Allelopathic potential of *Cymbopogon citratus* over beggarticks (*Bidens* sp.) germination

Fábio Henrique Krenchinski*, Leandro Paia Albrecht, Alfredo Junior Paia Albrecht, Patricia Costa Zonetti, Augusto Tessele, Arthur Arrobas Martins Barroso and Henrique Fabricio Placid

Faculty of Agronomic Sciences, Sao Paulo State University, Botucatu, SP, Brazil

*Corresponding author: fhkrenchinski@gmail.com

Abstract

Allelochemicals are important and innovative tools for weed control as they neither harm the environment nor increase weed management costs. The secondary metabolites can be extracted by water or soaking and later applied in soil or leaves. This study evaluated the leaf extracts of *Cymbopogon citratus*, affecting germination of *Bidens pilosa* and *B. subalternans* seeds. Two trials were conducted in germination chambers. The completely randomized design was employed in both trials with 5 replications. Trial one was arranged in a 2×3 double factorial design, with two periods of leave collection (morning and afternoon); and three extract preparations (aqueous extract by maceration, aqueous extract by infusion and control with distilled water). Trial two was set up in a 2×2×5 triple factorial design, with two extracts (aqueous extract by maceration, aqueous extract by infusion); two time of day collection (morning and afternoon) and five extracts concentrations (0; 25; 50; 75 and 100%). The means were compared by F and Tukey’s test (p ≤ 0.05). To evaluate extracts concentrations a regression analysis was run. The results showed that the aqueous extract by maceration of *C. citratus* decreased germination and germination speed of *Bidens pilosa* and *Bidens subalternans* more than the aqueous extract by infusion, for both species. The concentrations interfered, inversely and proportionally, decreasing germination and germination speed. The germination of beggarticks was affected by the extracts of *C. citratus*, suggesting further studies for this plant.

Keywords: Allelochemicals, *Bidens pilosa*, *Bidens subalternans*, Lemon grass, Bioherbicides.

Abbreviations: A_Afternoon; G_Germination; GSI_germiantion speed index; INF_aqueous extract by infusion; M_Morning; MAC_aqueous extract by maceration.

Introduction

Among the several weed species that concern farmers, *Bidens pilosa* (L.) and *Bidens subalternans* (DC) are the most common weeds in cereals and winter crops. The specie *B. pilosa*, popularly known as hairy-beggarticks, is distributed throughout the Brazilian territory (Kissmann and Groth, 1999). In turn, *B. subalternans* resembles *B. pilosa*, differing mainly by the number of awns present in achenes, which are four rather than two to three (Kissmann and Groth, 1999). These plants can affect yield and quality of crops, such as in beans and cotton (Manabe et al., 2015).

A current problem in weed science is herbicide-resistance plants. The acetolactate synthase (ALS) and Acetyl CoA Carboxylase (ACCase), inhibiting herbicides, are considered the most worrisome compounds because they rapidly develop resistant weed plants (Carvalho et al., 2004). Biotypes of *B. pilosa* and *B. subalternans* resistant to ALS inhibiting herbicides have already been found in Brazil (Heap, 2015).

The search for new natural molecules is an alternative to the use of herbicides and pesticides, which can be investigated through allelopathic studies (Nichols et al., 2015). These compounds are derived from the secondary metabolism of plants and can present new modes of action; thereby, generating bio-herbicides which are of great importance for use in agriculture (Bajwa et al., 2015; Duke, 2015). Allelopathic studies have received considerable attention in recent years as new cases of herbicide-resistant weeds increased all over the world (Duke, 2015; Goldfarb et al., 2009).

Allelopathy describes the positive or negative influence of an individual (plant or microorganism) over another through biomolecules defined as allelochemicals produced and released into the environment. These effects are mediated by substances belonging to different categories of compounds, originated from the secondary metabolism, such as terpenoids, steroids, alkaloids, cyanohydrins, long-chain fatty acids, polyacetylenes, unsaturated lactones, tannins, benzoic acid derivatives, phenols, coumarins and flavonoids (Duke, 2015; Nichols et al., 2015). Allelochemicals are water soluble; thus, can be extracted and applied by foliar sprays or in contact with the seed (Bajwa et al., 2015). Secondary metabolites are not produced and found uniformly in the plant, and may be in organs, tissues or specific cellular structures like vacuole, idioblasts and trichomes (Hadaček, 2002).

