Expression of a gene encoding acetolactate synthase from rice complements two ilvH mutants in Escherichia coli

Md. Shafiqul Islam Sikdar1, Jung-Sup Kim2*

1Faculty of Biotechnology, Jeju National University, Jeju, 690-756, Korea and Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh
2Faculty of Biotechnology, Jeju National University, Jeju, 690-756, Korea

*Corresponding Author: biotech2020@jejunu.ac.kr

Abstract

Acetolactate synthase (ALS) is a thiamine diphosphate-dependent enzyme in the biosynthetic pathway leading to isoleucine, valine and leucine in plants. ALS is the target of several classes of herbicides that are effective to protect a broad range of crops. In this study, we describe the functional analysis of a gene encoding for ALS from rice (OsALS). Sequence analysis of an EST from rice revealed that it harbors a full-length open reading frame for OsALS encoding a protein of approximately 69.4 kDa and the N-terminal of OsALS contains a feature of chloroplast transit peptide. The predicted amino acid sequence of OsALS is highly homologous to those of weed ALSs among plant ALSs. The OsALS expression showed that the gene was functionally capable of complementing the two ilvH mutant strains of Escherichia coli. These results indicate that the OsALS encodes for an enzyme in acetolactate synthase in rice.

Keywords: acetolactate synthase, rice (Oryza sativa), sequence analysis, functional complementation, ilvH mutants

Abbreviations: ALS_Acetolactate synthase; BCAAs_Branched chain amino acids; Ile_Isoleucine; Val_Valine; Leu_Leucine; TPP_Thiamine diphosphate; CGSC_E. coli Genetic Stock Center; RGRC_Rice Genome Resource Center; ORF_Open reading frame; PCR_Polymerase chain reaction; Amp_Ampicillin; MM_M9 minimal medium; IPTG_Isopropyl β-D-thiogalactopyranoside.

Introduction

Most plants and microorganisms have full sets of biosynthetic pathways and their component enzymes; therefore they are able to synthesize all of their organic constituents from inorganic sources. In contrast, animals have complex dietary requirements due to their inability to synthesize some fatty acids, amino acids, and vitamins (Duggleby and Pang, 2000). The branched chain amino acids (BCAAs) like isoleucine (Ile), valine (Val) and leucine (Leu) are not synthesized by animals but it is essential for their life. The Ile, Val and Leu are synthesized in all plant parts as indicated by the ubiquitous presence of the mRNAs, the encoded proteins, and the activities of various enzymes of the pathway (Hattori et al., 1992). In plant and microbes, Val and Leu are synthesized by a common pathway that begins with the formation of 2-acetolactate from two molecules of pyruvate (Yoon et al., 2003). Ile is synthesized in a parallel pathway involved three more enzymes starting with the formation of 2-acetohydroxybutyrate from pyruvate and 2-ketobutyrate (Fig. 1). The acetolactate synthase (ALS, EC 4.1.3.18) is an enzyme that catalyzes the first step in the synthesis of the BCAAs leading Ile, Val and Leu. ALS belongs to a homologous family of thiamine diphosphate (TPP) dependent enzymes present in plants, algae, fungi, and bacteria (Gonzalo et al., 2010). ALS enzyme is substantially important because it is the target of several classes of herbicides, including all members of the popular sulfonylurea and imidazolinone families (Duggleby et al., 2008). Sulfonylureas and imidazolinones classes of compounds are notable for their high herbicidal potencies, their low mammalian toxicities, and, their selective toxicity for some analogs to weed species as compared to crop species (Levitt et al., 1981; Shaner et al., 1984). These compounds inhibit plant growth by inactivating an enzyme in biosynthetic pathways for essential amino acids, rather than by the alternate herbicidal mode of inactivating a component in photosynthetic pathway (Mazur et al., 1987). The ALS requires FAD, TPP and a bivalent metal ion, Mg2+ or Mn2+, for enzyme activity (Singh et al., 1988). The enzyme uses TPP as coenzyme in the condensation reactions, and Mg2+ is presumed to be required for the binding of TPP to the enzyme, as it is for other TPP-dependent enzymes (Muller et al., 1993). ALS-inhibiting herbicides do not act as analogs of the substrates and cofactors, suggesting that the inhibition mechanism is complex. The most active ALS research areas are the structural studies of the herbicide binding site, as well as herbicide resistant mutations (Yoon et al., 2003). The ALS genes have been identified, purified, and sequenced in a variety of microorganisms and plant species, such as Escherichia coli (Eoyang and Silverman, 1984), Saccharomyces cerevisiae, (Falco and Dumas, 1985; Kingsbury and McCusker, 2010), Mycobacterium tuberculosis (Choi et al., 2005), Triticum aestivum (Southan and Copeland, 1996), Arabidopsis thaliana (Chang and Duggleby, 1997), Nicotiana
Fig 1. The biosynthetic pathway for branched chain amino acids in plants. A figure was adopted and slightly modified from Nozawa et al (2005).

