Stable references (UBQ and ACT)	Yang et al. 2010
			Least stable (18SrRN and, $eF1\alpha$)	
	P. persica	18S rRNA, ACT, CYP2, TEF2, GAPDH, PLA2, RP II, RPL13, TUA, TUB and UBQ10	Most stable (<i>TEF2</i> , <i>UBQ10</i> and <i>RP II</i>) and least stable (<i>18S rRNA</i> , <i>RPL13</i> , <i>PLA2 GAPDH</i> and <i>ACT</i>)	Tong et al. 2009
	S. lycopersicum	Traditional reference gene (<i>ACT</i> , <i>TUB</i> , <i>ef1a</i> , <i>GAPDH</i> , <i>PGK</i> and <i>UBI</i>) Novel gene (<i>RPL2</i> and <i>PP2Acs</i>)	Light stress (GAPDH and PGK) Nitrogen and cold stress (efla)	Løvdal and Lillo, 2009
	O. sativa	Traditional reference gene Eight paralogous genes of actin (ACT), <i>eEF-1</i> α and β - <i>TUB</i> /Target gene GS3 (a QTL for grain length and weight)	ACT and $eEF-l\alpha$	Zhang et al. 2009
	Swingle citrumelo citrus rootstock	Reference gene <i>ACT</i> , <i>TUB</i> , <i>ef1a</i> , <i>GAPDH</i> , ADP ribosylation factor (<i>ADP</i>), <i>CYP</i> , Cathepsin (<i>CtP</i>)/Target gene Δ^1 -pyrroline-5-carboxylate synthetase (P5CS)	$ef1\alpha$ and ADP	Carvalho et al. 2010
	C. arietinum	HSK references (ACT1, EF-1a, GAPDH, IF4a, TUB6, UBC, UBQ5, UBQ10, 18SrRNA, 25SrRNA)	Most stable (EF1a and HSP90)	Garg et al. 2010
			Stable for stresses (IF4a and GAPDH)	

	Novel references (GRX and HSP90)		
G. hirsutum	ACT4, ef1α, FBX6, PP2A1, MZA, PTB, GAPC2, βTUB3 and UBQ14 Two cotton MADS-box genes for validation (MADS3 and SEP-like1)	Most stable (<i>PP2A1 and UBQ14</i>) and stable during flower development (<i>ACT4</i> and <i>UBQ14</i>), in floral verticils (<i>ACT4</i> and <i>FBX6</i>), in fruit development (<i>MZ and, PTB</i>)	Artico et al. 2010
Cucumber (C. hystrix/C. sativus)	ACT, ACT1, ACT2, ACT3, ef1a, 18SrRNA, CYP, TUA, UBI1 and UBI-ep	TUA, ef1α, UBI-ep	Wan et al. 2010
<i>P. hybrid</i> (Mitchell line and V30 line)	ACT11, CYP2, EF1a, UBQ, GAPDH, GTPbinding protein RAN1 (RAN1), SAND protein (SAND), Ribosomal protein S13 (RPS13) and (TUB6)	Mitchell line (<i>EF1a</i> and <i>SAND</i>) / V30 line (<i>CYP</i> and <i>RAN1</i>) Least adequate reference gene (<i>GAPDH</i>)	Mallona et al. 2010
C. intybus	Reference genes (NADHD, ACT, TUB, GADPH, H3(Histone H3), efla, 18SrRNA) and Target genes (FEHIIa and FEHIIb)	ACT, ef1α, 18S rRNA	Maroufi et al. 2010
Wheat, Barley, Oat	Reference gene (GAPDH, TUA, TUB, EF1a, eIF4A, 18S rRNA, 28s rRNA) and Target gene (BYDV cp)	Barley: GAPDH, 18S rRNA and TUB/Oat: GAPDH, 18S rRNA, TUB and TUA/Wheat: GAPDH, 18S rRNA, TUB and eIF4A	Jarošová and Kundu, 2010
Eucalyptus	Reference gene: <i>GAPDH</i> , <i>TUB</i> , <i>eEF2α</i> , <i>ACT</i> , <i>CYP</i> , <i>UBQ</i> , <i>PUBQ</i> , <i>eIF4β</i> , <i>18S rRNA</i> , <i>28S rRNA</i> , <i>APRT</i> , <i>Hsp20</i> and <i>EgIDH</i> /Target gene: Chitinase gene (ASM and <i>P. psidii</i> treatments)	Tissue not received any stimuli: <i>eEF2/EgIDH</i> <i>P. psidii</i> -inoculated and uninoculated: <i>eEF2</i> and <i>UBQ</i> ASM-treated and untreated: <i>CYP</i> and <i>eIF4B</i>	Boava et al. 2010
L. perenne	Reference gene: <i>eEF1A</i> (m), <i>eEF1A</i> (h), <i>eEF1A</i> (s), <i>TBP-1</i> , <i>eIF4A</i> , <i>YT521-B</i> (YT521-B-like family protein), <i>H3</i> (Histone 3) and <i>E2</i> (Ubiquitin-conjugating enzyme)/Target gene: chloroplast translational elongation factor Tu (EF-Tu)	<i>eEF1A</i> (s) and <i>YT521-B</i> <i>H3</i> was removed from study because of low expression	Lee et al. 2010
Nymphaea spp.	ACT11, GAPDH, eF1a, UBC16, IF1, UBQ11, Ribosomal protein S1 (RPS1) and Clathrin adaptor complexes medium subunit (AP47)	geNorm: <i>AP47 & ACT11</i> (All samples) NormFinder: <i>AP47 & eF1α</i>	Luo et al. 2010
B. chinense	Reference gene - ACT, α - TUB, β - TUB, CYP, RPL2, EF1 α , 18S rRNA, and Target gene - HMGR, IPPI, FPS and β -AS	Most stable - β- TUB Least stable - 18S rRNA, CYP, eF1α,	Dong et al. 2010
L. usitatissimum	Reference gene - ACT, CYP, EF1a, GAPDH, UBI, UBI2, TUA, EF2, ETIF1, ETIF3E, ETIF3H, ETIF4F and ETIF5A and Target gene - LuMYB1	Most stable – NormFinder (GAPDH) geNorm (EFIA, ETIF5A, Ubiquitin)	Huis et al. 2010
Eucalyptus globules (In vitro)	Reference gene - 18S rRNA, ACT2, EF2, EUC12, H2B, IDH, SAND, TIP41, TUA, UBI and AT4G33380 and Target gene - ARGONAUTE1 gene	Most stable – NormFinder (<i>H2B</i> and <i>TUA</i>) geNorm (<i>IDH</i> and <i>SAND</i>)	de Almeida et al. 2010
A. hypogaea	GAPDH, UBQ10, ACT7, 60S ribosomal protein L7 (<i>rpl7</i>), UBC, EF1α, 14-3-3, adh3, hell (RNA helicase I) and yls8 (Yellow leaf specific 8 gene)	Adh3, RPS7 and yls8 Less stable – 14-3-3 and UBQ10	Brand and Hovav, 2010
C. sativus	ACT, EF1a, TUA, UBI-I, PP2A, YLS8, AP47 (CACS), CYC, PDF2 (Protein phospatase 2), Helicase, Expressed protein (At4g33380) and F-box protein	Most stable (AP47 (CACS), PP2A, F-box protein and $EF1\alpha$) and least stable - TUA	Migocka and Papierniak, 2010