Lemongrass (*Cymbopogon citratus* DC.) is a perennial plant forming dense clumps, which can reach up to 1.2 meters high (Prins et al., 2008). These plants contain 0.5% of its weight composed by essential oil, an important ingredient in weed control (Piccolo et al., 2007). According to Miranda et al. (2013), the quality and quantity of lemongrass essential oil can vary according to the genetic diversity and cultural practices, as well as internal and external factors. During the day, the concentration of active ingredients in plants varies according the time (Gobbo-Neto and Lopes, 2007).
Given the occurrence of species of *Bidens* resistant to herbicides and the need for future alternatives for weed control, specifically in the case of *B. pilosa* and *B. subalternans*, there is a demand for studies on new molecules mainly from Brazilian native plants, where the high diversity of flora makes it possible. Therefore, the aim of this study was to evaluate the allelopathic potential of *Cymbopogon citratus* leaves extracts collected at different times of the day over the germination of *B. pilosa* and *B. subalternans*.

Results and Discussion

First trial - Extracts of Cymbopogon citratus and two collection periods

The interaction between collection period and extracts was not significant; therefore, the factors were analyzed separately, except for the variable G in the specie *Bidens pilosa* (Table 1).

Germination and germination speed index of Bidens pilosa

Once the germination percentage of *Bidens pilosa* was higher than 85% in the germination test, the INF and MAC extracts influenced the seed germination. The MAC extract suppressed greatly the seed germination for both periods of leaves collection. The control showed the highest germination values and significantly differed from the other treatments for both collection periods (Table 2).

Both extracts of *Cymbopogon citratus* were able to cause deleterious effects over the germination of *Bidens pilosa*, and MAC extract expressed the strongest influence (reducing near 35% of seed germination). The MAC extract collection periods (M and A) influenced the germination percentage, in which the morning collection caused more damage to the germination than the afternoon collection. The germination speed index for *B. pilosa* was not affected by the periods of collection. However, for both collection periods, the control extract exhibited the highest GSI values, differing from the other treatments. Once again, the MAC extract displayed the best results, holding back the GSI of this specie and differing statistically from the INF extract and the control (Table 2).

Several authors have claimed that the essential oil of *C. citratus* decreases root length in lettuce (Alves et al., 2004), and the germination of weed seeds, such as *Amaranthus blitoides*, *Amaranthus palmeri*, *Euphorbia hirta* L., *Sinapsis nigra*, *Trifolium campestre*, *Lycopersicum esculentum* L. and *Triticum aestivum* (Dudai et al., 1999). Fortes et al. (2009) noticed that *C. citratus* extract did not influence the germination and germination speed in soybean, but caused adverse effects on *B. pilosa*. In accordance to Souza et al. (1998), lemongrass extracts stimulated the root development in cotton (*Gossypium hirsutum* L.) and corn (*Zea mays* L.) and inhibited the development of purslane (*Portulaca oleracea* L.) and beggarticks (*Bidens pilosa* L.), which may indicate the exudate selectivity and potential future uses.

Germination and germination speed index of Bidens subalternans

For *Bidens subalternans*, the collection periods had no influence on G and GSI. The control and INF showed similar result regarding the germination (Table 3). The MAC extract suppressed seed germination for both G and GSI and was significantly different to INF and C, in both collection periods (M and A). The results point out the potential of *C. citratus* MAC extracts to reduce the germination of *B. subalternans* and *B. pilosa* seeds.

The collection periods had reduced effects on G and GSI for both *Bidens* species, which may be due to the similarity in the concentration of essential oils of lemongrass between the two collection times (Miranda et al., 2013; Do Nascimento et al., 2006). According to Miranda et al. (2013), in *Cymbopogon citratus*, the collection should be avoided at noon times, because there is a reduction in the essential oil content.

The superiority of the possible allelopathic effects of MAC in comparison to INF should be explained by the extraction method, where using tissue fragmentation is more efficient, since the secondary metabolites may be in certain organs, tissues or specific cellular structures (Hadaeck, 2002). Another important characteristic that could have affected the INF performance was the extraction temperature. A study conducted by Martins et al. (2002) reported that the drying temperature of 60°C decreased the volume of essential oil in *C. citratus* by 21%, when compared to extraction from fresh plant. According to the same author, the citral content decreased 3.5 and 12% with drying temperatures of 50 and 60°C, respectively.

