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Abstract 

 

The spatial characterization of Fe oxides (hematite and goethite content) has usually been made by ordinary kriging (OK) considering 

the variogram parameters. However, OK softens local details of the spatial variation, overestimating small values and under-

estimating high ones. Thus, Trans-Gaussian Kriging (TGK) becomes an alternative to have a robust estimation of the variogram, 

reducing outlier effects. The objective of this study was to evaluate OK and TGK algorithm performances in estimating and mapping 

goethite and hematite iron oxides in two hillslope curvatures on an Alfisol in Catanduva, São Paulo State, Brazil. Two sampling areas 

were selected, one concave landscape and another convex landscape. Then, over each area, a 1-ha sample grid with regular spacing of 

10 × 10 m, totaling 121 sample points of soil per area, was selected. The mineralogical analysis was performed in each sample to 

determine hematite and goethite contents. Moreover, to meet TGK criteria, data were previously converted to standard normal 

transformation, whereas OK data were not transformed. The TGK estimates presented improved accuracy mapping from 0.84 to 

11.1% for the Gt and from 8.23 to 0.76% for the Hm content in concave and convex hillslope curvature, respectively. In general, the 

TGK estimates reproduced the best results. Moreover, the conditional cumulative distribution function and experimental variogram 

were better reproduced by TGK estimates than OK. The TGK is recommended for estimation of a more stable robust variogram in Fe 

oxide mapping with strong variability, when higher efficiency and accuracy are required. Hillslope curvatures influenced the 

interpolation efficiency and accuracy of interpolation. Relief classification is as much important as the variogram modeling for a 

greater efficiency and it would improve digital modeling of Fe oxides. The OK maps for Fe oxides should be cautiously used due to 

its uncertainty, especially in different hillslope curvatures mappings. 

 

Keywords: Mapping; Pedometric; Robust kriging; Goethite; Hematite. 

Abbreviations: CV_Coefficient of Variation; DEM_Digital Elevation Model; DSM_Digital soil mapping; GPS_Global Positioning 

System; MSE_Mean Square Error; R2_Correlation Coefficient; RSS_Residual Sum of Square; OK_Ordinary Kriging; TGK_Trans-

Gaussian Kriging. 

 

Introduction 

 

Goethite (Gt) and hematite (Hm) iron oxides are good 

pedogenetic indicators for tropical soils (Schwertmann and 

Taylor, 1989; Kämpf and Curi, 2000; Bigham et al., 2002). 

Their spatial variability is correlated with soil physical and 

chemical spatial variability and influenced by relief 

(Camargo et al., 2012, 2013a,b). Therefore, the spatial 

variability characterization of these oxides becomes an 

important tool to identify and to map homogeneous soil areas 

at varied scales, allowing the setting of soil sampling 

strategies (Goovaerts, 2001, Campos et al., 2006, Camargo et 

al., 2012, 2013a,b). In this regard, the recommended tool for 

spatial variability characterization and Fe oxides mapping 

within landscape is geostatistics (Wilding and Drees 1983), 

not only to produce spatial distribution maps, but also to 

assess efficiency and accuracy, in which they are being 

generated by the geostatistical methods. From the most 

commonly used methods to determine various spatially 

related quantities; Ordinary Kriging (OK) is widely used for 

soil attributes. The OK may characterize one or more 

variability parameters in space and/or time, thus being useful 

for precision agriculture management. The prediction by OK 

does not require a normal distribution of data. However, input 

data normality is crucial for map interpolation with a strong 

sense of security (Kerry and Oliver, 2007). Several authors 

are already considering a normal standardized transformation 

with the use of kriging methods (Goovaerts, 1999). The 

corresponding spatial interpolation of kriging is called Trans-

Gaussian Kriging (TGK) (Cressie 1993). In the literature, 

there are many examples of the TGK, which provides a 

robust estimation of the variogram, reducing outlier effects 

(Emery, 2006; Robinson and Metternicht, 2006; Yamamoto 

and Chao, 2009; Silva Júnior et al., 2012a,b). It is believed 

that TGK may supply more accurate estimations and maps of 

Fe oxides, helping to identify cause-effect relationships of 

them with crop yield and quality. The aim of this study was to 

evaluate OK and TGK algorithm performance in estimating 

and mapping of the goethite and hematite Fe oxides on two 

hillslope curvatures on an Alfisol in Catanduva, São Paulo 

State, Brazil. 
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Results and Discussion 