tabacum (Mazur et al., 1987; Yoon et al., 2010), and Hordeum vulgare L. (Yoon et al., 2003). The kinetic studies on inhibition of ALS enzyme by herbicides have been carried out with several bacterial ALS, which resembles the plant enzyme with regard to its sensitivity to herbicides, but is different in subunit composition and feedback regulation (Ray, 1984; Schloss et al., 1988). There are continuous demands to elucidate herbicidal mechanism and to improve nutritional qualities in rice which is a major crop in the world. These have initiated the application of molecular genetics approaches in determining gene functions and enzyme characteristics in amino acid biosynthesis of crop plants. Here, we report the analysis and characterization of a gene for ALS enzyme from rice.

Methods and materials

E. coli strains

Three E. coli strains were used in this study. The genotype of the strains was M1262 [hfr(P01), leuB6(Am), ilvH612, LAM-, relA1, spoT1, ilvB619, ilvG605(Am), ilvG603(Ac), thi-1] (Guardiola et al., 1974), FD1062 [hfr(P01), araC14, ilvH612, LAM-, glyA18, relA1, spoT1, ilvB619, bglR20, rbs-5::Tn5, ilvG468(Ac), thi-1] (Lawther et al., 1982), and Gif41 [hfr(P01), thrC1001, LAM-, c14+, relA1, spoT1, thi-1] (Theze et al., 1974), respectively. The Gif41 strain was utilized as a positive control and a wild-type for BCAAs biosynthesis. The strains were obtained from the E. coli Genetic Stock Center (CGSC) at Yale University, USA.

DNA sequence analysis

An expressed sequence tag (EST) clone (Genbank accession number AK242817, clone name J090063G17 and clone ID 302178), derived from rice cDNA library (Osato et al., 2002), was obtained from the Rice Genome Resource Center (RGRC), Japan. DNA sequencing and sequence analysis were described previously (Sikdar and Kim, 2010). The sequences were analyzed using BLAST (Wheeler et al., 2003), Clustal W multiple sequence alignment program (Thompson et al., 1994) or Biology Workbench 3.2 (http://workbench.sdsc.edu; San Diego Supercomputer Center; University of California San Diego, USA). Comparison of sequences was performed at the nucleotide and amino acid level. Protein localization was predicted by WoLF PSORT program (http://wolfsort.org) and phylogenetic tree with bootstrap value was prepared by using Mega 4.1- neighbor-joining program (Kumar et al., 2008).

Polymerase chain reaction (PCR) and recombinant constructs

The specific primers were designed from the sequence information around the translational start and stop codons of OsALS to amplify the full-length open reading frame (ORF) and to express the gene product in E. coli. Polymerase chain reaction (PCR) was conducted to amplify the full-length ORF. After the EST was purified from a pellet harvested from a liquid culture containing ampicillin (Amp), the ORF of OsALS was amplified from the EST clone as a template, and the following primers were designed from the OsALS sequence: OsALS-F (5'-AAAGCTTATAGAACCAAGCTCTCTCCC-3') and OsALS-R (5’-AAAGCTTGCCATACCCACTCTTATGGG-3') using Taq polymerase (Perkin-Elmer, U.S.A). The underlined bases in the OsALS-F and OsALS-R primers are the designed restriction sites for HinDIII to facilitate subcloning. The PCR reaction was conducted using a MYCycler™ PCR system (BioRad, USA) for 35 cycles with 95°C for 1 min, 55°C for 1 min, and 72°C for 1 min, with 10 μM primers. The PCR products were analyzed on 1% (w/v) agarose gel. The amplified fragment (1.6 kb) was then subcloned into pBluescript II KS- (Stratagene Inc., U.S.A) as a HindIII restriction sites for HindIII to facilitate subcloning. The PCR reaction was conducted using a MYCycler™ PCR system (BioRad, USA) for 35 cycles with 95°C for 1 min, 55°C for 1 min, and 72°C for 1 min, with 10 μM primers. The PCR products were analyzed on 1% (w/v) agarose gel. The amplified fragment (1.6 kb) was then subcloned into pBluescript II KS- (Stratagene Inc., U.S.A) as a HindIII fragment, to give pB::OsALS. Restriction analysis was conducted in an effort to confirm the recombinant DNA of pB::OsALS with the right orientation for expression.