The essential oils of *C. citratus* is primarily composed of monoterpenes, in which the essential components are geranial (43%) and neral (31%), which together form the citral (Oliveira et al., 2011). The terpenes present in the essential citral oil are isopentenyl diphasphate and its isomer dimethyl diphasphate both are produced at two sites. In the cytoplasm, they are produced via mevalonate (MVA) dependent pathway and in plastids produced in the metabolic pathway of methylerythritol 4-phosphate (MEP) (Nagesgowda, 2010). Studies have shown that *C. citratus* has antidepressant, antiseptic, astringent, bactericidal, fungicidal activities and sedative properties (Naik et al., 2010).

Second trial - Extracts concentrations of Cymbopogon citratus and two collection periods

The interaction among the factors such as collecting of extracts and concentrations was significant for the studied variables. So, the factors were analyzed with triple interaction, in both species (Table 4).

Germination and germination speed index of Bidens pilosa and Bidens subalternans

Regarding the germination percentage (G) in the morning period, MAC extract caused lower germination of *B. pilosa* with the 25, 75 and 100% concentration compared to INF. In the afternoon period collection, MAC was superior once again, reducing seeds germination at concentrations 25 and 100%. The collection period influenced the germination percentage only in concentrations of 25 and 50%, in which the morning collection had higher germination suppression in both extracts (Table 5).

The morning collection period presented higher concentration of secondary metabolites than the afternoon one, as the concentrations of such metabolites may fluctuate during the day (Gonçalves et al., 2009; Miranda et al., 2013; Do Nascimento et al., 2006). For *Bidens pilosa*, GSI in the morning was higher in INF compared to MAC, only in the concentration of 25%. In the afternoon, INF was superior to MAC in the concentration of 50%. The morning collection period resulted in lower GSI compared to INF in the MAC extract. For the INF extract, this
Table 1. ANOVA summary variables G and GSI of the two species of *Bidens*, in a 2×3 factorial design double, being the two collection periods and three ways of preparing extracts.

<table>
<thead>
<tr>
<th></th>
<th>Bidens pilosa</th>
<th>Bidens subalternans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr > F (probability of a greater F value)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F.V</td>
<td>G</td>
<td>GSI</td>
</tr>
<tr>
<td>Collec.</td>
<td>0.328</td>
<td>0.891</td>
</tr>
<tr>
<td>Ext.</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Collec.* Ext.</td>
<td>0.039</td>
<td>0.416</td>
</tr>
</tbody>
</table>

F.V - variation factors; Collec. - Hour collection (Morning and Afternoon); Ext. - Extracts (maceration extract, infusion extract and control); G (germination percentage) and GSI (germination speed index).

Table 2. Mean values of germination percentage and germination speed index of *Bidens pilosa* seeds undergoing treatment with aqueous extracts of *Cymbopogon citratus*, collected at different times of the day compared to the control without extracts.

<table>
<thead>
<tr>
<th></th>
<th>Bidens pilosa</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G (%)</td>
<td>GSI</td>
</tr>
<tr>
<td>Treatments</td>
<td>M</td>
<td>A</td>
</tr>
<tr>
<td>MAC</td>
<td>32.30Bc</td>
<td>41.25Ac</td>
</tr>
<tr>
<td>INF</td>
<td>60.00Ab</td>
<td>55.62Ab</td>
</tr>
<tr>
<td>C</td>
<td>83.75Aa</td>
<td>86.25Aa</td>
</tr>
<tr>
<td>Mean</td>
<td>58.75</td>
<td>61.04</td>
</tr>
<tr>
<td>CV %</td>
<td>9.32</td>
<td>9.74</td>
</tr>
</tbody>
</table>

*Mean values followed by different uppercase letters in the same row (p≤0.05 by F-test) and lowercase letters in the same column (p≤0.05 by T-test) are significantly different. MAC (maceration extract), INF (infusion extract); C (control); M (morning); A (afternoon); G (germination percentage) and GSI (germination speed index).