 

Soil properties  

 

The Fe oxide contents presented the highest mean values in 

the convex hillslope curvature (Table 1). This result can be 

explained by the landscape position that favors intense 

leaching, weathering and erosion. Within this area, A+E 

horizon thickness was smaller, which made each sampled 

layer to be more influenced by Bt horizon, with greater 

content of clay and Fe oxides (Camargo et al., 2013a). 

Montanari et al. (2010) found similar results, where they 

characterized the clay fraction mineralogy of an Oxisol at 

different relief features, and found the highest oxide 

concentrations in convex hillslope. The lowest mean values 

of Fe oxide contents in concave hillslope curvature may be 

because it favors a lower soil-weathering rate. The data 

supported the normality hypothesis for the goethite (Gt) in 

both hillslope curvatures (p>0.01; Anderson-Darling test); 

and for hematite (Hm) in convex curvature (p>0.05; 

Anderson-Darling test). According to the classification 

proposed by Warrick and Nielsen (1980), oxide content 

coefficients of variation (CV) indicated a medium variability 

for both hillslope curvatures. The CVs for the Gt and Hm 

contents were higher in the concave than convex area. Cunha 

et al. (2005) and Montanari et al. (2010) explained that this 

high variability is due to the position, where the material 

from higher ground is deposited. Additionally, there is a 

greater variability of Gt in relation to Hm contents for both 

hillslope curvatures. These results agree with those found by 

Camargo et al. (2008) in Oxisols. As reported by Inda Júnior 

and Kämpf (2005), a lower variation of Hm is due to greater 

specificity in this mineral formation than in Gt, which is more 

sensitive to environmental changes. 

 

Spatial variability characterization of Fe oxides 

 

Mathematical models adjusted to the variograms by 

geostatistics techniques showed a spatial dependence 

structure, and the spherical model provided the best fit in 

both areas (Table 2). This model also best fitted all 

standardized variogram.  Moreover, such model is widely 

used in spatial variability studies in soil science (McBratney 

and Webster, 1986). Value range found for the Gt and Hm 

variograms were higher in the convex hillslope curvature, 

with and without transformation. This finding indicates large 

spatial continuity within the area compared to concave 

curvature. This spatial continuity can be attributed to the 

shallow and lateral flow of drainage water in convex areas, 

generating specific environments that play an important role 

in pedogenic processes, favoring larger spatial homogeneity 

compared with the concave curvature (Montanari et al., 

2008). Conversely, the slightest value range in the concave 

hillslope curvature (Table 2) confirmed the greater variability 

by the highest CV values in this area (Table 1). The value 

ranges were 30.79 m and 41.0 m for Gt; 30.50 m and 50.0 m 

for Hm in concave and convex areas without data 

transformation, respectively (Table 2). Data processing for a 

standard normal distribution with zero mean and unit 

variance (eq. 7) did not change the spatial continuity of the 

Fe oxides contents. The value ranges were 30.00 m and 40.82 

m for Gt, 28.76 m and 54.50 m for Hm in concave and 

convex hillslope curvature, respectively (Table 2). Therefore, 

the standardized variogram remained similar after changing 

the oxide of the experimental variogram. Delbari et al. 

(2009), assessed the uncertainty of water availability in soil, 

and reported that the normal transformation of the observed 

data did not alter sample intrinsic spatial characteristic. 

According to Kim et al. (2008), relief is a major feature in 

determination of spatial distribution of soil attributes. 