Functional complementation and growth assay

Two competent ilvH mutant strains of E. coli, M1262 and FD1062, were transformed with pB::OsALS via electroporation (ECM399, BTX, USA) after preparing competent cells (Kim
Fig 2. Amino acid sequence alignment of ALSs using Boxshade program after Clustal W alignment. Amino acids that are from completely identical to less similar amino acid residues are visually shown consequently as green, yellow and cyan, respectively. GenBank accession numbers are as follows: AK242817 (OsALS from *Oryza sativa*, this study), CAD24801 (AmALS from *Alopecurus myosuroides*), AAK68759 (AtALS from *Arabidopsis thaliana*) and NP_418127 (EcALS from *E. coli*). The possible cleavage site of chloroplast transit peptide in OsALS is indicated by an arrow.

and Leustek, 1996) using a cuvette with a 0.1 cm electrode gap, then plated on LB medium (20 g L⁻¹) with Amp (100 µg mL⁻¹). The growing culture was tested for growth retardation in M9 minimal medium (MM) [5 x M9 salts (200 mL L⁻¹), 1 M MgSO₄ (2 mL L⁻¹), 1 M CaCl₂ (0.1 mL L⁻¹)], containing Amp (25 µg mL⁻¹), 20% glucose, 1 mM isopropyl β-D-thiogalactopyranoside (IPTG) and 18 amino acids (Sigma, Germany) each at a concentration of 25 µg mL⁻¹, excluding Ile and Val. The *E. coli* mutants harboring the pB::OsALS construct or control plasmid, and wild type with control plasmid were grown at 37°C in MM with IPTG, 20% glucose (20 mL L⁻¹), containing 18 amino acids and Amp (25 µg mL⁻¹), excluding Ile and Val. The bacterial growth was monitored via optical density measurements at 595nm (OD₅₉₅) using a spectrophotometer (UV1101, Biochrom, England) at one-hour intervals (Sikdar and Kim, 2010). After 12 h, the diluted culture was plated and incubated overnight at 37°C for survival test.

Results

Sequence analysis of OsALS

An EST clone (GenBank accession number AK242817) obtained from the RGRC was analyzed to determine the nucleotide sequence. The cDNA (OsALS) sequence harbored a full-length ORF encoding for a protein of approximately 69.4 kDa. The N-terminal of OsALS contains several alanine and hydroxyl amino acids, a feature of plastid transit peptide, and is
predicted localization to chloroplast with a possible cleavage site between 18 and 19 amino acid by WoLF PSORT program. The expected isoelectric point of the protein was 6.5. Data analysis revealed that the OsALS sequence was identical to the OsALS from Oryza sativa, XP_002511176 (ReaALS from Ricinus communis), CAA87084 (GhALS from Gossypium hirsutum), AAR06607 (CnALS from Camelina microcarpa), AAK67859 (AtALS from Arabidopsis thaliana), ACF17639 (CaALS from Capsicum annuum), AAK50821 (ApALS from Amaranthus powellii), AAT07325 (HaALS1 from Helianthus annuus), AAT07327 (HaALS2 from Helianthus annuus), BAF57909 (StSLS from Sagittaria trifolia), BAH60833 (SpALS from Sagittaria pygmaea), BAE97677 (SjALS from Schoenoplectus mucronatus), BAI44129 (ZjALS from Zosia japonica), CAD24801 (AmALS from Aloepecurus myosuroides), NP_418127 (EcALS1 from E. coli), YP_543276 (EcALS2 from E. coli), EDV11602 (ScALS from Saccharomyces cerevisiae). Numbers on branches are percentages of bootstrap analyses supporting the grouping of each branch.