Fig 1. Linear regression of *Cymbopogon citratus* aqueous and infusion extracts (MAC, A); (INF, B) effects at different concentrations (0, 25, 50, 75 and 100%) in *Bidens pilosa* seed germination percentage, during two times of plant harvest (morning and afternoon).* significant (p ≤ 0.05).

Fig 2. Linear regression of *Cymbopogon citratus* aqueous and infusion extracts (MAC, A); (INF, B) effects at different concentrations (0, 25, 50, 75 and 100%) in *Bidens pilosa* germination seed index, during two times of plant harvest (morning and afternoon).* significant (p ≤ 0.05).
Table 3. Mean values of germination percentage and germination speed index of *Bidens subalternans* seeds undergoing treatment with aqueous extracts of *Cymbopogon citratus*, collected at different times of the day compared to the control without the use of extracts.

<table>
<thead>
<tr>
<th>treatments</th>
<th>MAC</th>
<th>INF</th>
<th>C</th>
<th>Mean</th>
<th>MAC</th>
<th>INF</th>
<th>C</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>G (%)</td>
<td>14.50Ab</td>
<td>47.00Aa</td>
<td>56.50Aa</td>
<td>39.33</td>
<td>16.00Ab</td>
<td>43.50Aa</td>
<td>51.50Aa</td>
<td>37.00</td>
</tr>
<tr>
<td>GSI</td>
<td>1.43 Ab</td>
<td>6.13Aa</td>
<td>10.02Aa</td>
<td>6.26</td>
<td>1.13</td>
<td>6.80Aa</td>
<td>11.81Aa</td>
<td>6.08</td>
</tr>
<tr>
<td>CV %</td>
<td>18.97</td>
<td>6.13Aa</td>
<td>10.02Aa</td>
<td>6.47</td>
<td>3.26</td>
<td>6.80Aa</td>
<td>11.81Aa</td>
<td>6.47</td>
</tr>
</tbody>
</table>

Mean values followed by different uppercase letters in the same row (p≤0.05 by F-test) and lowercase letters in the same column (p≤0.05 by F-test) are significantly different. MAC (maceration extract), INF (infusion extract); C (control); M (morning); A (afternoon); G (germination percentage) and GSI (germination speed index).

Fig 3. Linear regression of *Cymbopogon citratus* aqueous and infusion extracts (MAC, A); (INF, B) effects at different concentrations (0, 25, 50, 75 and 100%) in *Bidens subalternans* seed germination percentage, during two times of plant harvest (morning and afternoon).* significant (p ≤ 0.05).

Table 4. ANOVA summary variables G and GSI of the two species of *Bidens*, in a 2x2x5 triple factorial design, with two extracts, two times of collections, applied in five concentrations.

<table>
<thead>
<tr>
<th>Bidens pilosa</th>
<th>Bidens subalternans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr > F (probability of a greater F value)</td>
<td>G</td>
</tr>
<tr>
<td>F.V</td>
<td>0.000</td>
</tr>
<tr>
<td>Collec.</td>
<td>0.000</td>
</tr>
<tr>
<td>Ext.</td>
<td>0.000</td>
</tr>
<tr>
<td>Conc.</td>
<td>0.000</td>
</tr>
<tr>
<td>Collec.* Ext.</td>
<td>0.065</td>
</tr>
<tr>
<td>Ext.* Conc.</td>
<td>0.016</td>
</tr>
<tr>
<td>Conc.*Collec.</td>
<td>0.000</td>
</tr>
<tr>
<td>Conc.Collec. Ext.</td>
<td>0.042</td>
</tr>
</tbody>
</table>

F.V - variation factors; Collec. - Hour collection (Morning and Afternoon); Ext. - Extracts (maceration extract, infusion extract and control); Conc. - Concentrations (0, 25, 50, 75 and 100%); G (germination percentage) and GSI (germination speed index).

Fig 4. Linear regression of *Cymbopogon citratus* aqueous and infusion extracts (MAC, A); (INF, B) effects at different concentrations (0, 25, 50, 75 and 100%) in *Bidens subalternans* germination seed index, during two times of plant harvest (morning and afternoon).* significant (p ≤ 0.05).
was observed at a concentration of 25 to 50% (Table 5). In turn, for *B. subalternans*, the morning MAC extract reduced germination at the concentrations of 25 and 50% compared to INF. The afternoon MAC extract decreased germination of *B. subalternans* at the concentrations 25, 50 and 75%, compared to INF. Similarly to *B. pilosa*, the germination speed index was higher in the afternoon for INF at concentrations 25, 50 and 75%, compared to MAC. The same was true for the morning collection period (Table 6).