Furthermore, using a numerical classification method and the 

digital elevation model for soil attribute distribution, Silva 

Júnior et al. (2012b) found that the spatial variability of soil 

attributes are dependent on landscape models. The SDDs of 

Fe oxides sample and standardized data (Table 2) were 

classified as moderate in both areas (Cambardella et al., 

1994). The Hm and Gt contents had a high nugget effect in 

both areas, suggesting that there may be non-detected spatial 

variability within short sampling distance (10 m) combined 

with possible laboratory measurement, sampling errors and 

others. 

 

Interpolation maps and validation indexes 

 

The marked squares in the delineation maps of each Fe oxide 

for both hillslope curvatures show overall visual differences 

of the two tested methods for spatial characterization (Fig 2). 

These maps show that OK under-estimates the Gt content in 

convex hillslope curvature, compared to TGK. Therefore, 

OK-estimated lower concentrations do not express real 

values. Also, such fact may interfere, when applied for a site-

specific phosphate fertilizer application, in view of 

phosphorus and oxide under-estimation, so providing 

deficient amounts for each plant, since phosphorus amount is 

determined by Fe oxides. Lookman et al. (1995) points out 

negative results of under-estimation and over-estimation for 

sorption capacity of Fe and Al oxides using OK estimation. 

After estimating Hm and Gt content through OK and TGK, it 

was performed a validation of the maps (Table 3). The ME 

values were negative for the Gt and positive for Hm in both 

evaluated methods, indicating over-estimation (positive 

values) or under-estimation (negative values) to the spatial 

predictions (Chirico et al., 2007). The RMSE values were 

higher for the Hm and Gt in the concave curvature in both 

methods, except for OK estimates of Hm content. This may 

happen because of the greater variance of this oxide in the 

referred environment influencing a negative impact on the 

model ability. The RMSEr values were less than 40% for Gt 

content in the convex area estimated by both methods, and 

Hm content in both areas estimated by TGK and in concave 

estimated by OK. Thus, it indicates that the models explain 

more than 85% of the variability of the dataset validation 

(Hengl, 2009). The smallest RMSEr values were found for 

the oxides in the convex hillslope curvature, except for OK 

estimates of Hm that was 1.07. Relative improvement (RI) 

was positive for TGK estimates, showing improvement of 

0.84 and 11.1% for the Gt and 8.23 and 0.76% for the Hm 

content in concave and convex hillslope curvature, 

respectively (Table 3). This might reinforce the hypothesis 

that TGK has greater advantages over OK in a more realistic 

representation of Fe oxide mapping. These results agree with 

McGrath et al. (2004) that found efficiency of box-cox 

transformation of data to weaken negative effect of outliers. 

For both methods, Fe oxide contents in the convex curvature 

presented mean G values of 0.6, which is near 1, indicating 

better accuracy of conditional cumulative distribution 

function (CCDF). Moreover, it was possible to observe that 

TGK G value is about 10% higher than the OK one (Table 3). 

This, again, reinforces Cressie and Hawkins (1980) 

hypothesis on a negative influence of higher variance values  
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 Table 1. Descriptive statistics for the iron oxide contents in the studied soil samples. 

Hillslope 

curvatures 

Mean Median Min a Max b SD c CV d Skewness Kurtosis p e 

Goethite content (g kg–1) 

Concave 10.52 10.35 0.80 23.90 3.82 36.39 0.39 1.44 0.04 

Convex 13.24 13.13 7.14 23.52 3.02 22.80 0.45 0.60 0.72 

 
Hematite content (g kg–1) 

Concave 12.47 12.70 0.70 28.60 4.29 34.40 0.63 3.50 <0.01 

Convex 23.20 23.10 12.92 33.29 3.78 16.29 0.14 0.06 0.72 
 (N=108); aMinimum; bMaximum; cStandard deviation; dCoefficient of variation (%);  ep >0.05 (normal distribution, Anderson–Darling test). 