Table 1b: Microarray based selection of internal controls and their validation in quantitative real-time PCR for target gene normalization in plants

Plant	Microarray based selections of consistent internal reference genes	Validation of selected references through qRT-PCR	Reference
A. thaliana	20 novel stable reference genes were selected from affymetrix ATH1 data and compared with five traditional genes (<i>UBQ10, ef1a, GADPH, UBC9, ACT2</i> and <i>UBC</i>) for expression stability and transcription normalization	All novel genes outperformed traditional references, however, among traditional references, <i>UBQ10</i> showed stable expression	Czechowski et al. (2005)
G. max	 18 putative soybean reference gene (<i>cons1-cons18</i>) selected through affymetrix array hybridization (Total 217 gene identified) 2. <i>SUBI2</i> (D26092) and <i>ACT</i> (AW350943) soybean genes were compared with the new reference genes 	Uniformly expressed genes using array : <i>cons4</i> , <i>6</i> , <i>7</i> , <i>8</i> (Affymetrix) / <i>cons4</i> , <i>5</i> , <i>7</i> , and <i>8</i> (cDNA array) Reference gene for RT-qPCR : Four genes (<i>cons4</i> , <i>6</i> , <i>7</i> , and <i>15</i>) were the most stably expressed independent of the data set analyzed During nodulation: (<i>SUBI2</i> and <i>cons5</i>)	Libault et al. 2008
T. aestivum	 32 references genes selected from UniGene EST database of <i>T. aestivum</i> (Total 177 UniGene clusters were identified) Out of the 32, 12 were related to well-known HKGs Cold- and heat-responsive genes(<i>wcor14</i> and <i>TaHSP101B</i>) were selected for temperature stresses 	Stable reference genes <i>Ta54227</i> (Cell division control prot., AAA-superfamily of ATPases) <i>Ta2291</i> (ADP-ribosylation factor) <i>Ta2776</i> (RNase L inhibitor-like protein)	Paolacci et al. 2009
O. sativa	25 novel and six traditional genes (<i>UBQ5</i> , <i>UBQ10</i> , <i>ACT1</i> , <i>GAPDH</i> , <i>ACT3</i> , β - <i>TUB</i>) were identified from 57 K Affymetrix Genechip Rice whole genome arrays	1. All novel references outperformed traditional references 2. Uniformly expressed internal control genes (Expressed protein, Triosephosphate isomerase, Pre-mRNA-splicing factor SLU7) also showed stable expression in qRT-PCR	Jain, 2009
O. sativa	1. 12 reference genes selected through affymetrix array hybridization (Total 151 gene identified), validated and compared with 14 reference genes (ACT, ACT1, α -TUB, UBQ, Ubi10, GAPDH, <i>EF1a</i> , TIP41-like, Arabinogalactan protein, EF1d, FtsH protease, Nucleotide tract-binding Protein, AP-2 complex subunit, endo-1,4-betaglucanase) from the previous studies 2. Compared the 12 reference genes to 3 heat or cold responsive genes [Apetala type transcription factor (<i>AP2</i>), a heat shock responsive factor (<i>HSF-82</i>) and alternative oxidase (<i>AOX</i>)] over time under i) cold or ii) heat conditions respectively	 All 12 genes outperformed previously used references Protein kinase-1 and a nucleic acid binding protein showed stable, moderate expression levels across the stress microarray set Tumor protein homolog and translation initiation factor SUI1 showed stable expression across the developmental and entire microarray sets respectively Nucleic acid binding protein showed stable expression under qRT-PCR followed by protein kinase 	Narsai et al. 2010
Chinese Spring Wheat	 32 genes were selected from Wheat Genome arrays 15 genes finally evaluated as internal control, out of which seven novel genes compared with 13 traditional references 	Most stable: Ta.27922.1.S1_at (cyclin), Ta.10105.1.S1_at (heterogeneous nuclear ribonucleoprotein) and Ta.14126.1.S1_at (scaffold-associated regions) Note: Novel genes outperformed traditional references	Long et al. 2010