Extracts concentrations

The concentration assessment allowed fitting a significant linear regression for all variables. For *B. pilosa*, MAC promoted reductions of 0.63% and 0.74% in seed germination with the increase of 1% in the extract concentration for the morning and afternoon collection period, respectively (Fig. 1A). We observed reductions of 63.2 and 74.5% at the concentration of 100%, compared to control, for collections in the morning and afternoon, respectively. For INF (Fig. 1B), the reduction was of 0.55 and 0.66 with an increase of 1% in the extract concentration, for collections in the morning and afternoon, respectively. Reductions in germination by 56 and 66.4% were found with the concentration of 100% compared to control (concentration 0) for the collections in the morning and afternoon, respectively. The MAC provided greater potential to decrease germination in both collection periods and *B. subalternans* was less affected by the extracts. Fortes et al. (2009) achieved similar results using hot aqueous extract concentrations of *C. citratus* over the germination of *B. pilosa*. Results for the germination speed were similar to the germination percentage, for the MAC extract (Fig. 2A): every increase in the concentration of this extract reduced the germination speed by 0.12 and 0.15, for collections in the morning and afternoon, respectively. As for the INF extract, the germination speed decreased by 0.12 for collections in both periods (M and A). The weed emergence speed ensures a prior interference with the crop by competing for water, light and nutrients, and produces seeds before the end of the crop cycle. According to Souza et al. (1998), lemongrass extracts stimulated the development of roots in cotton (*Gossypium hirsutum*) and corn (*Zea mays*), and inhibited the development of purslane (*Portulaca oleracea*) and beggarweeds (*Bidens pilosa*), which demonstrates the potential use of these extracts as selective pre-emergent bio-herbicide in commercial crops, or even in the identification of a new molecule with herbicide potential.

Regarding *B. subalternans*, germination percentage (Fig. 3AB) was also increased with increasing concentrations of the extracts. For MAC and INF (Fig. 3AB), the largest decrease in germination was caused by 100% concentration in the morning, which provided a reduction of 67.6% and 71.6% over control, respectively. In relation to the slope, it was verified that for the MAC extract, there was a reduction in germination by 0.68 and 0.64 to each percentage increase of the extract concentration in the morning and afternoon, respectively (Fig. 3A). For INF, there was a decline of 0.72 and 0.62 in the germination percentage for collections in the morning and afternoon, respectively (Fig. 3B).

The germination speed index was also negatively affected by increasing concentrations. For MAC, there was a decrease in germination speed in the order of 0.10 and 0.08 for every percentage increase in the extract concentration in the collections in the morning and afternoon, respectively (Fig. 4A). For INF, the collection in the morning provided a reduction of 0.10 to each percentage increase in the extract concentration.
concentration. For INF extract, this reduction was of 0.08 (Fig. 4B).

In general, the two variables were reduced by increasing concentrations of C. citratus leaves extracts in both species of Bidens. However, there was no complete inhibition of germination or germination speed index after application of 100% extract concentration. This potential allelopathic effect may be related to substances found in the essential oil of C. citratus, including the alpha-citral (geranial) and beta-citral (neral), which corresponds to 70 to 85% its volume. These substances are acyclic monoterpenoid aldehyde, solely denominated citral (Guimaráes et al., 2008). In addition, myrcene can be related to these events (12 to 20% of oil volume) (Guimaráes et al., 2008).

The ability to influence the germination of seeds can be related to the decreased activity of α-amylase, responsible for breaking down starch and releasing many oligosaccharides that are remobilized for growth of the embryonic axis. The essential oil of C. citratus can present herbicidal effect due to the ability to reduce the α-amylase activity; thereby, reducing seed germination (Poonypaiboonpipat et al., 2013).