 

 
Fig 1. Digital elevation model, location of the studied area and the sampling grids in concave and convex hillslope curvatures. 

 

to the variogram models; and consequently, the performance 

of spatial interpolators. Additionally, Zwertvaegher et al. 

(2013) proved that an increased model quality will probably 

affect regression kriging. A TGK major efficiency was 

indicated by  values to reproduce the experimental 

variogram of reference as long as they are near zero, 

especially in convex hillslope curvature, except for the Gt in 

concave hillslope curvature. It could be related to the high 

kurtosis value (1.44) for the Gt content in the concave 

hillslope curvature. Therefore, the theory of Webster and 

Oliver (2009) proved that variogram models are sensitive to 

outliers, so data transformation is recommended. Thus, it was 

proven that TGK is indicated for oxides with higher 

variability for a better decision making with respect to 

mapping efficiency by geostatistical methods. Characterizing 

spatial variability of Fe oxides in landscapes is essential since 

landscape models are designed to predict this mineral 

distribution in soil and spatial modeling. In addition, the 

knowledge on landscape important properties such as land 

surface, homogeneity and various discontinuity types at 

natural boundaries between geomorphic units are crucial 

(Minár and Evans et al., 2008). Therefore, spatial variability 

is landscape model dependent (Silva Júnior et al. 2012a, b). 

Such a fact importance was confirmed by Siqueira et al. 

(2010), who concluded that hillslope curvatures divisions 

helped to understand the relationship between physical and 

hydrologic soil attributes, influencing citrus yield. Later, 

Camargo et al. (2012) verified that slight hillslope curvature 

identification is valuable to understand their influence on soil 

organic matter and available phosphorus contents, as well as 

kaolinite and Fe and Al oxide attributes. This reinforces that 

OK maps for Fe oxides should be used cautiously due to its 

uncertainty, especially in different slight hillslope curvatures. 

It can; therefore, be assumed that there is no "flawless" 

spatial interpolator since a "best" method works just at 

specific situations (Isaaks and Srivastava, 1989). However, 

the findings of the current study state that TGK maps are 

more preferable than OK, as long as the first brings higher 

accuracy, especially for convex hillslope curvature, or in any 

data with outlier values. Zhu and Lin (2010) compared the 

ordinary kriging and regression kriging for soil, and reported 

that Ok being generally preferable in the gently-rolling 

agricultural landscape. Thus, if the planner chooses the OK 

method for convex hillslope curvature maps, it may induce 

errors in decision-making processes related to soil 

management and Fe oxides.  

 

Materials and Methods 

 

The study area and soil sampling  

 

The study area was located in Catanduva city, Northwestern 

São Paulo State, Brazil, at 21o 05' S latitude and 49o 01' W 

longitude. According to the Köppen method, the local climate 

is classified as hot humid tropical type (Aw); with dry winter; 

annual average rainfall of 1,350 mm; and temperature of 23 

°C (above 22 °C in the warmest month and 18 °C in the 

coldest one); and relative humidity of 74%. The nature of soil  
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 Table 2. Variogram parameters of spherical model to the standardized and experimental data of soil iron oxides. 

Hillslope curvatures C0 
a  C0+C1 

b a c  C0/(C0+C1 )
 d R2 RSS e 

(sample) Goethite content 

Concave 3.90 12.60 30.79 30.95 0.82 1.38 

Convex 3.28 13.10 41.00 25.03 0.90 5.21 

(sample) Hematite content 

Concave 3.19 10.10 30.50 46.17 0.79 1.73 

Convex 4.29 10.20 50.00 42.05 0.91 1.60 

Standardized Goethite content 

Concave 0.23 0.68 30.00 28.39 0.92 2.8×10-3 

Convex 0.47 0.84 40.82 55.95 0.89 7.2×10-3 

Standardized Hematite content 

Concave 0.38 0.76 28.76 49.93 0.74 7.3×10-3 

Convex 0.37 0.77 54.50 47.73 0.94 5.9×10-3 

(N=108); aNugget effect; bSill; cRange (m); dDegree of spatial dependence; eResidual sum of square 

 
Fig 2. Spatial pattern of goethite and hematite contents (g kg-1) in concave and convex hillslope curvatures by ordinary kriging (OK) 

and trans-Gaussian kriging (TGK). 
 