Discussion

The BCAAs, Val, Leu and Ile, are three among 10 essential amino acids and important in animals and human diets. A biosynthetic enzyme ALS for Ile and Val is an attractive target for antimicrobial drugs and herbicides, since the biosynthetic pathway for Ile and Val is not present in mammals (Kingsbury and McCusker, 2010). The biosynthetic pathway of BCAAs feeds carbon into the three different amino acids, therefore the flow of carbon must be tightly regulated so that no one of these amino acids becomes limiting for plant growth (Singh and Shani, 1995). In plants and microbes, ALS is a key enzyme for several plant groups and far from bacterial and yeast ALS (Fig. 3). Branching pattern and numbers at nodes indicate levels of bootstrap support based on neighbor-joining analysis of 1000 re-sample data sets.

Functional complementation of OsALS in E. coli

The recombinant DNA, pB::OsALS, was constructed using the ORF of a PCR-amplified OsALS fragment. After the transformation of E. coli with the recombinant DNA, OsALS activity was monitored in vivo in a medium containing IPTG and 18 amino acids, excluding Ile and Val. Functional complementation was performed using the ALS mutants of E. coli to confirm the enzyme activity of the gene product of OsALS. To assess the viability of E. coli cells by OsALS activity, the OsALS-expressing cells were cultured for 12 h with shaking, and the diluted portion was plated on agar medium containing Amp (25 mg mL⁻¹) and the 18 amino acids without Ile and Val (Fig. 4). The viable colonies greatly differed among the plasmids. The ilvH mutants of E. coli with pB::OsALS co. A grow under conditions in which the mutant with control plasmid could not. A growth study was performed further to determine whether the OsALS gene would increase survival of bacterial cells of the ilvH mutants. The pB::OsALS construct was transformed into the two ilvH mutant strains of E. coli, M1262 and FD1062. A control plasmid was also transformed into wild type (Gif41) and the ilvH mutants. The OsALS activity was monitored via a growth assay of the transformed E. coli strains in MM with 18 amino acids excluding Ile and Val, containing IPTG and Amp. The wild type E. coli strain Gif41 harboring the control plasmid grew normally and showed an S-shaped classical growth curve in the medium without Ile and Val. The Gif41 strain could synthesize Ile and Val itself, and thus grew normally in the medium. Both of the ilvH mutant strains, M1262 and FD1062, expressing pB::OsALS also grew normally and evidenced an S-shaped classical growth curve in the same medium, similar to the wild type strain containing the control plasmid (Fig. 5A & 5B), although the M1262 and FD1062 strains harboring the control plasmid in the same medium without Ile and Val evidenced dramatically retarded growth. In this case, the ilvH mutant strains of E. coli, M1262 and FD1062, could not synthesize Ile and Val itself, and thus could not grow in the medium; however, the same ilvH mutant strains harboring pB::OsALS grew well because the ilvH mutants were able to synthesize Ile and Val using rice ALS expressed by the pB::OsALS plasmid (Fig. 5A & 5B). These results led us to the conclusion that OsALS confers the ability to functionally complement the inability of the ilvH mutants to produce Ile and Val and the rice gene of OsALS encodes an enzyme for functional acetolactate synthase.

Fig 3. Phylogenetic analysis of OsALS-related proteins using Clustal W and Mega4.1 neighbor-joining program. GenBank accession numbers are as follows: AK242817 (OsALS from Oryza sativa), XP_002511176 (ReaALS from Ricinus communis), CAA87084 (GhALS from Gossypium hirsutum), AAR06607 (CnALS from Camelina microcarpa), AAK67859 (AtALS from Arabidopsis thaliana), ACF17639 (CaALS from Capsicum annuum), AAK50821 (ApALS from Amaranthus powellii), AAT07325 (HaALS1 from Helianthus annuus), AAT07327 (HaALS2 from Helianthus annuus), BAF57909 (StSLS from Sagittaria trifolia), BAH60833 (SpALS from Sagittaria pygmaea), BAE97677 (SjALS from Schoenoplectus mucronatus), BAI44129 (ZjALS from Zosia japonica), CAD24801 (AmALS from Aloepecurus myosuroides), NP_418127 (EcALS1 from E. coli), YP_543276 (EcALS2 from E. coli), EDV11602 (ScALS from Saccharomyces cerevisiae). Numbers on branches are percentages of bootstrap analyses supporting the grouping of each branch.
Fig 4. Functional complementation assay for OsALS. The ilvH mutant strain of E. coli, M1262, containing pB::OsALS or control plasmid and wild-type strain of E. coli, Gif41, containing control plasmid.