Alves et al., (2004), evaluated the effect of essential oil of C. citratus on seed germination and root length of lettuce and found that the concentration of 0.100 and 1% resulted in a total reduction of these variables. According to Dudai et al. (1999), C. citratus extract inhibited the germination of Amaranthus blitoides, Amaranthus palmeri, Euphorbia hirta L., Sinaps nigra, Trifolium campestri, Lycopersicum esculentum L. and Triticum aestivum when applied at 20-80 ppm, varying which soil employed in the experiment. Germination tests are important tools to identify plants with allelopathic potential, because they are simple to interpret (Souza et al., 2007), subsiding new strategies to advance in studies based on allelopathy. As verified by Alves et al. (2004); Dubai et al. (1999); Fortes et al. (2009); Souza et al. (1998), extract of C. citratus is a potential bioherbicide with pre-emergence activity, once it has the ability to decrease the germination of weeds.

Materials and Methods

First trial - Extracts of Cymbopogon citratus and two collection periods

This trial took place at Federal University of Paraná, Palotina Sector. The experiment was carried out in a BOD germination chamber, at a constant temperature of 25°C and 12 hours of light (3,800 lux), with daily evaluations during 26 days after sowing. The experiment was arranged in a completely randomized design, with five replications in a 2x3 double factorial design. The factor one was the two collection periods, 7:30h am (M) and 4:00h pm (A); and factor two consisted of three ways of preparing extracts: aqueous extract by maceration (MAC), aqueous extract by infusion (INF) and control with distilled water (C). Data was analyzed according to Pimentel-Gomes and Garcia (2002), subjected to variance analysis, and whenever significant, compared by Tukey test (p ≤ 0.05). The F-test was considered conclusive for the collection periods.

Second trial - Extracts concentrations of Cymbopogon citratus and two collection periods

The trial was carried out at same laboratory in a BOD germination chamber at a constant temperature of 25°C and 12 hours of light a day (3,800 lux). The experiment was evaluated daily for 26 days to determine the effects of concentration and extract in two collection periods. The completely randomized design was employed, with five replications in a 2x2x5 triple factorial design, with two extracts, MAC and INF; two times of collections, 7:30h am (M) and 4:00h pm (A); and five concentrations: 0, 25, 50, 75 and 100% crude extract, in which the concentration of 0% consisted of distilled water (as C).

Data were analyzed according to trial one. All the necessary breakdowns were made and the F-test was considered conclusive for the extracts and collection periods. We ran regression analysis (p ≤ 0.05) for concentration variable.

Plant materials

In both experiments, the extracts were tested for Bidens pilosa and Bidens subalternans. The seeds of both species were collected in farms, dried in shade and stored in a cool and dry place until trials. Prior to the experiment, germination tests were undertaken in order to assess their quality. The leaves of Cymbopogon citratus were collected to prepare the extracts.

Extracts preparation and condution

Leaves of Cymbopogon citratus were collected in the morning and afternoon, selecting only non-damaged or senescent leaves. In MAC, leaves were ground separately in a blender with distilled water for 2 minutes at a proportion of one part of fresh weight of the leaf to five parts of distilled water (1:5). The extract was filtered through cheesecloth and stored in amber vials under refrigeration at 12°C.

For the preparation of the extract by infusion (INF), leaves were chopped and immersed in distilled water at 100°C. They were set to rest until cooling and then filtered through cheesecloth and stored in amber vials under refrigeration at 12°C.

For both trials, 50 seeds of B. pilosa and B. subalternans were sown in transparent plastic boxes, Gerbox type (0.11 x 0.11 x 0.03 m). All gerboxes were lined with filter paper (germited), moistened with seven mL of extract, each corresponding to its treatment, and completed with three mL every seven days with its respective treatment concentration.

Data gathering

Analyses were made for percentage germination (G) and germination speed index (GSI). In both experiments, seeds with root length equal or higher than 2 mm were considered germinated. The germination speed index (GSI) was determined according to Ferreira and Borghezi (2008), by the formula: GSI = G1/N1 + G2/N2 + ... + Gn/Nn. Where: G1, G2... Gn = number of seeds or seedlings germinated on the day of observation and N1, N2 ... + Nn = number of days (hours) after sowing.

Conclusion

Aqueous extract by maceration of C. citratus leaves has greater effect in reducing the germination and germination speed of the genus Bidens compared to aqueous extract by infusion. The concentrations of the extracts interfere, inversely and proportionally, with the germination and germination speed. The collection periods had minor effects over the results. B. pilosa and B. subalternans are susceptible
to *C. citratus* extracts, indicating its allelopathy potential for these weed species.

References