 

Table 3. Mean error index (ME), root of mean squared error (RMSE), relative root of mean squared error (RMSEr), relative 

improvement (RI), reproduction of conditional cumulative distribution function (G) and accuracy in the reproduction of the 

variogram () for iron oxides calculated from the external validation in concave and convex hillslope curvature. 

(N=13); aTrans-Gaussian kriging; bOrdinary kriging. 

 

 

 

 

 

 

Validation Hillslope curvatures TGKa OKb TGK OK 

  Goethite content Hematite content 

ME 
Concave -0.63 -0.86 0.58 0.32 

Convex -0.68 -0.65 0.63 10.78 

RMSE 
Concave 4.77 4.73 1.56 1.70 

Convex 0.40 0.45 1.17 4.05 

RMSEr 
Concave 1.25 1.24 0.36 0.40 

Convex 0.13 0.15 0.31 1.07 

RI 
Concave 0.84 - 8.23 - 

Convex 11.11 - 0.76 - 

G 
Concave 0.64 0.53 0.30 0.30 

Convex 0.69 0.57 0.60 0.54 

 
Concave 5.74 5.20 3.17 5.57 

Convex 4.37 5.14 2.95 4.25 
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source materials is defined as sedimentary sandstone rocks 

from the Bauru Group, Adamantina Formation (IPT, 1981). 

The soil was classified as Typic Hapludalf (Soil Survey Staff, 

1999). Local natural (primary) vegetation is classified as a 

closed tropical rainforest, currently being cropped with 

sugarcane mainly, and under 20-year burn harvest. Area 

characterization was made through aerial photographs on a 

1:35,000 scale, describing altimetric profile and performing 

geomorphological and pedological classification. Field 

measurements helped in hillslope curvature classification as 

described by Troeh (1965), using a designed digital elevation 

model (DEM) (Fig 1). Two areas were observed, one with 

convex and another with concave hillslope curvatures. So, in 

each area a 1-ha sample grid was defined with regular spacing 

of 10 x 10 m, totalizing 121 georeferenced sample points per 

area (Camargo et al., 2010). 

 

Mineralogical analysis   

 

The soil samples were treated with NaOH 0.5 N and 

subjected to mechanical stirring for 10 minutes to disperse 

particles. Following this pre-treatment, a 0.05 mm sieve was 

used to separate the sand fraction. Then, a centrifugation at 

1,600 rpm divided the silt and sand fractions. The operation 

time was based on temperature at the analysis time. The clay 

suspension was flocculated with concentrated HCl and 

centrifuged at 2,000 rpm for 2 minutes. Next, the Fe oxides 

were extracted with sodium dithionite-citrate-bicarbonate 

(Fed) following the method proposed by Mehra and Jackson 

(1960). The Gt and Hm were determined through X-ray 

diffraction, held after clay treatment with 5-mol L-1 NaOH 

(100 ml solution/ 1 g clay), according Norrish and Taylor 

(1961) and modified by Kämpf and Schwertmann (1982). 

The Gt/ (Gt+Hm) ratio was calculated using the sample 

diffractogram of the area under the Hm (012) and Gt (110) 

reflexes. From this ratio, the Gt-110 reflection area was 

multiplied by 0.35 because the intensity of the Hm-012 is 

35% (Kämpf and Schwertmann, 1998). The Fed% was 

converted into Gt content when multiplied by the Gt/(Gt + 

Hm) and then by 1.59. Subsequently, Hm content was found 

by subtracting the Fe% from FedGt% and multiplying by 

1.43, as the equations below: 

[Gt/(Gt + Hm)] × Fed% = FeGt%                     (Eq. 1) 