Fig 5A. Growth curves of an E. coli mutant M1262 harboring pB::OsALS or control plasmid and wild type strain Gif41 with control plasmid. Bacterial cells were grown at 37°C in MM containing 18 amino acids except Ile and Val. Bacterial growth was monitored via optical density measurements at 595 nm (OD_{595}). Symbols: ▲, M1262 + pB::OsALS; ●, wild type + control; Δ, M1262 + control.

Fig 5B. Growth curves of an E. coli mutant FD1062 harboring pB::OsALS or control plasmid and wild type strain Gif41 with control plasmid. Bacterial cells were grown at 37°C in MM containing 18 amino acids except Ile and Val. Bacterial growth was monitored via optical density measurements at 595 nm (OD_{595}). Symbols: ▲, FD1062 + pB::OsALS; ●, wild type + control; Δ, FD1062 + control.

the BCAAs pathway, and specific inhibitors of ALS can be used as antibiotics or herbicides (Chaleff and Mauvais, 1984; Shaner et al., 1984). The well-known class of herbicides sulfonylureas inhibits enzyme activity of ALS in the biosynthesis of BCAAs in plants. The role of ALS in BCAAs pathway has been demonstrated in several bacteria and plants including E. coli and A. thaliana (Eoyang and Silverman, 1984; Chang and Duggleby, 1997). Recently, the functional relationships between ALS and rice mutants were analyzed by using gene analysis and transgenic rice plants (Okuzaki et al., 2007; Tougou et al., 2009). The recent research surrounding ALS is more focused to herbicide resistance and selection marker than the role in amino acid synthesis and nutritional improvement in plants. Okuzaki and Toriyama (2004) showed that a predicted ALS gene after complete genome sequencing of rice was targeted to modify a specific base using chimeric RNA/DNA oligonucleotide to be resulted in resistance to herbicides. The research group was further reported a mutated ALS gene from rice conferring specific resistance to pyrimidinylcarboxy herbicides (Okuzaki et al., 2007). Transgenic soybeans were produced recently using the mutated ALS gene from rice as the selectable marker (Tougou et al., 2009). Therefore, an attempt was made to characterize a gene for ALS from rice. Based on the results of a database search, there is an ALS gene (OsALS) in rice genome. The full-length OsALS cDNA encodes a 69.4 kDa protein which is highly homologous to ALSs from plants. The OsALS is more homologous to those from weeds than those from dicotyledon plants. These findings suggest that OsALS is more closed related evolutionally to weeds such as A. myosuroides or Z. japonica than to dicotyledon plants or bacteria. Our group previously reported several genes encoding cystathionine γ-synthase from Arabidopsis thaliana (Kim and Leustek, 1996), diaminopimelate decarboxylase from rice (Kim and Lee, 2006), and threonine synthase from rice (Sikdar and Kim, 2010) by functional complementation using E. coli mutants. The molecular genetics approach using E. coli mutants to characterize plant metabolic genes are proven as a powerful tool. In this study, an ALS gene of rice was analyzed using bioinformatics tools and expressed in two ilvH mutant strains of E. coli. Our report on the functional characterization of a gene encoding OsALS in rice confirms again the role of OsALS along with the previous reports with in vivo gene targeting, mutated gene analysis and transgenic approach in rice (Okuzaki and Toriyama, 2004; Okuzaki et al., 2007; Tougou et al., 2009). The analysis showed that OsALS is able to complement the ilvH mutants of E. coli whose system would be applied easily to screening of herbicides. Our report of the functional characterization of a
cDNA encoding ALS from rice demonstrates indirectly that OsALS functions as ALS enzyme. The ALS gene could be used as a selection marker for future application to improve or develop the herbicide-resistant plants and also reintroduced into crop plants to improve nutritional qualities in cereal foods.

Acknowledgements

We wish to thank Rice Genome Resource Center (RGRC), National Institute of Agrobiological Science (NIAS), Japan and E. coli Genetic Stock Center (CGSC) at Yale University for providing an EST clone AK242817 and the ilvH mutants (CGSC # 5769 and 6685) of E. coli, respectively. We also thank Su-Mi Son, Seong-A Kang, Ji-Won Cha, Min-Ju Kim and Ji-Hyun Hyun for their technical assistance. This research was reported partially in the Ph.D. dissertation of MSI Sikdar (2010).

References