FeGt%  × 1,59 = FeOOH = Gt%                    (Eq. 2) 

Fed% - FeGt% = FeHm%                               (Eq. 3) 

FeHm%  × 1,43 = Fe2O3 = Hm%                    (Eq. 4) 

 

Statistical and geostatistical analysis  

 

Initially, iron oxide variability was evaluated by descriptive 

statistics (mean, median, standard deviation, CV, skewness, 

kurtosis and normality test). The variability is classified as 

low for CV ≤ 12%, medium for 12% < CV ≤ 62% and high 

for CV > 62% (Warrick and Nielsen, 1980). Later, Gt and 

Hm spatial dependence were evaluated by experimental 

variograms, which were based on a stationarity intrinsic 

hypothesis (Deutsch and Journel, 1998) and could be 

estimated by: 

2

i

)h(N

1i

i )]hx(Z)x(Z[
)h(N2

1
)h(ˆ  



      (Eq. 5) 

Where,
 )(ˆ h  is the semivariance value at h distance; N(h) is 

the number of point pairs Z(xi), Z(xi + h) separated by an h 

distance; and xi is the spatial position of the Z variable. The 

experimental variogram is represented by semivariance 

versus h graphic, from where a mathematical model can be 

adjusted, through which coefficient of theoretical model were 

estimated: nugget effect (C0), sill (C0 + C1) and ranger (a).  

The data fit to a mathematical model is the most important 

step in a geostatistic study. In this study, models with the 

number of pairs equals or greater than 50 points to achieve 

higher degrees of representativeness in modeling procedure 

was adopted (Wollenhaupt et al., 1997; Burrough and 

McDonnell, 1998). Journel and Huijbregts (1978) 

recommended at least 30 pairs of points per interval for a 

proper semivariance estimation. 

The ratio between nugget effect and sill [C0/(C0 + C1) × 

100], expressed as a percentage, is used to express spatial 

dependence degree (SDD), being classified as strong (≤ 

25%), moderate (between 25 and 75%), and weak (> 75%) 

(Cambardella et al., 1994). The best-adjusted model is chosen 

based on residual sum of square (RSS), determination 

coefficient (R2) and cross-validation parameters, which are 

obtained from a regression adjustment between the observed 

values and those predicted by modelling.  

 

Ordinary kriging 

 

Ordinary Kriging (OK) is used to estimate spatial variables 

without bias and under mild variance, non-sampled points by 

means of data interpolation (Webster and Oliver, 2009). A 

permissible theoretical model was adjusted, which was used 

for Gt and Hm estimations at non-sampled sites of the studied 

area. The OK estimation is given by the equation:  





N

1i

ii0 )x(Z)x(Ẑ
, with the constraint   

      0ˆ
00  xZxZE  and





N

1i

i 1
    (Eq. 6) 

Where in, )x(Ẑ 0
is an estimated OK from non-sampled 

points; X0, the observed value at i point, where i=1,2,...n and 

i  the weight associated to each nearest point in the value 

estimate, more details can be seen in Goovaerts (1997). 

 

Trans-Gaussian Kriging  

 

Trans-Gaussian Kriging (TGK) is an interpolation method of 

standardized score of non-observed random variables. The 

first step is to process the soil attribute data using the normal 

standard method, which is a graphical transformation that 

allows variables to have a normalized distribution 

independently of the initial one. The soil attributes were 

directly transformed to be standard normally distributed, 

subtracting the mean and dividing it by the standard 

deviation, that is: 

 
   

 x

xZxZ
xZ i

is





                              (Eq. 7) 

Wherein,  is xZ  is the attribute Z(x) value at i point after 

standardization;  xZ  is Z(x) value means; and (x) is the 

standard deviation of Z(x). Additionally, this standardization 

is called Z-score, in reference to a standard normal 

distribution. Such transformation was performed apart from 

kriging and variograms were calculated from the processed 

values, then, estimated by OK process, which is called TGK. 

After estimation via TGK, the values are again transformed 

back to the original scale (back-transformation).  

 

Estimate validation 

 

Thirteen observations, about 10% of all sampled points, were 

used for external validation (Teixeira et al., 2011) to evaluate 
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estimation accuracy of OK and TGK methods. In this 

procedure, the indexes mean error (ME) (Eq. 8), root of mean 

square error (RMSE) (Eq. 9) and the relative root of mean 

square error (RMSEr) were calculated (Eq. 10). 

     with;xZxẐ
n

1
ME

n

1i

ii


   0MEE    (Eq. 8)                                                       

    



n

1i

2

ii ;xZxẐ
n

1
RMSE  

0)( RMSEEwith                                        (Eq. 9) 

z

RMSE
RMSEr


(%)                                                (Eq. 10)                                                                            

Where; n is the number of validation points (n = 13);  ixẐ  

is the estimated value at i point;  ixZ  is the observed value 

at i point; and  is the standard deviation of dataset (n=108). 

The smaller the RMSEr value, the more efficient modeling 

can be considered (Hengl, 2011). 

The relative improvement (RI %) of TGK over the standard 

estimation method (OK) was calculated as follows: 

 

OKRMSE

TGKRMSEOKRMSE

RI





100

                                (Eq. 11) 

Where, RMSEOK and RMSETGK are the root of mean square 

error values for the reference method (OK) and the TGK, 

respectively. If RI is positive, the evaluated method (TGK) 

accuracy will be greater than the reference one (OK) and vice 

versa (Zhang et al., 1992). 

The G statistic was used to quantify how well conditional 

cumulative distribution function (CCDF) of a geostatistics 

method plays in the CCDF sample data (Herbst et al. 2009). 

Knowing the CCDF of each interpolated set allows 

computing symmetric probability intervals (IP-p) limited by 

(1-p)/2 and (p+1)/2 for any accumulated probability at a u 

site. The true value fractions within an IP-p-symmetrical can 

be calculated, knowing the interpolated data CCDF 

   NjnzuF ,...,1,/,ˆ   and sample data 

  NjuZ j ,...,1,  :       ;
1

1,0,
1





N

j
ppju

N

p  (Eq. 12) 

Where, 

 
     



 








otherwise0

2/1,
1

)(2/1,
1

1

,

pjuFjuzpjuFif

pju  

The correlation between estimated fraction and sampled 

fraction was obtained by G statistics. 

  dpp)p(2)p(a31G
1

0                      (Eq. 13) 

Where, 



 


otherwise0

)(1
)(

ppif
pa


 

In non-accurate cases ( pp )(  ), a(p) values  promote 

weighting twice that accurate cases, when pp )( . The 

best CCDF is represented by a G values near 1.   

The variogram reproduction accuracy was evaluated by y  

statistics (Goovaerts, 2000). 
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                                (Eq. 14) 

Where, S  is the number of lags used to build the variogram; 

)h(ŷ s
is the semivariance at hs distance calculated from the 

estimated values by the interpolation method; )h(y s
 is the 

semivariance value of the fitted model at hs distance. Due to 

square division, more emphasis is given to following source 

model, which is shorter h distances, as the interpolation 

calculations are more relevant for this region. Values close to 

zero indicate good accuracy in the reproduction of the 

variogram (Bourennane et al., 2007). 

 

Conclusion 

 

Trans-Gaussian Kriging has better performance for 

estimations when compared to Ordinary Kriging; therefore, it 

is recommended for iron oxide mapping in both convex and 

concave hillslope curvatures. Hillslope curvature 

classification has great importance as variogram modeling 

concerning method efficiency. It may improve the 

geostatistical mapping of iron oxides. Ordinary Kriging maps 

for iron oxides should be cautiously used due to its 

uncertainty, especially in other hillslope curvature. The 

Ordinary Kriging being generally preferable in the gently-

rolling agricultural landscape 
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